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Abstract
Purpose of Review Although the detailed composition of the human genome is known base by base for its major part, the
orchestration of and which elements exactly facilitate organization and flexibility of higher order gene and genome architecture,
are poorly understood and scarcely studied.
Recent Findings This review focuses on fragile sites (FSs). They are considered as regions of chromosome breakage with
overlapping signatures for breakpoints observed repeatedly in tumor and constitutional rearrangements, and also in evolutionary
conserved breakpoints. Thus, FSs are promising targets to study and get deeper insights into chromosome, gene, and genome
evolution.
Summary Here, we summarize the current knowledge on FSs and their correlation with aforementioned breakpoint categories.
Based on that, we introduce a new model for FSs driven gene and genome evolution, which also can explain the recently
observed spreading of (pseudo-)gene family members among the human genome. FSs therefore may provide an “infrastructure”
to distribute gene copies onto different sites of the genome and may be the underlying cause for formation of gene families.
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Introduction

One fundamental question that genome biology, chro-
mosomal evolution, cancer- and aging-related research
unifies, is, how large parts of genomes in the range of
megabasepairs (Mb) can be evolutionary stable and at
the same time easily and in parts reproducibly be
(re-)organized with controversial outcomes like adverse
in cancer or advantageous during speciation. Despite a
huge amount of published and ongoing research
concerning single aspects of this puzzle, the question
how to find a balance between evolutionary advantage
and fatal development towards disease and neoplasia
due to genomic rearrangements is far from being

understood. It is almost a truism to state that the com-
mon basis of such events is DNA double-strand breaks
(DSBs) and their (im-)perfect repair. Depending on cell
type—germline or somatic—such break events and their
repair results either, if linked with selection benefits
and/or population bottle necks, subsequently evolution-
ary conserved breakpoints, or a hereditable genomic
variant, maybe leading to a disease. In latter case and
if somatic cells are affected, the resulting rearrange-
ment(s) may contribute to aging and/or the development
of cancer.

Our own work on evolutionary conserved breakpoints
[1–5], breakpoints in constitutional rearrangements [6–9]
and neoplasia associated breakpoints [10, 11], as well as a
series of studies from others [e.g., 12, 13, 14•, 15, 16•] re-
vealed a high degree of overlap of so called fragile sites
(FSs) and all aforementioned breakage events. FSs present
as cytogenetic visible breaks and gaps, are regarded as a con-
sequence of special features being present in chromosome
biology, and are especially expressed under certain cell culture
conditions. FSs are chromosomal regions containing DNA
sequences, which occasionally enter mitosis before comple-
tion of replication, and are therefore “prone to break” under
conditions of in vitro induced replication stress, e.g., due to

This article is part of the Topical Collection on Cytogenetics

* Anja Weise
Anja.Weise@med.uni-jena.de

1 Institute of Human Genetics, Jena University Hospital, AmKlinikum
1, 07747 Jena, Germany

2 Group of Bioinformatics, Institute of Molecular Biology NAS RA, 7
Hasratyan Str, 0014 Yerevan, Armenia

Current Genetic Medicine Reports (2018) 6:136–143
https://doi.org/10.1007/s40142-018-0154-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s40142-018-0154-9&domain=pdf
mailto:Anja.Weise@med.uni-jena.de


aphidicolin, folate-deficient media, bromodeoxyuridine
(BUdR) or 5-azacytidine [17–19]. FSs appear with variant
frequencies in dependence of tissue and individual person
and its overall genetic background [e.g., 20•, 21, 22]. So far,
more than 230 different FSs are described on a cytogenetic
level, at a genomic resolution of 5–10 Mb [20•]. The main
reason why only 41 of these sites are mapped by now on a
molecular level is that they can be observed only in low fre-
quencies, mostly below 0.1% of studied cells. Additionally,
FSs are not linked to specific DNA sequences but are regions
of enhanced breakage susceptibilities; these regions are vari-
able for each FS and can span up to several Mb. No clinical
relevance of FSs has been shown yet. Besides, these also so-
called common FSs, which obviously belong to the regular
chromosomal structure and biology, there are other FSs,
which were aligned with certain syndromes. However, the
latter are breakage prone due to trinucleotide repeats within
the DNA, which can expand; they are not subject of this re-
view and were discussed elsewhere [14•].

We speculate, that the seemingly contradictory features of
on the one hand evolutionarily being advantageous but at the
same time adversely leading to aging- and disease-related ge-
nome changes are two sides of the same coin: i.e., the trade-off
on the narrow ridge of FSs.

Chromosomal (In)stability

The ability to keep the integrity of the genome although it is hit
by thousands of external and internal DNA damage events
every day is crucial for cell and organism survival. If continu-
ous DNA repair is not successful, this can lead to chromosome
instability (CIN) which is a hallmark of cancer and aging [e.g.,
23]. In fact, a causative connection between chromosomal ab-
errations and tumorigenesis was already postulated by Theodor
Boveri in 1914 [24]. CIN is also awell-known feature of human
autosomal recessive inherited disorders, designated as chromo-
some breakage syndromes like Bloom syndrome (OMIM
210900), Ataxia teleangiectatica (OMIM 208900), or Fanconi
anemia (FA) with 21 genetic subtypes (reviewed in [25•]). The
later mentioned diseases all have in common an underlying
DNA repair defect. Loss of function mutations in these disor-
ders lead to a general premature aging phenotype, including a
high prevalence of early onset of different cancer types in ad-
dition to an elevated irradiation and replication stress sensitivity.

Factors Contributing to FS Instability

As recently reviewed, there is no single common mechanism
being responsible for the increased breakage rates of FSs
(summarized in [26••]). However, several causative, contrib-
uting factors are well established, such as DNA features that
impair proper DNA replication (e.g., replication timing and
paucity in origins of replication), AT-rich sequences

(microsatellites) or local DNA flexibility peaks. Slowing
down the speed of DNA polymerases during replication is
crucial, especially at high flexibility DNA stretches, which
are enriched for interrupted runs of AT-dinucleotide repeats,
like present at higher degree in FSs. During replication gen-
erated single-stranded, unreplicated regions can form DNA
secondary structures (e.g., hairpins or cruciform) resulting in
replication fork stalling [27]. Thus, proteins involved in the
resolution of DNA secondary structures (e.g., WRN: helicase
and exonuclease activity or BLM: helicase activity) are re-
quired for FS stability [e.g., 28–32]. Nonetheless, regarding
the DNA flexibility in regions of FSs, contradictory data can
be found in the literature [33, 34]. More recently, chromatin
loop anchor points (LAP) as part of DNA organization in the
interphase were identified to be loci of evolutionary changes,
recombination hot spots in cancer and germ cells, and are
discussed as a characteristic feature of a subset of FSs [35].

In addition to slow down DNA polymerases, collision be-
tween molecular machineries responsible for transcription and
replication can lead to fork stalling by formation of so-called
transcriptional R-loops (RNA/DNA hybrids). At this point, the
FA pathway for DNA repair is activated (by FANCD2 and
FANCM), which promotes DNA/RNA hybrid resolution and
replication fork restart with the goal to limit R-loop accumula-
tion [36, 37]. This is especially important for the transcription
of large genes (up to 1.5 Mb, e.g., FHIT in FRA3B) leading
subsequently to DSBs and the expression of FSs [38–40]. The
impairment of DNA replication is therefore the major source of
spontaneous DSBs in dividing cells. Therefore, incomplete rep-
lication can lead to deletions and translocations [41••, 42], or,
because of DNA repair, copy number variants (CNVs) can
appear involving these sites [26••, 43]. In agreement with this,
Fungtammasan et al. [33] demonstrated in a genome-wide
study that FSs are typically enriched in Alu elements. At the
same time, such regions are preferentially located in CNV-
associated breakpoints and can, in turn, mediate nonallelic ho-
mologous recombination (NAHR) or nonhomologous end-
joining (NHEJ); the latter are also contributing to genomic dis-
eases, cancer, and aging [14•, 44–51].

Divergent Role of FSs in Tumorigenesis
and Speciation

The fragility of specific chromosomal regions in somatic
cells may also lead to hazardous effects on an individ-
ual level by contributing to tumorigenesis by amplifica-
tion of oncogenes; this is a point being discussed since
at least 1997 [52–54]. In addition, around 50% of re-
current tumor-associated deletions originate from FS re-
gions [55] and harbor tumor suppressor genes being
involved in DNA repair, such as FHIT (colocalizing
with FRA3B), PARK2 (colocalizing with FRA6E), or
WWOX (colocalizing with FRA16D) [56]. Nevertheless,
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there are also reports on tumor-specific chromosome
breakage that only to a small part overlaps with known
FSs [57–59]. Further studies on this topic are needed to
get a clearer picture whether breakage and replication
stress are sources of or consequences in cancer cell
development.

Chromosomal fragility and imperfect repair occurring dur-
ing meiosis or shortly after fertilization can lead to fixed, and
from generation to generation, inheritable changes of the ge-
nome. A correlation of FSs and inherited chromosomal aber-
rations was already shown [8]. Genes within or near evolu-
tionary conserved breakpoints, specifically in the mammalian
lineage, seem to have an impact on new adaptive traits, with
effects on immune system, brain development or gene expres-
sion in testis [60]. Overall, this pinpoints the high potential of
these regions to be changed in (evolutionary) shorter times
than the surrounding (more stable) areas. Thus, they are pre-
adapted to “react” faster on environmental changes and/or to
respond to selective pressure.

The “fragile breakage model” introduced by Pevzner 2003
[61] predicts, that (evolutionary conserved) breakpoints are
not randomly distributed but clustered in hot spots. This was
proven by a series of cross-species chromosome painting fluo-
rescence in situ hybridization (Zoo-FISH) experiments in
mammalian species and in silico comparative studies [1–5,
62, 63]. The latter confirmed a striking correspondence be-
tween FS location and the position of evolutionary conserved
breakpoints. Subsequently, this model was developed to an
“integrative breakage model of genome architecture,
reshuffling and evolution” [64]. Moreover, these breakage
prone regions seem not only to be conserved in mammals
[e.g., 65–66] but also beyond the mammalian lineage [67•].

Besides, another striking common feature of (primate) evo-
lutionary conserved breakpoints [68–70], clinically associated
potentially inherited rearrangements [8, 71], cancer related
breakpoints [26••, 72, 73] and FSs [41••] is the enrichment
of CNVs, which was attributed to imperfect repair (reviewed
in [26••, 43]).

Model of Gene and Genome Evolution Driven by FSs

An analysis done here for published fine mapped FSs
enabled a precise sequence-to-feature analysis. A more
complex picture appeared that can reconcile the positive
and negative impact of breakage prone regions in an
evolutionary sense, as outlined above. Accordingly, com-
paring molecular genetically defined FS regions to the
genome on “average regions,” those containing FSs are
gene poor, but at the same time accumulated disease
causing, OMIM annotated genes, and show a 7.7-fold
enrichment of CNVs. However, no difference in tumor
associated breakpoints could be detected (Fig. 1). An
enrichment of CNVs in FS regions was independently

demonstrated by experimental induction of breaks and
analyses by high throughput methods [41••]. This reflects
the signature of DNA repair and highlights also local
euchromatin duplication. Such DNA duplications may
span gene-coding regions, which later can give rise to
new genes and/or pseudogenes. However, the accumula-
tion of OMIM genes has not been reported and discussed
so far, but current studies on FS induction in neuronal
stem cells report a preferred colocalization of FSs and
genes for synaptic functioning, neural adhesion, tumor
suppressor genes, and mental retardation-associated
genes [74, 75], pointing towards the same direction.
Given that such FS regions are prone to breakage and
imperfect repair resulting in CNVs that can diverge by
accumulation of variants and/or mutations, respectively,
this can either contribute to adaption and positive selec-
tion, or concerning dosage-sensitive genes, to human dis-
eases; the latter is highlighted by the enrichment in
OMIM genes that we found.

The yet fine mapped FSs include more than 5000 genes
and transcripts, often belonging to the same gene ontology
groups. Those play a role in keratinization, epidermal devel-
opment, peptide cross linking, retinoic acid signaling and reg-
ulation of cell proliferation, transcription, apoptosis, and dif-
ferentiation. Particularly, gene families, single gene, and
pseudogene members are located in cis at/nearby the same
FS and/or in trans close to another FS in the genome. For
instance, semaphorin gene family members, acting as axonal
growth molecules, can be found at FRA7E (four members),
FRA3H (three members), and six other FSs elsewhere in the
genome (Fig. 2). We speculate that such members localized in
cis are the first to spread (seeding or donor site), as this FS is
flanked by the highest number of gene family members; but
this will be subject of further bioinformatic analysis.
Interestingly, the enrichment of pseudogene family members
for genes located within FS regions shows an identical spread-
ing pattern in cis and/or trans of FSs. This can be exemplified
for the voltage-dependent anion channels VDAC1 in 5q31 at
FRA5C and VDAC2 in 10q22 at FRA10D (Table 1). Both
gene family members include several pseudogenes that are
spread all over the genome at other FSs (receiving/accepting
FSs).

The birth of new genes is an important feature of
genome evolution and an ongoing process. One way to
evolve new genes is duplication, with subsequent devel-
opment of sequence divergence and accumulation of mu-
tations [76, 77]. An alternative mechanism is the de novo
formation of new genes, having typically no homologous
sequences in the genome [78]. These “orphan” genes are
simply structured, small in size, expressed in one tissue
[79] and appear as a result of stochastic transcription
events in the genome [80]. Overall, CNV formation
seems to be a common link enabling fast evolutionary
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adaption by gene duplication and evolution of new genes
within FSs.

These observations led to model of “FS-driven gene and
genome evolution,” where FSs seem to act as donor and ac-
ceptor sites, facilitating the genome wide spreading of gene
copies via DNA repair-mediated CNV formation. This sheds
new light on the existence and evolutionary conservation of
FSs beyond different phylogenetic branches, although their

expression can be harmful with respect to aging and cancer
on an individual level.

“FS-Driven Gene and Genome Evolution” and Future
Directions

Based on this model, several predictions can be made which
await further investigations.

Fig. 1 Sequence features of published fine mapped FSs compared to
genome average (green line, GRCh37/hg19) concerning the average
base pair distance of genes and transcripts in disease causing OMIM

genes, tumor-associated breakpoints from Mitelman database, and
CNVs in respect to the FS size

Fig. 2 Genomic distribution of semaphorin gene family members. Four members are located in cis in FRA7A (green), three members at FRA3H (blue),
and six other members on additional FSs over the genome as indicated
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1. Genomic CNV enrichment sites can predict FSs in silico
and can be used for a predictive fine mapping strategy,
e.g., via locus-specific FISH probes at the edges of CNV
clusters.

2. FSs act as evolutionary flexible and fast-changing re-
gions. This can be checked, e.g., for recent marks of pos-
itive selection in population databases, or compared to
extinct human species like Neanderthal or Denisova and
to recent primate sequence releases [81].

3. FSs from different genomic regions need to be local-
ized in close proximity of DNA repair sites, to facil-
itate “nonperfect repair,” resulting in copies at other,
nonhomologs or the same FS in the genome. This
could be explored by analyzing sequences around
gene family members at different FSs, as those re-
gions were also copied and should have sequence
similarities to the parental copy. The divergence
might be larger, as there is different selective pres-
sure for coding and noncoding regions as well as for
cis and trans copies [82]. For functionless copies
resulting in pseudogenes, one might expect similar
degree of divergence for the surrounding sequences.

4. This kind of suggested DNA repair (3.) needs to be
located at specific sites in the nucleus and requires
DNA mobility. In fact, there is growing evidence on
relocation of DNA to specific sites for repair pro-
cesses to repair centers [83–86]. In support of this,
fine mapped FSs can be tracked by FISH in the
nucleus of replication stressed cells or chromatin
immunoprecipitation (ChIP) and high chromosome
conformation capture (Hi-C) analysis of such cells
can investigate direct contacts between FSs to prove
their proximity during DNA repair processes.

Conclusion

Chromosome breakage in evolution, in clinical cases, in dis-
eases like FA as well to a certain extent in cancer, seems to be
a nonrandom process. The common basis of all these breakage
events seems to be slightly instable DNA regions, appearing as
FSs. As a consequence, this leads to clustering and reuse of
breakpoints within the range of FS borders. These predisposed
sites might enable genome reshuffling and spreading of gene
copies by CNV prone DNA repair, resulting in genome reorga-
nization and variability. On top of that, natural selection can act
in evolutionary short terms. However, it is a trade-off and har-
bors the risk for genomic diseases and cancer. In this context,
FSs seem to be the common, yet missing link between
breakpoints in disease, aging, cancer and gene/genome evolu-
tion being combined in the “FS-driven gene and genome evo-
lution” model. The characterization of FSs is still challenging,
but the required basis for comparative studies between the afore-
mentioned groups of break events. Future studies on this topic
and the underlying molecular mechanism and consequences
will help to advance our understanding of genome dynamics,
genome biology, and chromosomal evolution driven by FSs.
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Table 1 Genomic distribution of pseudogene copies from the VDAC1 and VDAC2 genes located at different FSs. ID, pseudogene number; Chr,
chromosome; FS, fragile site

Parent gene ID Chr Start End FS

VDAC1 ENST00000451853.1 13 34,656,566 34,657,447 FRA13A

ENST00000458323.1 9 97,049,987 97,050,830 FRA9D

ENST00000423609.1 X 49,397,103 49,397,952 FRAXG

ENST00000552982.1 12 55,196,530 55,197,373 FRA12A

ENST00000416715.1 1 215,549,827 215,550,717 FRA1H

ENST00000447826.1 2 42,690,279 42,691,137 FRA2O

ENST00000450197.1 1 180,403,935 180,405,071 FRA1G

ENST00000412766.1 1 157,693,970 157,694,810 FRA1P

VDAC2 ENST00000452925.1 2 135,554,739 135,555,449 FRA2F

ENST00000467568.1 2 65,432,242 65,433,121 FRA2Q

ENST00000430995.1 1 118,183,434 118,184,261 FRA1N

ENST00000462417.1 3 77,365,903 77,366,749 FRA3R

ENST00000399358.2 21 17,466,735 17,467,692 FRA21A
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