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Abstract
In the NIST additive manufacturing benchmark (AM-Bench) experiments, melt pool geometry, cooling rates, surface
topography, and dendritic microstructure in laser melted Inconel 625 were used to challenge and validate computational
models of the melting and solidification process. To this end, three thermal models incorporating different physics are
compared with the experimental data. It is identified that the heat convection enhanced by the thermocapillary flow inside
the melt pool and heat loss caused by vaporization play pivotal roles to guarantee the accuracy of the predictions, and thus
should be considered in the thermal model. Neglecting fluid flow and vaporization leads to nearly 100% difference in cooling
rate during solidification, and 20% difference in cooling rate after solidification from the results. With the most accurate
thermal model, surface topographies of the melt tracks are predicted and quantitatively analyzed. Using the Kurz-Fisher
model, the primary dendrite arm spacing is predicted based on the thermal gradient and solidification rate predictions, while
elemental segregation is predicted using the Scheil-Gulliver model and a non-equilibrium solidification model. Additionally,
it is shown that increasing scan speed inhibits elemental microsegregation.

Keywords Additive manufacturing · Fluid flow · Cooling rate · Dendrite arm spacing · Microsegregation ·
Ni-based superalloy

Introduction

Metallic additive manufacturing, including laser/electron
beam powder bed fusing (L/E-PBF) and directed energy
deposition (DED), provides opportunities to reduce the cost
of manufacturing Ni/Ti-based superalloy parts, especially
with complex geometries such as internal cooling channels
for high-temperature applications [1–3]. However, inappro-
priate process parameters lead to defects, such as lack of
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fusion [4], porosity [5], low surface quality [6], cracking
[7], and precipitation of brittle phases [8], which degrade
mechanical properties. Finding suitable process parameters
for manufacturing and heat treatment processes through trial
and error is time-consuming. Predictive modeling can help
accelerate this search.

Computational modeling has been crucial to understand-
ing process–structure–properties linkages in additive manu-
facturing (AM) [9]. To assess the highly transient manufac-
turing process, finite element/volume method-based thermal
models have been developed. Using a heat conduction
model, thermal and cooling behaviors of deposited Fe-TiC
composite during laser cladding were studied by Emamian
et al. [10]. Gao et al. [11] developed a 3D thermal model
using the finite element method (FEM) to calculate the ther-
mal gradient and the solidification rate at the liquid–solid
interface of an Fe-based alloy. A thermodynamically con-
sistent model has been proposed to evaluate microstructure
based on thermal behavior during the process [12]. How-
ever, fluid flow inside the melt pool was not considered in
these aforementioned numerical models, and thus neglected
to directly incorporate the effects of cooling through fluid
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convection. Several thermal-fluid flow models, which con-
sider liquid metal flow within the melt pool, have also
been developed. DebRoy’s group developed heat transfer
and fluid flow models in welding and additive manufactur-
ing [13–15]. Flat surface assumptions have been made to
simplify the problems. A few multiphase flow models have
been proposed to consider free surface evolution using the
Level-Set (LS) [16, 17] or Volume of Fluid (VOF) [18, 19]
methods. The addition of free surface capturing or tracking
enables powder scale simulation and a better resolution of
the inter-facial forces [20, 21].

To predict microstructure and phase formation of
additively manufactured materials, several microstructure
models have been developed. Cellular automaton (CA)
[22] and kinetic Monte Carlo (KMC) [23] models have
been utilized to predict grain structure evolution in additive
manufacturing. For predicting dendrite formation and
morphology during solidification, phase field methods have
been developed for binary and multicomponent alloys
[2, 24]. Based on CALculation of PHAse Diagrams
(CALPHAD), elemental segregation can be evaluated in
thermodynamic equilibrium [25] and non-equilibrium [26]
processes.

However, ensuring the accuracy of the models men-
tioned above requires well-designed and highly controlled
experiments for validation. Because of the extremely high
temperature, metallic powder spattering, and multiple phys-
ical scales presenting in the melt pool, it has been difficult
to conduct in situ measurements of the variables of inter-
est. Typically, ex situ measurements are used to detect the
fusion boundary at the cross section of fabricated samples
that is used for numerical validation [27]. By using Electron
Backscatter Diffraction (EBSD) [28] and Scanning Electron
Microscope (SEM) imaging [29], the grain and dendritic
microstructure can be obtained from sample cross sections.
Recently, in situ observation techniques have been proposed
to conduct time-resolved measurements for the melt pool
length [30], cooling rate [31], powder spatter [32], and
phase transformation [33] enabling the design of highly con-
trolled experiments. In February 2018, the United States
National Institute of Standards and Technology (NIST) lab-
oratory announced the Additive Manufacturing Benchmarks
2018 (AM-Bench), which provided a series of highly con-
trolled additive manufacturing benchmark tests and asked
for model predictions around the world for quantitative val-
idation [34]. Model predictions were submitted by the May
18, 2018. All experimental results were released on May 19,
2018. These experiments challenge participants to address
the problem of AM modeling, and allow the validation of
different numerical models to explore the impacts including
detailed physical phenomena and microscale information on
accuracy and efficiency.

This paper describes a simulation effort to model one
set of AM-Bench experiments, measuring process behavior
and material microstructure for individual laser tracks on
Inconel 625 bare substrates. The melt pool dimensions,
cooling rate, surface topography, primary dendrite arm
spacing, and elemental microsegregation are explored in
detail. The rest of the paper is organized as follows: In
“Experimental Methods,” the experimental methods for AM-
Bench are briefly described. In “Computational Models,”
the computational methods are provided in detail. In
“Results and Discussion,” the detailed comparison of the
experimental data and simulation results are presented.
Finally, conclusions and perspectives are discussed in
“Conclusions.”

Experimental Methods

At NIST, an EOS M270, which is referred to the
Commercial Build Machine (CBM), was used to produce
multiple single-track scans. A 1070-nm continuous wave
laser with a beam diameter of 100 μm at its focus melted
an Inconel 625 (IN625) bare plate (no powder). In this
work, the beam diameter is defined as the width of the
beam at which the Gaussian beam intensity has fallen to
1/e2 (∼13.5%) of its peak. Low-velocity gas flow consisted
of Nitrogen and 0.5% Oxygen. Three different cases were
conducted: case A of laser power of 150 W and scan speed
of 400 mm/s, case B of laser power of 195 W and scan
speed of 800 mm/s, and case C of laser power of 195 W and
scan speed of 1200 mm/s. High-speed short-wave infrared
cameras (SWIR) were used for in situ measurements of
the melt pool length and cooling rates while laser scanning
confocal microscopy was used for the characterization
of 3D topographies of the top surfaces of laser tracks.
Cross-sectional geometry and microstructure were obtained
using optical microscopy and scanning electron microscopy
(SEM) with secondary electron (SE) imaging, electron
backscatter diffraction (EBSD), and energy dispersive
spectroscopy (EDS). More detailed information of the
experimental setups and measurements are available on the
AM-Bench website [35].

Computational Models

A framework of integrated computational models is
proposed for the AM-Bench experiments and shown in
Fig. 1. To predict the melt pool geometry and cooling
rates during the process, three thermal models considering
varying levels of physics were developed for comparison:
(1) heat conduction model solving the thermal diffusion
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Fig. 1 A flowchart including
computational models, predicted
information, and three cases
with different process
parameters

equation, (2) thermal-fluid model considering liquid flow
inside the melt pool driven by Marangoni effect, and (3)
thermal-fluid-vaporization model further considering heat
loss caused by vaporization. Based on the cooling rate and
thermal gradient obtained from the most accurate thermal
model, primary dendrite arm spacing can be predicted
using the Kurz-Fisher (KF) model [36] with experimental
calibration. In addition, elemental segregation is evaluated
based on two CALPHAD-based models: (1) the Scheil-
Gulliver model [37] with a thermodynamic equilibrium
assumption and (2) a non-equilibrium solidification model
for multicomponent alloys [26]. To predict 3D grain
structures, a 3D cellular automaton (CA) model [22]
was developed for additive manufacturing and allows
simulations of a large numbers of grains within domains at
the millimeter scale and beyond; details of the CA model
are not the focus of this paper.

Thermal-Fluid-VaporizationModel

Since the thermal-fluid-vaporization model [38] can be
reduced to others models mentioned above, we presented
it only in this section. The model is simplified based on
several following assumptions [39]:

1. The densities of the liquid and solid metals are treated
as constant within each phase (though not necessarily
across phase interfaces).

2. The thermocapillary flow inside the melt pool is
assumed to be incompressible and laminar with a
Boussinesq approximation of buoyancy effect.

3. The solid substrate is treated as a Newtonian fluid with
a very large viscosity, and the strain and stress in the
solid are neglected.

4. Mass loss and composition change due to vaporization
are neglected.

5. Flow in the mushy zone is assumed to be described as
that in an isotropic porous medium, with permeability
given by the Carmen-Kozeny relation [40].

6. Viscous dissipation is neglected in the energy equation.

Under the assumptions above, the governing equations
for mass, momentum, and energy conservation are given as
follows [27]:
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where t is the time, ui is the ith component of the velocity, μ
is the viscosity, p is the pressure, h is the enthalpy, T is the
temperature, ρ is the density, k is the thermal conductivity
and β is the thermal expansion coefficient. In this study,
μ is set as a constant, δ is approximate primary dendritic
spacing, which is set to 1 μm, B is a small parameter to
avoid division by zero and set to 10−3. The relationship
between enthalpy and temperature to close the equation set
is

ρh =
∫ T

0
ρcpdT ′ + ρLfl (4)

where cp is the specific heat capacity, L is the latent
enthalpy of fusion, and fl is the volume fraction of liquid
phase.
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The thermal boundary condition including the heat
source model at the liquid-gas interface is specified as:

qener = 2Qη

πr2
b
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where Q is the laser power, η is the absorptivity, rb is
the laser beam radius, Vs is the scanning speed, hc is
the convective heat transfer coefficient, T∞ is the ambient
temperature, σs is the Stefan−Boltzmann constant, ε is the
emissivity, Tref is the reference temperature, 
Hi is the
vaporization latent heat of element i, n is the number of
elements, and Ji is the vaporization rate of element i. The
Langmuir equation [41] is applied to evaluate Ji as follows:

Ji = χPi√
2πMiRT

(6)

Here, Pi is the vapor pressure of element i, Mi is the
molecular weight of the element i, R is the gas constant, and
χ is a positive constant that accounts for the condensation
of a portion of the vaporized atoms at atmospheric pressure.
χ is 0.1 in this case [41].

The boundary condition for Eq. 2 at the liquid–gas
interface is:

FL/G = γnκ + ∇ST
dγ

dT
(7)

where γ is the surface tension coefficient, n is the outward
pointing normal of the surface, and κ is the curvature of the
surface.

To predict the topology of the free surface of the
melt pool, the liquid–gas interface profile is calculated by
minimizing the total energy of the surface defined as
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where φ is the depression of free surface, and Pr is the
recoil pressure due to vaporization. The four terms on
right hand side of Eq. 8 are energetic contributions due
to the surface curvature, gravitational potential energy,
convection, and recoil pressure, respectively. The recoil
pressure is calculated from the Clausius-Clapeyron equation
[42] as

Pr(T ) ∼= 0.54Psat (T ) = 0.54P0 exp(Lv

T − Tb

RT Tb

) (9)

Here, Psat is the saturation pressure at the boiling
temperature Tb, P0 is the atmospheric pressure, Lv is the
latent heat of vaporization, and R is the gas constant.

The thermal properties and compositions of IN625 are
summarized in Tables 1 and 2, respectively. It is noted
that the value of absorptivity and Marangoni coefficient are
calibrated based on the experimental data provided for the
track with laser power 195W and scan speed 800 mm/s
[35]. These experimental results were provided by NIST to
modelers for calibration prior to AM-Bench submission.

As listed in Table 1, the densities at ambient and liquidus
temperatures are used for solid and liquid densities, respec-
tively. Values of the density were taken from the literature
[43]. To capture more accurate thermal behavior during the
process, we used temperature-dependent polynomials for
the solid thermal conductivity and solid specific heat capac-
ity as listed in Table 1. The polynomial coefficients were
fitted to experimental measurements [43]. An approximate
boiling point for the material was used. We used a constant
convective heat transfer coefficient to approximate the low-
velocity shield gas flow upon the substrate. Emissivity was
approximated based on an assumption: for a material in ther-
modynamic equilibrium, the emissivity is approximately
equal to the absorptivity.

SolidificationModels

The Kurz-Fisher (KF) model [45] is used to predict the
primary dendrite arm spacing (PDAS) λp in the process as
follows:

λp = A(�
T0Dl/k)0.25G−0.5R−0.25 (10)

where G represents the magnitude of thermal gradient and
R is the solidification rate at the liquid–solid interface of the
melt pool, both of which are provided by the thermal process
model given in “Thermal-Fluid-Vaporization Model.” Here,
k is the equilibrium partition coefficient, � is the Gibbs–
Thomson coefficient, 
T0 is the equilibrium freezing
range (i.e. the difference between liquidus and solidus
temperature), Dl is the liquid diffusivity, and A is a material
constant calibrated as 0.98 for IN625 in this study. The
parameters used in the model above are summarized in
Table 3.

To evaluate the elemental segregation, the Scheil-
Gulliver model has been widely used for welding [46] and
casting [47]. There are several assumptions in the Scheil-
Gulliver model [36]

1. No diffusion in solid phases and infinite diffusion in
liquid phases are assumed.

2. Thermodynamic equilibrium exists at the solid-liquid
interface.

3. The partition coefficient is a constant.

However, assumptions 2 and 3 are not suitable for
additive manufacturing application, because the high
cooling rate (103 − 106K/s) leads to a non-equilibrium
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Table 1 Thermo-physical properties of IN625 and process parameters

Name Property Value Reference

Solid density ρs (kg·m−3) 8440 [43]

Liquid density ρl (kg·m−3) 7640 [43]

Solidus temperature Ts (K) 1563 [44]

Liquidus temperature Tl (K) 1623 [44]

Boiling temperature Tb (K) 3000 -

Solid specific heat capacity cps (J ·kg−1·K−1) 0.2441T+338.39 [43]

Liquid specific heat capacity cpl (J ·kg−1·K−1) 709.25 [43]

Solid thermal conductivity ks (W·m−1·K−1) 0.0163T + 4.5847 [43]

Liquid thermal conductivity kl (W·m−1·K−1) 30.078 [43]

Latent heat of fusion L (kJ·kg−1·K−1) 290 [43]

Dynamic viscosity μ (Pa·s) 7 × 10−3 [44]

Thermal expansivity β (1/K) 5 × 10−5 [44]

Surface tension γ (N·m−1) 1.8 [44]

Marangoni coefficient dγ
dT

(N·m−1·K−1) −2 × 10−5 (Calibrated) -

Emissivity ε (1) 0.4 -

Absorptivity η (1) 0.43 (Calibrated) -

Ambient temperature T∞ (K) 295 -

Reference temperature Tref (K) 295 [43]

Reference density ρref (kg·m−3) 7640 -

Convection coefficient hc (W·m−2·K−1) 10 -

Stefan–Boltzmann constant σs (W ·mm−2K−4) 5.67 × 10−14 [44]

solidification with a non-equilibrium partition coefficient
[48]. In this study, a modified microsegregation model [26]
for rapid solidification of multicomponent alloys is used
as follows. Based on the non-equilibrium condition, the
relation between the solute content of the component i in
solid, C∗

s,i , and that in liquid, C∗
l,i , can be written as

C∗
s,i = kv,iC

∗
l,i = kv,iC0,iAi (11)

kv,i = ki + a0,iR/Dl,i

1 + a0,iR/Dl,i

(12)

Ai = 1

1 − (1 − ki)Iv(Rλp/4Dl,i)
(13)

where C0,i is the initial content for each component,
kv,i is the partition coefficient of component i, ki is
the equilibrium partition coefficient of component i, a0,i

is the length of atomic dimensions of component i, R

is the solidification rate computed by the thermal–fluid–
vaporization model, Dl,i is the solute diffusion coefficient
of component i in liquid, and Iv(·) is the Ivantsov function.

By following the mass conservation during the process,
the relation between the solute content of the component i

in solid, C∗
s,i , and the volume fraction of solid, fs , can be

derived as [26]
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Table 2 Material composition of IN625 by wt%

Material Ni C Mn Fe S Si Cr Al Ti Co Mo

IN718 Bal 0.02 0.09 4.31 0.001 0.15 22.25 0.12 0.21 0.1 8.98

Nb Ta P

3.45 0.005 0.009
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Table 3 Parameters used in microstructure models [49]

Name Property Value

Equilibrium partition coefficient k (1) 0.48

Gibbs–Thomson coefficient � (K · m) 3.65 × 10−7

Equilibrium freezing range 
T0 (K) 60

Liquid diffusion coefficient Dl (m2 ·s−1) 3 × 10−9

Solid diffusion coefficient Ds (m2 ·s−1) 1 × 10−12

where C0,i is the initial content for each component as listed
in Table 2, Ds,i is the solute diffusion coefficient of the
component i in solid, and G and R are predicted based
on the thermal–fluid–vaporization model. In this study, the
concentration of Ni, Cr, Fe, Mo, and Nb for IN625 are
predicted (i=Ni, Cr, Fe, Mo, Nb). The parameters used in
the microsegregation model are summarized in Tables 3
and 4.

Results and Discussion

The three cases (i.e., case A, case B, and case C mentioned
in “Experimental Methods”) of a single track laser scan are
simulated using an in-house computational thermal–fluid
dynamics code called AM-CFD. The computational domain
is set to 6×1.2×0.6 mm. A nonuniform structured mesh of
1000×200×100 (total 20 million cells) is used to discretize
the domain to obtain a mesh-independent solution. We
used fine meshes, 5×3×2 μm, in the laser scan region.
Second order upwind and second order central difference
schemes are used for the discretization of the convection and
diffusion terms, respectively. The SIMPLE algorithm [51] is
used to solve the continuity and momentum equations, and
a first-order Backward Euler method is used to discretize
the time term. The simulation time is set to 10 ms with
a time step of 10 μs. The maximum Courant number
is around 2 to 3. The implicit time stepping algorithm
used here allows for stable time integration at a Courant
number greater than unity [52], and a mesh refinement
study varying the Courant number from 0.1 to 10 has
been done to verify that the selected mesh size and time
step can achieve good convergence and solution stability
as well as solution accuracy. The surface profile of melt
pool can be then obtained based on the temperature field
and input parameters using equation (8, 9). Based on

Table 4 Chemical parameters in the microsegregation model [50]

Component Ni Cr Fe Mo Nb

Equilibrium partition coefficient ki 1.03 1.02 1.09 0.85 0.48

Atomic dimension a0(nm) 1.35 1.4 1.45 1.4 1.45

the surface profile, the coordinates of the grid are varied
to fit the change of geometry [53]. Finally, the dendrite
arm spacing and microsegregation are calculated based on
the temperature field. The solution process is repeated at
each time step until the residuals satisfy the convergence
criterion.

Melt Pool Geometry

The predicted temperature field and streamlines inside the
melt pool are displayed in Fig. 2. It is clear that the
Marangoni driven flow (i.e., thermocapillary flow) inside
the melt pool leads to a strong heat convection. The
momentum of liquid metal is lost in the mushy zone because
of friction between the formed dendrite and the fluid. The
chevron features of solidified materials stem from the fluid
flow and free surface evolution.

Figure 3 presents the cross-sectional geometries for cases
A, B, and C, in which the melt pool envelopes predicted
by the three computational models, i.e. the heat conduction
model, thermal-fluid model, and thermal-fluid-vaporization
model, are overlapped with the experimental data. It
is known that the phenomenon of outward Marangoni
flow can lead to a wide and shallow melt pool which
highlights the importance of the liquid flow inside the
melt pool. As shown in Fig. 3, the depth of the melt
pool is overestimated with the heat conduction model,
which can not consider heat convection effects. By contrast,
the shapes of melt pool predicted using the thermal-fluid
model and thermal–fluid–vaporization model are in better
agreement with the experimental data as these two models
incorporate additional physics. Including the heat loss due
to vaporization does not significantly affect the shape of the
melt pool, but reduces both its depth and width, which leads
to a better prediction of melt pool geometry as compared
with the experimental results.

Fig. 2 Temperature and streamlines in the melt pool for AM-Bench
case B: laser power 195W, scan speed 800mm/s. The physical
phenomena considered in the model are marked
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Fig. 3 Experimental
cross-sectional geometries in the
three cases. The corresponding
melt pool boundary (solidus
temperature) predicted by
thermal-fluid-vaporization
model (red dashed dotted line),
thermal-fluid model (blue
dashed line), and heat
conduction model (black dotted
line) are overlaid on the
experimental images for
representation. Experimental
images are released from the
AM-Bench committee [54]

The melt pool length for the three cases is summarized
in Table 5. It is shown that for cases B and C, the results
from the thermal–fluid–vaporization model agree well with
the experimental data, with a difference that is smaller than
the experimental uncertainty. For case A, a 24% difference
of melt pool length is obtained. The heat conduction model,
ignoring both the fluid flow and vaporization, also predicts
the melt pool length well. It is noted that the heat conduction
and thermal–fluid model provide similar predictions of the
melt pool length. This may be because the scan speed
(400–1200 mm/s) is comparable with the thermocapillary
flow velocity (< 1600 mm/s); thus, the melt pool length is
mainly dominated by the heat source moving rather than
the flow convection inside the melt pool. The difference
between the simulation and experimental results of the

melt pool size is mainly attributed to both the simplified
assumptions in the computation models and the lack of
accurate thermophysical properties of the material.

Cooling Rate

Cooling rate, the rate at which temperature decreases with
time, is an important factor in additive manufacturing. The
cooling process from liquidus to solidus temperature has
a large influence on dendrite arm spacing, grain structure,
microsegregation, and hot cracking, while the process of
cooling from solidus temperature to a given temperature,
e.g., recrystallization temperature (approximate 1000 ◦C
for IN625 [55]), affects solid-state phase transformation,
residual stress, and grain coarsening. As shown in Fig. 4,

Table 5 Comparison of melt pool length between experiments and three computational models: thermal-fluid-vaporization, thermal-fluid, and
heat conduction model

Length (μm) measured
by experiments

Length (μm) predicted
by thermal-fluid-vapor.
model

Length (μm) predicted
by thermal-fluid model

Length (μm) predicted
by heat conduction
model

Case Value Value (difference) Value (difference) Value (difference)

A: 150W, 400 mm/s 659 ± 21 502 (24%) 542 (18%) 564 (14%)

B: 195W, 800 mm/s 782 ± 21 772 (1%) 843 (8%) 883 (13%)

C: 195W, 1200 mm/s 754 ± 46 717 (5%) 785 (4%) 832 (10%)

Experimental data has been released by the AM-Bench committee [54]



Integr Mater Manuf Innov (2019) 8:178–193 185

Fig. 4 Definitions of cooling
rates. Temperature curve along
the centerline of scan track can
be obtained from experimental
infrared images. Two cooling
rates, i.e. solidification cooling
rate and solid cooling rate, with
different temperature ranges are
defined. They are related to
various physical phenomena in
additive manufacturing

the cooling rates at these two different stages are referred
to as solidification cooling rate and solid cooling rate,
respectively, both of which are defined as follows.

Solidification cooling rate = Tliq −Tsolid


t
= Tliq −Tsolid

(dliq − dsolid )/Vs

(19)

Solid cooling rate = Tsolid −1000◦C


t ′
= Tsolid −1000◦C

(dsolid −d1000)/Vs

(20)

where Tliq is the liquidus temperature, Tsolid is the solidus
temperature, 
t is the cooling time interval determined
by dividing the distance between liquidus and solidus
isotherms dliq − dsolid by the scan speed Vs , and 
t ′ is
determined by dividing the distance between the solidus
temperature and 1000 ◦C by the scan speed.

The cooling rates for the three cases are shown in
Fig. 5. Results from the three thermal models mentioned in
“Computational Models” (i.e., heat conduction model,
thermal-fluid model, and thermal–fluid–vaporization model)

Fig. 5 Comparisons of cooling
rates between experiments and
three models, i.e. the heat
conduction model, thermal-fluid
model, and
thermal-fluid-vaporization
model: a solid cooling rate,
b solidification cooling rate.
Experimental data is released by
the AM-Bench Committee [54]
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Table 6 Comparison of solid cooling rate between experiments and three computational models: thermal-fluid-vaporization model, thermal-fluid
model, and heat conduction model

Experimental solid cool-
ing rate (K/s)

Solid cooling rate of
thermal-fluid-vapor.
(K/s)

Solid cooling rate of
thermal-fluid (K/s)

Solid cooling rate of heat
conduction (K/s)

Case Value Value (difference) Value (difference) Value (difference)

A: 150W, 400 mm/s 6.20 ± 0.799 × 105 5.44 × 105 (12%) 5.11 × 105 (18%) 4.3 × 105 (31%)

B: 195W, 800 mm/s 9.35 ± 1.43 × 105 7.59 × 105 (19%) 6.89 × 105 (26%) 6.35 × 105 (32%)

C: 195W, 1200 mm/s 12.8 ± 3.94 × 105 12.14 × 105 (5%) 11.3 × 105 (12%) 10.1 × 105 (21%)

Experimental data is released by the AM-Bench Committee [54]

are compared with the experimental data. As shown in
Fig. 5a, results from the thermal–fluid–vaporization model
provide the best agreement with the experimental data.
The prediction for case A falls exactly within the range
of experimental data. Quantification between experimental
and simulation results are listed in Table 6. The prediction
results from the thermal–fluid model without vaporization
are out of the range of experimental results and have a
12 to 26% discrepancy in solid cooling rate. The results
from the heat conduction model have discrepancies as high
as 30%. In addition, the simulated solidification cooling
rates are compared in Fig. 5b and Table 7. Since it is still
challenging to directly measure the solidification cooling
rate, only the solid cooling rate results were measured in
AM-Bench using infrared imaging (detailed descriptions of
the measurements can be found in reference [56]). When
compared with the thermal–fluid–vaporization model, it
is observed that neglecting physical mechanisms in the
melt pool leads to differences in the range of 10 to 16%
for the thermal–fluid model and 64 to 118% for the heat
conduction model. The above results indicate that analyzing
thermal evolution during AM using the thermal conduction
model, ignoring fluid flow and vaporization, underestimates
the solid cooling rate and considerably overestimates the
solidification cooling rate.

To show the effects of fluid flow and vaporization on
the spatial temperature distribution, temperature profiles
along the scan track are extracted from the simulation
results and plotted in Fig. 6. It is clear that a significant
difference occurs above the solidus temperature, and this
difference gradually decreases as the temperature falls
below the solidus temperature. Additionally, unrealistic
peak temperatures of 10777 ◦C from heat the conduction
model and 5452 ◦C from the thermal–fluid model are
reached; these temperatures are much higher than the
boiling point of IN625 (2727 ◦C) and cause large changes
in the solidification cooling rate. From these tests, it can be
observed that both the thermal convection and vaporization
are the essential mechanisms in the thermal analysis. An
inaccurate estimation of the cooling rate is expected if these
mechanisms are not properly accounted for.

Surface Topography

In this section, the 3D topography of the top surface is stud-
ied. The quantifiable 3D surface features include chevron
geometries and spacing as well as height distribution per-
pendicular to the laser track.

Figure 7 shows the surface topography for the three
cases. The experimental profiles were obtained using

Table 7 Comparison of solidification cooling rate between three computational models: thermal-fluid-vaporization model, thermal-fluid model,
and heat conduction model

Solidification
cooling rate of
thermal-fluid-vapor.
(K/s)

Solidification cooling
rate of thermal-fluid
(K/s)

Solidification cooling
rate of heat conduction
(K/s)

Case Value Value (difference) Value (difference)

A: 150W, 400 mm/s 5.0 × 104 5.8 × 104 (16%) 9.0 × 104 (80%)

B: 195W, 800 mm/s 5.5 × 104 6.3 × 104 (15%) 12 × 104 (118%)

C: 195W, 1200 mm/s 14 × 104 15.4 × 104 (10%) 23 × 104 (64%)

The reported difference is the difference between the thermal-fluid-vapor model and subsequent models
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Fig. 6 Comparison of
temperature curves for case B
(195 W, 800 mm/s) between
three models: heat conduction
model, thermal-fluid model, and
thermal-fluid-vaporization
model

scanning laser confocal microscopy and the simulation
results, which show good agreement with the experiments,
are from the thermal-fluid-vaporization model. Chevron
formations are clearly observed in the predictions. They are

formed at the mushy zone at the tail of the melt pool and
thus correlated to the melt pool boundary. Chevron spacing
and angle, defined in Fig. 8, are calculated over the length
of the scan track. The average, maximum, and minimum

Fig. 7 Predicted and
experimental surface
topographies of the three cases:
a 150 W, 400 mm/s, b 195 W,
800 mm/s, c 195 W, 1200 mm/s.
Experimental data is released by
the AM-Bench Committee [54]
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Fig. 8 Definition of chevron angle and chevron spacing

values of them are tabulated in Table 8. It is found that the
chevron spacing increases with the increase of scan speed,
approximately following the relationship:

L = Vsλ

c
(21)

where L is the chevron spacing, λ is the wave length of the
flow in the melt pool, and c is the wave velocity equal to the
fluid velocity at the surface of the melt pool. Based on the
water wave theory [57], the wave length and wave velocity
are expressed as

c

(gH)1/2
= f

(
λ

H
,

γ

ρgλ2

)
(22)

where H is depth of the melt pool and γ is surface
tension. We assume that λ, γ , and H are essentially the
same in the three cases. As a result, the chevron spacing
L is approximately proportional to the scan speed Vs . In
addition, the chevron angle decreases with the increase of
scan speed as shown in Table 8. This trend is caused by the
fact that the teardrop shape of the melt pool is elongated as
the scan speed increases.

Figure 9 shows the surface height along the width of the
solidified track for the three cases. The experimental data
shown in Fig. 9b, d, and f were extracted along specific
transverse lines as shown in Fig. 7 marked out by the dashed
lines, while the average, minimum, and maximum leveled

Table 8 Predicted spacing, angle, and height deviation of chevron
features for the three cases

Case A B C

Chevron spacing, mean (μm) 78 148 187

Chevron spacing, std. dev. (μm) 31 48 87

Chevron angle, mean (◦) 27 16 12

Chevron spacing, std. dev. (◦) 5 4 2

Height excursion (max–min) (μm) 3 5.3 4.6

height curves across the solidified track length plotted in
Fig. 9a, c, and e are obtained from the result of the thermal-
fluid-vaporization model. It is found that the experimental
data falls in the range of the maximum and minimum values
of the simulation results, indicating a good agreement. It is
noted that instead of using an interface capturing method
such as Volume of Fluid (VOF), in which the accuracy of
the free surface capturing depends on the size of fixed grids
near the free surface, we used a modified semi-analytical
method by minimizing the total surface energy equation (8)
to obtain the deformation of the free surface [58]. Then,
the grid coordinates are updated to fit the deviation of melt
pool surface using a moving mesh framework [53]. Thus,
the calculation of the height excursion is independent of the
mesh resolution in the z direction, because the value of the
height excursion is directly obtained by solving equation
(8).

Dendritic Microstructure

In this section, PDAS and elemental microsegregation are
studied. The combination of the magnitude of thermal
gradient G and solidification rate R around the liquid-
solid interface plays an important role in determining
the solidification modes and grain morphology [59] as
illustrated in Fig. 10.

Rather than resolving the detailed grain structure, the
PDAS as defined in Fig. 10 is predicted using G and R from
the thermal–fluid–vaporization model and compared with
experimental data. In order to perform the comparison, G

and R are first projected onto a cross section of the track
(as seen in Fig. 11a and b, respectively, for case B). Then,
according to Eq. 10, a contour of the PDAS distribution
over the cross section is plotted in Fig. 11c showing a
nonuniform PDAS field corresponding to the distribution
of G and R. It is found that the predicted PDAS has a
maximum of 0.79 μm in this case located at the center
of the cross-section and a minimum of 0.23 μm near the
periphery of the cross-section. This trend is validated by
a sample of eight experimental measurements as shown in
Fig. 11d. The experimental PDAS decreases from the center
to the periphery of the cross section of the sample. The
maximum and minimum values of PDAS are presented in
Fig. 12 for all three cases, demonstrating a good agreement
with experimental results. Another conclusion we can draw
from the comparison in Fig. 12 is that the PDAS decreases
with the increase of scan speed due to higher solidification
rates leading to finer dendrites.

To estimate the microsegregation between dendrite arms,
the non-equilibrium model [26] described in “Solidification
Models” is used to predict the concentration profiles.
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Fig. 9 Comparison of height
profiles between experimental
measurements and predicted
results: a, c, and e: predicted
results of minimum, maximum,
and average height profiles over
the x axis (scan direction) as a
function of transverse direction
distance (perpendicular to the
scan direction) for case A, case
B, and case C, respectively; b, d,
and f: experimental results of
height profile along specific
transverse lines shown in Fig. 7
(the dashed lines) for case A,
case B, and case C, respectively.
Experimental data comes from
[54]

Figure 13 shows the concentration profiles, where the
results from the Scheil-Gulliver model [37] are also pre-
sented for comparison. It is observed that the concen-
tration profiles calculated by the non-equilibrium model
better approximate the actual additive manufacturing pro-
cess, i.e., a rapid solidification process with relatively low
microsegragation.

To quantify the degree of microsegragation, the segrega-
tion range 
C for each element is defined as


C = Csolid − Cliquid

Cliquid

(23)

where Cliquid is the concentration at the beginning of
solidification (fs = 0), and Csolid is the concentration when

Fig. 10 Schematic of effect of
thermal behavior on dendritic
microstructure [27, 59]
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Fig. 11 Spatial distribution of a thermal gradient, b solidification rate,
c predicted PDAS, and d experimentally measured PDAS at the cross-
section for case B (195 W, 800 mm/s). Experimental data is released
by the AM-Bench Committee [54]

Fig. 12 Comparisons of maximum and minimum PDAS between
experimental and predicted results for the three cases. Experimental
data is released by the AM-Bench Committee [54]

Fig. 13 Comparison of concentration profile between Scheil-Gulliver
model and non-equilibrium model for case B: 195 W, 800 mm/s

the solidification is completed (fs = 1). For the primary
elements Ni, Cr, Mo, Fe, and Nb, 
C can be calculated from
the concentration profiles, such as Fig. 13, and presented in
Fig. 14 for the three cases. Figure 14 demonstrates that the
elements Ni, Cr, and Fe are depleted between the dendrite
arms after the solidification and Mo and Nb are enriched
in the interdendritic regions. The enriched interdendritic
Nb and Mo have also been observed in the experimental
measurements [50]. In addition, the segregation ranges of all
elements decrease from case A to C (increasing scan speed)
as shown in Fig. 14. For example, the segregation range of
Nb decreases from 56.8% in case A to 40.6% in case C.
Given that severe elemental microsegregation increases the
susceptibility of hot cracking and degrades the mechanical
properties of solidified parts [60], increasing scan speed
causes higher cooling rate/solidification rate and may be
beneficial for the improvement of mechanical properties of
the manufactured materials.

Fig. 14 Comparisons of segregation ranges of elements for the three
cases predicted by the numerical simulation
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Conclusions

In this work, a framework of integrated models is proposed
for the simulation of additive manufacturing. Through
comparisons with AM-Bench tests on laser melting of
Inconel 625 plate with three different combinations of scan
speed and laser power, the melt pool geometry, cooling
rate, surface topography of laser track, primary dendrite arm
spacing, and elemental microsegragation are studied. From
this work, we concluded:

1. Including fluid flow and heat loss due to vaporization in
the heat conduction model can significantly improve the
prediction accuracy of thermal analysis. The simulation
results from the model with fluid flow and vaporization
are in good agreement with the experimental data on
the melt pool geometry (width and depth), solidification
cooling rate, and solid cooling rate.

2. Neglecting heat loss due to vaporization underestimates
solid cooling rate by approximately 10% and overesti-
mates solidification cooling rate by 15%, respectively.
Neglecting both vaporization and fluid flow results in
a 20% underestimation in the solid cooling rate and a
nearly 100% overestimation in the solidification cool-
ing rate.

3. Melt pool length predicted by both the heat conduc-
tion model, thermal-fluid model and thermal-fluid-
vaporization model can match the experimental mea-
surements.

4. Surface topographies of tracks can be qualitatively
predicted by minimizing the total energy of surface.
Clear chevron features are found in all three cases. An
increase in scan speed leads to a increase of the chevron
spacing but a decrease of the chevron angle.

5. The primary dendrite arm spacing can be successfully
predicted using the Kurz-Fisher (KF) model with
accurate thermal gradient G and solidification rate R.

6. Concentration profiles with lower microsegregation are
predicted by a non-equilibrium solidification model as
compared with the well-known Scheil-Gulliver model.
The increase of scan speed inhibits the elemental
microsegregation.
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