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Abstract
Purpose of Review  This narrative review explores the technical principles and evidence supporting the use of advanced 
respiratory monitoring tools in the perioperative setting to enhance patient care. We aim to identify which patients benefit 
most from these technologies during major surgeries.
Recent Findings  Advanced monitoring techniques, such as electrical impedance tomography (EIT), esophageal pressure 
(Pes) monitoring, and lung ultrasound (LUS), provide detailed insights into lung mechanics and function. Recent studies 
indicate these tools can optimize ventilation strategies by individualizing the lung protective ventilation, particularly in 
high-risk patients.
Summary  While these tools can help to improve intraoperative respiratory mechanics and oxygenation, further randomized 
clinical trials are needed to confirm their impact on patient-centered outcomes.

Keywords  Esophageal pressure (Pes) · Lung ultrasound · Electrical impedance tomography (EIT) · Respiratory monitoring

Introduction

Postoperative pulmonary complications (PPCs) after major 
surgery and general anaesthesia are an important cause of 
morbidity and mortality in the perioperative setting [1]. To 
minimize such adverse events, it is crucial to identify predis-
posing conditions [2] and assess the underlying pathophysi-
ology to provide a lung protective ventilation strategy [3, 4]. 
Ventilatory monitoring in the operating room is routinely 
based on the analysis of pressure, volume, and flow data 
provided by the ventilator [3, 5–8].

However, perioperative medicine has advanced, allow-
ing for a broader array of surgeries on patients with serious 
health issues, such as extreme obesity or critical injuries. 
These include complex procedures like extended robotic sur-
geries in extreme positions or prolonged one-lung ventilation. 
Additionally, technological advancements provide new tools 
to monitor patients' physiological responses in real-time.

Currently, we can perioperatively employ devices such as 
electrical impedance tomography (EIT) that analyses lung 
regional ventilation [9], oesophageal pressure (Pes) monitor-
ing which reflects approximately the pleural pressure, allow-
ing transpulmonary pressure (Ptp) estimation [10], and lung 
and diaphragmatic ultrasound (US) that enable us to assess 
the echogenicity of the different lung fields to quantify aera-
tion [11] or to assess diaphragmatic functionality [12]. This 
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raises the question of whether and when these advanced res-
piratory monitoring tools should be used to prevent PPCs.

This review aims to summarize the technical underlying 
principles and explore the existing evidence on the useful-
ness of such advanced respiratory monitoring in the periop-
erative setting, specifically to ascertain which patients might 
benefit from it. We carried out a search in the Pubmed and 
Embase databases with the following criteria: (“respiratory 
monitoring" OR "ventilator monitoring" OR "lung function 
monitoring”) AND (intraoperative OR perioperative OR 
anesthesia OR surgery)”. We searched papers from 2009 to 
2024 in the English language.

Monitoring of Ventilatory Mechanics 
Through Common Ventilatory Parameters 
Analysis

Conventional data such as pressure and flow curves or capnog-
raphy can be leveraged to gain further insight into respiratory 
mechanics [13], helping us to assess the recruitment capac-
ity and adequacy of patient ventilation [13, 14]. For instance, 
lung hysteresis, a physiological feature resulting from the 
visco-elastic properties of lung parenchyma, causes the pres-
sure–volume relationship to differ between inflation and defla-
tion [15, 16]. It can be quantified by the area enclosed within 
the quasi-static Pressure–Volume (PV) loops generated during 
mechanical ventilation [13]. These PV loops reveal a critical 
point where a sharp increase in ventilator pressure corresponds 
with a slower rise in lung volume, signaling the end of lung 
recruitment which could include some overdistension, whereas 
a pressure drop paired with a slower volume decrease indicates 
the onset of alveolar collapse [13, 15, 16]. Understanding these 
patterns helps to assess lung recruitability, and identify risks 
linked to mechanical ventilation [13].

The dynamic pressure–time curve can also be used to 
assess respiratory mechanics. For instance, the stress index 
(SI) [17], that assesses the dynamic pressure–time curve dur-
ing constant inspiratory flow to detect intratidal recruitment 
or hyperinflation. A threshold SI value of greater than 1.05 
has shown a sensitivity of 0.88 and a specificity of 0.50 
to indicate injurious ventilation, which was contrasted with 
aeration indices based on computed tomography in ARDS 
patients. The SI obtained from the ventilator indicates the 
SI of the respiratory system and correlates with the lung SI 
with reasonable accuracy [18, 19].

Furthermore, volumetric capnography (VCap) performs 
a continuous assessment of the respiratory dead space [20] 
using the modified Bohr equation, which includes the tidal 
volume (VT), the partial pressure of CO2 at the end of 
alveolar respiration and the partial pressure of CO2 at the 
end of expiration (EtCO2) [21]. VCap divides the capno-
gram into three phases: Phase I, representing the CO2-free 

exhaled gas from the airways; Phase II, where a mix of 
airway and alveolar gases is present; and Phase III, which 
represents the alveolar plateau where gas exchange occurs. 
By separating the volume of gas in the airways from that 
within the alveolar compartment, it allows for precise cal-
culations of dead space on a breath-by-breath basis. The 
slope of Phase III (SIII) is particularly informative as it 
reflects the ventilation-perfusion distribution in the alve-
oli. An increased slope indicates heterogeneity in alveolar 
ventilation. VCap is a current tool for clinical research 
works, proving to be an adequate guide in the assessment 
of end-expiratory lung volume (EELV) changes induced 
by surgical procedures and has proven to be useful in indi-
vidualizing the level of PEEP during laparoscopic surgery 
[21, 22].

Nitrogen and helium techniques, particularly the washin/
washout method, are commonly used to measure (EELV) 
[23]. This method calculates EELV based on the baseline 
nitrogen content in the lungs, which inversely correlates 
with alveolar oxygen levels [23, 24]. This approach has been 
extensively applied in studies on intraoperative mechani-
cal ventilation and lung strain, revealing a high prevalence 
of expiratory flow limitation and airway closure in obese 
patients during laparoscopic surgery [25, 26].

Additional ventilatory parameters are used to evaluate 
lung characteristics non-invasively. For instance, the PEEP 
test identifies expiratory flow limitation and the air-test and 
the recruitment-to-inflation ratio assess alveolar recruita-
bility. The PEEP-test consists in abruptly dropping from 
3 cmH2O to 0 cmH2O and observing if there is outflow of 
gases, if not, there is expiratory flow limitation [27, 28]. 
The air test in healthy lungs checks if gas exchange at an 
FiO2 of 21–25% maintains a SatO2 above 96%; failure to 
do so suggests significant atelectasis with a shunt exceed-
ing 10% [29]. The recruitment-to-inflation ratio involves 
a single breath test where PEEP is abruptly reduced from 
15 to 5 cmH2O to measure expired volume and compare it 
against predicted compliance at low PEEP. This comparison 
estimates the volume of alveoli recruited by the PEEP, from 
which the compliance of the recruited lung is calculated. 
This ratio mathematically reflects the proportion of volume 
distributed into the recruited lung relative to the already 
aerated 'baby lung'. A higher R/I ratio indicates a greater 
potential for lung recruitment. Conversely, values below 0.5 
suggest a lower probability of recruitment, which may war-
rant a lower PEEP setting [30].

Finally, some hemodynamic management strategies, such 
as the PEEP-test and tidal volume challenge (TVC), have been 
developed by manipulating ventilatory parameters. These tests 
assess fluid responsiveness by increasing intrathoracic pres-
sure through enhanced PEEP or VT, utilizing heart–lung inter-
actions to gauge hemodynamic effects [31, 32].
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Advanced Respiratory Monitoring Tools Pros 
and Cons

Electrical Impedance Tomography

EIT is a non-invasive technique for monitoring lung 
ventilation as well as ventilation-perfusion mismatches. 
Electrodes are placed on the chest and record the surface 
voltage after repeated application of a small amount of 
electrical current. It provides images based on the chest 
tissues’ electrical conductivity [33]. The changes in elec-
trical impedance are displayed as colour-coded images, 
providing a pixelated mapping of regional lung ventila-
tion, thus adding information about the homogeneity of 
lung ventilation on a breath by breath [34]. EIT assesses 
hypoventilation, overdistension and areas of heterogene-
ous ventilation, allowing the clinician to estimate lung 
recruitability [35]. This technique has been used intra-
operatively to individualize ventilator settings such as 
PEEP and VT [36–39], and in the postoperatively to assess 
the distribution of ventilation and to identify atelectatic 
regions [40, 41]. A recent meta-analysis of randomized-
controlled trials (RCTs) [42] compared the effect of using 
EIT or Pes to guide individualized PEEP compared to 
standard monitoring, so it showed an improvement in 
intraoperative oxygenation. However, EIT is mostly used 
for research purposes and there are certain limitations to 
its routine roll both perioperatively and in critically ill 
patients [9, 37, 43]. For instance, its resolution is lower 
than that of other imaging techniques, such as computed 
tomography [37]. Moreover, incorrect placement of the 
electrodes can modify the image, affecting its intrapatient 
reproducibility [44]. Also, it should not be used in patients 
with pacemakers or automatic defibrillators due to pos-
sible interference with such devices [37].

Oesophageal Manometry

During mechanical ventilation, the peak pressure (Ppeak) 
is the force applied to overcome the airways resistance 
and inflate the lungs [45]. By setting a brief pause dur-
ing inspiration, ventilators measure the plateau pressure 
(Pplat), which helps differentiate the lung’s elasticity from 
the airway resistance. Thus, Pplat indicates the elasticity 
of the lung, and the difference with Ppeak is due to airway 
resistance. The driving pressure (ΔP) that pushes each 
breath’s VT is the difference between Pplat and the set posi-
tive end-expiratory pressure (PEEP) or the intrinsic PEEP 
if it does exist [45]. The ratio of VT to ΔP indicates the 
lung’s compliance (C), or its ability to expand, which is 
the opposite of elastance [45]. Furthermore, lung strain is 

defined as the lung tissue stretch during each breath and 
is calculated by comparing the VT per ideal body weight 
to the end-expiratory lung volume (EELV), largely deter-
mined by PEEP [46].

The respiratory system consists of two main parts: the 
lung component, where elastic fibers help in breathing out, 
and the chest wall component, which expands during inha-
lation due to muscular action, creating a negative pressure 
during spontaneous breathing that stretches the lungs [47]. 
In anaesthetized patients, the chest wall does not expand, 
leading to a generally positive pleural pressure (Ppl), and 
an increased chest wall elastance (Ecw) [48, 49]. Ppl is the 
external force on the lungs that can cause them to collapse, 
and by measuring it, we can differentiate between the lung 
and chest wall components of the respiratory system [47, 48, 
50, 51]. This distinction allows us to calculate the Ptp, the 
real pressure that distends the alveoli [50, 52–54]. Changes 
in Ptp on each ventilation generate lung stress [46, 55]. Nega-
tive end-expiratory Ptp can lead to lung collapse [56], while 
excessively high end-inspiratory Ptp increases the risk of 
ventilator-induced lung injury (VILI) [53]. It is usually rec-
ommended to keep Ptp below 15 cmH2O in healthy lungs and 
up to 12 cmH2O in pathological lungs [10].

Measurement of end-expiratory Pes as a surrogate for end-
expiratory Ppl is useful in determining the level of PEEP 
required to achieve positive end-expiratory Ptp. When Ptp 
falls below atmospheric pressure at the end of expiration, 
the lung units may collapse [10, 46]. End-inspiratory Ptp 
measurement can discern whether an apparently high Pplat 
is safe [46].

Pes monitoring faces specific challenges that limit its rou-
tine implementation in clinical practice [57]. The primary 
challenge is that it requires a significant amount of techni-
cal skill and knowledge for accurate interpretation [43, 53]. 
Furthermore, it does not provide information on regional 
stress or strain but global stress and does not allow for an 
adequate source of data in heterogeneous lungs [58]. The 
oesophageal balloon is positioned at a specific point in the 
mid-lower third of the intrathoracic esophagus, and meas-
urements taken may not correspond to the real Ppl at distant 
points in both dependent and non-dependent lung regions 
[59]. The relevance of using a calibrated oesophageal bal-
loon method has recently been published [60], thus Pes gets a 
more accurate estimation of absolute values and respiratory 
changes in Ppl. Indeed, the traditional uncalibrated approach 
can be unreliable in this setting, since artifacts related to the 
oesophageal wall or the balloon can misguide mechanical 
ventilation [60]. Pes monitoring may be also misinterpreted 
and misguide a ventilatory strategy if spontaneous inspira-
tory stimulus is present [43].

In conclusion, Pes measurement can be useful in condi-
tions characterized by an increase in chest wall elastance that 
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compromise ventilatory mechanics [43] such as obesity or 
elevated intraabdominal pressure (IAP), including scenarios 
like pneumoperitoneum with the Trendelemburg position.

Lung Ultrasound

Lung ultrasound (LUS) is a non-invasive, radiation-free 
method used to evaluate lung mechanics that enables bed-
side assessment of pulmonary recruitment [61, 62]. It is 
based on the varying balances of gas and fluid within the 
lung parenchyma. Accordingly, three patterns are identi-
fied: Pattern A indicates predominant aeration, Pattern B 
suggests the presence of fluid, and Pattern C occurs when 
the lung parenchyma is dense, indicating consolidation or 
collapse [62, 63]. In healthy lungs subjected to mechanical 
ventilation, this technique aims to differentiate between the 
amount of aeration and alveolar collapse after analysing all 
the lung fields, thus assessing recruitability [64] and guiding 
pulmonary recruitment [61]. LUS not only analyses the lung 
parenchyma but also assesses with high diagnostic accuracy 
the presence of other pleural contents, i.e., pleural effusion, 
or the absence of inter-pleural motion, i.e., pneumothorax, 
apnoea, selective intubation [63, 65]. The practice of LUS 
for the diagnosis of pneumothorax has become the method of 
choice among physicians who can perform bedside LUS [66].

LUS can help to identify lung atelectasis [11] whereas pre-
dicting lung overdistension is currently the focus of research 
[61, 67]. Several recent studies in intraoperative and criti-
cal care settings use LUS to guide mechanical ventilation, 
identifying the best PEEP level, showing better oxygenation, 
ventilatory mechanics, and less PPCs [68–72]. LUS main 
drawback is its operator dependency [73].

Enhanced vigilance and tailored care are imperative for 
patients transferred from the emergency department to the 
operating room. The use of US in this context is quite wide-
spread, even for the detection of a full stomach [74, 75]. In 
the initial management of a polytrauma patient, US assess-
ment protocols are successful identifying major alterations, 
not only respiratory but also abdominal effusion or cardiac 
disorders [65, 76]. However, some of these alterations may 
go unnoticed in the initial assessment, or may be minimal 
at that time. It should be noted that in the event of a major 
change in the ventilatory mechanics of a trauma patient, US 
can detect pneumothoraxes that have been exacerbated by 
prolonged mechanical ventilation and surgeries. In addition, 
they can also detect pleural effusions, haemothoraces and 
consolidations [63].

Diaphragm Ultrasound

Ultrasound evaluation of the diaphragm is a non-invasive 
tool that allows us to assess the functionality of this muscle 
at the bedside [77, 78]. Within the perioperative setting of 

major surgeries a decreased inspiratory diaphragmatic dome 
excursion has been validated as an index of diaphragmatic 
dysfunction, as it is related to increased PPCs. In critically 
ill patients, diaphragmatic ultrasound (DUS) plays an estab-
lished role in the assessment of diaphragmatic function and 
movement in weaning from mechanical ventilation and to 
guide rehabilitation in critically ill patients.

Within locoregional anaesthesia, brachial and cervi-
cal plexus blocks are standard procedures and the phrenic 
nerve may be blocked during these techniques. The clini-
cal impact of blocking this nerve depends significantly on 
patient-specific, for example, existing phrenic nerve paralysis 
on the opposite side or obesity [79, 80]. During the procedure 
ipsilateral phrenic nerve palsy may go unnoticed. However, 
either in the hospital [81] or at home due to early discharge, 
these patients may develop severe PPCs due to unilateral dia-
phragmatic paralysis. DUS can help us for an early detection 
of the absence of diaphragmatic contraction [82]. DUS has 
been used to classify hemidiaphragmatic paresis into 3 grades 
(none, partial and complete) following cervical plexus blocks 
[83]. Thickness index of the diaphragm muscle (inspiratory 
thickness/expiratory thickness) obtained by US can be used 
in clinical practice to assess diaphragmatic paresis. This 
index has a 90% correlation with a reduction in FVC or FEV1 
equal to or greater than 20% in spirometry [84].

Table 1 shows recent clinical studies that have used 
advanced respiratory monitoring in the perioperative setting.

Clinical Settings

Laparoscopic and Robotic Surgery

Laparoscopic and robotic approaches are now standard pro-
cedures in hospitals for many surgical interventions [85, 
86]. During laparoscopy carbon dioxide (CO2) insufflation 
creates an artificial space known as a pneumoperitoneum 
[87–89]. This procedure increases IAP, which in turn raises 
Ppl and can cause lung collapse [90, 91]. This reduces the 
respiratory system compliance (CRS), hampering positive 
pressure ventilation. Alveolar overdistension, atelectrauma 
and atelectasis can coexist in laparoscopic surgeries generat-
ing heterogeneity in regional ventilation distribution (Fig. 1) 
[90–92]. Moreover, steep Trendelenburg i.e. head-down, and 
anti-Trendelenburg, i.e., head-up, positions, are commonly 
used in laparoscopic and robotic surgeries to enhance sur-
geon visibility and access to the abdominal or pelvic areas 
[93, 94]. While the anti-Trendelenburg position aids in shift-
ing the diaphragm downward to improve breathing mechan-
ics, the Trendelenburg position compounds on respiratory 
challenge posed by the pneumoperitoenum, particularly in 
patients with pre-existing conditions like obesity or chest 
wall stiffness [93]. Several studies have demonstrated the 
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detrimental effect of the combination of Trendelemburg and 
pneumoperitoneum on ventilatory mechanics [95, 96].

A multicentre observational study analysed the incidence 
of PPCs after abdominal robotic surgery, finding an overall 
incidence of 19%. They used the Assess Respiratory Risk in 
Surgical Patients in Catalonia (ARISCAT) score and found 
that patients at high risk according to this score had 22.4% 
of PPCs compared to 12.7% of patients with a low score 
[97]. Indeed, when IAP is high or accompanied by addi-
tional factors such as comorbidities, positioning, or surgical 
manipulation, the incidence of PPCs increases [98, 99]. For 
the same positive inspiratory pressure, as Ppl increases, Ptp 
decreases and becomes negative, so mechanically caused 
atelectasis becomes more abundant [99–101]. We are unable 
to accurately estimate Ptp in these patients using ventila-
tor data and airway pressure measurements alone [56, 102]. 
Therefore, individualization of the protective lung ventila-
tion strategy is one of the most studied areas in this field, 
and advanced respiratory monitoring is common in these 
research studies [66–68, 78, 103].

Pes monitoring is a key tool for measuring Ppl and Ptp, 
which is crucial for tailoring lung protective ventilation 
strategies during laparoscopic or robotic surgeries [56, 
102]. Its utility arises because the increased intra-abdom-
inal pressures from pneumoperitoneum do not uniformly 
affect Ppl [104, 105]. This monitoring allows for continuous 
customization of alveolar distension pressures and PEEP, 
helping prevent atelectasis and shunt phenomena [102, 106, 
107]. While Pes monitoring has been effectively used in 
various clinical studies to determine the optimal PEEP for 

preventing alveolar collapse, evidence showing improve-
ments in patient-centered outcomes like postoperative pul-
monary complications (PPCs) is still lacking. Nevertheless, 
several studies have documented benefits such as better 
intraoperative oxygenation [108] and improved ventilatory 
mechanics with reduced transpulmonary driving pressures 
[102, 109–111].

EIT can theoretically avoid two frequent issues during 
mechanical ventilation in the presence of pneumoperito-
neum: atelectrauma and regional overdistension [90, 91, 
112]. It has mainly been used to calculate the best PEEP. 
A recent RCT has shown that EIT-guided PEEP in lapa-
roscopic surgery improves PPCs, ventilatory mechanics, 
and intraoperative oxygenation compared to standard PEEP 
[103]. However, in 2016 another RCT had non-statistically 
significant results in terms of intraoperative oxygenation and 
reduction of CPP. In the latter case, they compared EIT-
guided PEEP with ideal compliance-guided PEEP [113]. 
Several articles have demonstrated the value of EIT in 
improving ventilatory mechanics and intraoperative oxygen-
ation during robotic [114, 115] and laparoscopic procedures 
[103]. Both EIT and Pes have been shown to be superior 
to non-advanced monitoring in oxygenation measured by 
PaO2/FiO2 in the intraoperative setting [42].

Given the high incidence of alveolar collapse in these 
patients and the widespread availability of LUS, there is 
a growing focus on using this tool to customize intraop-
erative ventilation during laparoscopic procedures [68, 69]. 
The randomised clinical trials performed so far demonstrate 
improved PPCs and clinical outcomes with the use of LUS 

Fig. 1   This figure presents a schematic diagram of cross-sectional 
views of lung fields from the same patient, illustrating the heteroge-
neity in regional ventilation distribution that can occur during lapa-
roscopic surgeries. This heterogeneity is exacerbated under Trende-
lenburg positioning or obesity. The color coding represents alveolar 
ventilation, with lighter shades indicating less ventilation and darker 
shades indicating more ventilation. A: Cross-section of basal seg-
ments, where the alveoli are collapsed during both inspiration and 

expiration, indicating atelectasis. B: Cross-section of mid-lung seg-
ments. In addition to atelectasis, this section also shows, as high-
lighted in the enlargement, overdistended alveoli during inspiration 
and airway collapse during expiration, which prevents proper emp-
tying. This condition can be explained by expiratory flow limitation 
mechanism. C: Cross-section of apical segments. The enlargement 
illustrates a phenomenon where alveoli are ventilated during inspira-
tion but collapse during expiration. This is known as tidal recruitment
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to guide mechanical ventilation and PEEP compared to con-
ventional management in the laparoscopic approach [68–70, 
116]. Only one randomized clinical trial showed improve-
ment in ventilatory mechanics and oxygenation without a 
reduction in PPCs [117]. A recent systematic review with 
meta-analysis on the use of LUS to guide intraoperative 
mechanical ventilation in non-cardiac surgery [71] found 
beneficial effects on intra- and postoperative atelectasis 
when using LUS versus conventional management. They 
selected a total of 9 randomised clinical trials including pae-
diatric and adult patients, in open and laparoscopic surgery.

To date, the main focus of research using these advanced 
monitoring tools in laparoscopy has been on atelectasis, 
regional ventilation, recruitment and PEEP. There are no 
clinical studies, to our knowledge, using these tools to 
assess other challenges of mechanical ventilation in lapa-
roscopy such as its relevance on expiratory flow limitation 
or mechanical power (MP). The mechanical power concept 
emerges from the analysis of the modifiable variables of 
positive pressure ventilation to estimate how much energy 
the ventilator delivers to the respiratory system per minute 
[118]. Then, MP analyses the elastic-static forces, i.e. PEEP, 
the elastic-dynamic forces, i.e. ΔP and VT, and the resis-
tive forces, i.e. the airway flow and resistance or RR [119]. 
MP acts on lung parenchyma, deforming the epithelial and 
endothelial cells anchored to it [120]. High MP is associated 
with a higher rate of PPCs [121, 122]. MP has been shown 
to be higher in one-lung ventilation (OLV) during thoracic 
surgery [123], during pneumoperitoneum, in the trendelem-
burg position and in obese patients [109]. To the best of our 
knowledge, only one study has been published in a periop-
erative setting analysing the impact on mechanical power of 
a ventilatory strategy based on advanced respiratory moni-
toring [124]. In this study, Crs-guided PEEP achieved lower 
values of MP than transpulmonary ΔP-guided PEEP. In 
critically ill patients, it has been studied whether EIT-guided 
mechanical ventilation can reduce MP [125]. More research 
is needed on this very recent outcome related to PPCs.

Thoracic Surgery

The key challenge during thoracic surgery reside in oxygen-
ating and ventilating the dependent lung without causing 
harm [7]. By a double-lumen endotracheal tube (DLT) or 
Bronchial Blockers (BB) we isolate and collapse the oper-
ated lung. By ventilating the dependent lung with a DLT or 
BB through a relatively thin and long lumen, we can gener-
ate autoPEEP, which may be harmful [126]. Furthermore, 
setting VT and PEEP OLV is complex. High VT increases 
VILI risk, whereas low VT promote the development of 
atelectasis. Additionally, while increasing PEEP can help 
prevent collapse, it may also cause regional overdistension 
and increase alveolar dead space [127]. Current evidence 

suggests that protective ventilation strategy combining low 
VT and increased PEEP, i.e., 10 cmH2O or individualized 
PEEP, improves ventilatory mechanics and PaO2 without 
impairing neither ventilation/perfusion ratio nor hemody-
namics [39, 128]. EIT has proven to be useful in several 
tasks in these procedures. Essentially, EIT has allowed 
titration of VT during one lung ventilation (OLV), based on 
ventilation distribution and oxygenation [38], and it has also 
been used to individualize PEEP to achieve better ventilatory 
mechanics and intraoperative oxygenation [38, 129]. Indeed 
it is also useful in detecting correct OLV for double-lumen 
tube by detecting pulmonary regional ventilation [130].

Furthermore, a matter of concern in thoracic surgery, 
as well as in any surgical procedure that might impact the 
phrenic nerve, is maintaining proper diaphragmatic func-
tion. DUS has been shown to be useful in assessing hemidi-
aphragmatic paralysis after thoracic surgery, which is associ-
ated with PPCs [12].

Obese Patients

This is a common comorbidity that hinders mechanical ven-
tilation [131]. In particular, one of the challenges is to find 
out what is the real pressure generated by excess weight on 
Ppl in our patients [132]. It can be challenging to maintain 
lung protection parameters without accurately estimating 
the Ptp we are generating. In obesity, as in other restrictive 
pathologies such as scoliosis, chest wall compliance is lower 
than lung compliance, which means that airway pressures 
are easily transferred to other intrathoracic structures (e.g. 
large vessels and pericardium) [133–135]. Of course, these 
patients need positive pressure values capable of counteract-
ing this increase in pleural pressure, and the sum of all these 
factors makes the proper management of these patients so 
complex [136, 137].

Pes monitoring, which allows the partitioning of the res-
piratory mechanics, is the unique way to assess the real 
alveolar distension pressures of these patients with reduced 
chest compliance [138]. Only then the clinician will be able 
to manage adequate transpulmonary pressures (as in laparos-
copy) and to individualize the lung protection values [110]. 
Pes has been used in several clinical studies in obese patients 
on mechanical ventilation. By establishing a Pes-guided ven-
tilatory strategy in obese patients, improvements in ventila-
tory mechanics (partitioning of ventilatory mechanics by 
observing improvements in lung strain and lung elastance) 
[107] and oxygenation [139] have been demonstrated.

EIT has a role to play both intra-operatively [140] and in 
the postoperative context as a non-invasive tool [41]. Intra-
operatively, EIT-guided mechanical ventilation with MRI 
and individualized PEEP has been shown to improve venti-
latory mechanics and oxygenation parameters, but has not 
been shown to maintain these improvements postoperatively 
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[140]. EIT allows breath-by-breath monitoring after extu-
bation to monitor the dyshomeogenisation of spontaneous 
lung ventilation, thus allowing early detection of patients 
who are candidates for ventilatory support and indicating 
the response to the applied therapy [141].

The only advanced monitoring technique that does 
achieve evidence support for PPCs reduction in these 
patients is LUS. A randomized clinical trial has used it 
intraoperatively in bariatric surgery to guide individualized 
PEEP, achieving a reduction in PPCs as well as improved 
clinical outcomes compared to standard PEEP strategy [69].

Obese patients are potentially one of the groups that can 
benefit the most from advanced monitoring, but more clini-
cal studies are required to really prove whether the intraop-
erative use of these techniques has advantages for them in 
patient-centred outcomes [142].

Conclusions and Future Directions

Advanced respiratory monitoring tools offer both advantages 
and limitations: EIT effectively individualizes PEEP titration 
and assesses regional ventilation, although its lower resolu-
tion and dependency on correct electrode placement limit its 
routine clinical use. Pes helps tailor lung protective ventila-
tion by measuring transpulmonary pressure (Ptp), which is 
crucial in conditions with increased chest wall elastance, 
despite its technical complexity and limitations in regional 
stress assessment. LUS aids in identifying lung atelectasis 
and guiding mechanical ventilation adjustments, although 
operator dependency remains a drawback. DUS is useful for 
assessing diaphragmatic function and detecting diaphrag-
matic paralysis, which is associated with PPCs.

Despite the theoretical benefits of advanced respiratory moni-
toring technologies, there is currently a lack of clinical stud-
ies that demonstrate a clear improvement in patient-centered 
outcomes with these methods. To address this gap, there is a 
pressing need for randomized clinical trials. Such studies would 
help determine whether patients at higher risk, particularly those 
undergoing procedures involving pneumoperitoneum and those 
who are obese, would benefit from the use of advanced respira-
tory monitoring technologies. Focusing research on these groups 
could provide valuable insights into optimizing ventilation strat-
egies to enhance patient safety and outcomes.
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