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Abstract
Purpose of Review Cardiopulmonary exercise testing (CPET) informs the preoperative evaluation process by providing
individualised risk profiles; guiding shared decision-making, comorbidity optimisation and preoperative exercise training; and
informing perioperative patient management. This review summarises evidence on the role of CPET in preoperative evaluation
and explores the role of novel and emerging CPET variables and alternative testing protocols that may improve the precision of
preoperative evaluation in the future.
Recent Findings CPET provides a wealth of physiological data, and to date, much of this is underutilised clinically. For
example, impaired chronotropic responses during and after CPET are simple to measure and in recent studies are
predictive of both cardiac and noncardiac morbidity following surgery but are rarely reported. Exercise interventions
are increasingly being used preoperatively, and endurance time derived from a high intensity constant work rate test
should be considered as the most sensitive method of evaluating the response to training. Further research is required
to identify the clinically meaningful difference in endurance time. Measuring efficiency may have utility, but this
requires exploration in prospective studies.
Summary Further work is needed to define contemporaneous risk thresholds, to explore the role of other CPET variables in risk
prediction, to better characterise CPET’s role in combination with other tools in multifactorial risk stratification and increasingly
to evaluate CPET’s utility for preoperative exercise prescription in prehabilitation.
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Introduction

Cardiopulmonary exercise testing (CPET) provides a non-in-
vasive, dynamic and integrative assessment of the cardiovas-
cular, pulmonary and musculoskeletal systems’ response to
physiological stress and provides an objective evaluation of
cardiorespiratory fitness or functional capacity. CPET com-
bines measurement of breath-by-breath expired gas with the
simultaneous monitoring of heart rate (HR), blood pressure,
oxygen saturations and electrocardiography (ECG). Over the
last decade, CPET has increasingly been used in preoperative
evaluation, and in the UK, a recent survey reported that ap-
proximately 30,000 tests are performed annually in surgical
patients [1•, 2••]. With an increasingly frail and comorbid
surgical population who may have limited life expectancy
even in the absence of their surgical disease, the risks and
benefits of surgery may be difficult to evaluate. CPET as an
objective measure of functional capacity has been used to
predict perioperative risk [3], to contribute to shared
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decision-making and consent [2], to triage to perioperative
critical care-enhanced environments [4, 5], to diagnose and
evaluate the severity of comorbidities and increasingly to di-
rect preoperative exercise training programmes as an element
of prehabilitation [6•, 7].

Exercise Capacity, Ventilatory Equivalents
and Surgical Outcome

The perioperative CPET literature focuses on incremental ex-
ercise testing to the limit of tolerance (symptom limited ramp
or incremental exercise test) using cycle ergometry, and three
main indices of cardiorespiratory fitness and cardiorespiratory
function are reported in relation to surgical outcome. These
are:

1. Peak oxygen uptake (V̇O2 peak), defined as the highest V̇
O2 attained on a rapid incremental test expressed in
ml.kg−1.min−1 or ml.min−1 absolute.

2. Anaerobic threshold (AT), a submaximal index of exer-
cise capacity defined as the oxygen uptake (V̇O2) above
which there is a metabolic transition to increased glycol-
ysis and lactate begins to rise with an associated meta-
bolic acidosis, expressed in ml.kg−1.min−1 or ml.min−1

absolute.
3. The ventilatory equivalent for carbon dioxide (V̇E/V̇CO2)

defined as the ratio of minute ventilation to carbon diox-
ide production usually reported at the AT.

Impairments in V̇O2 peak [8, 9], AT [10, 11] and V̇E/V̇CO2

[12–14] (and thus reduced physiological reserve) are associ-
ated with an increased risk of postoperative morbidity and
mortality following major noncardiac surgery [3, 15]. V̇O2

peak is interpreted as the maximal exercise capacity limited
by oxygen delivery to the tissues. In reality it reflects the
patient’s “best effort” on that day but is not necessarily a
physiologically limited endpoint as it may be affected by
the patient’s volition. V̇O2 peak can only be assumed to
reflect the patient’s physiological limits if V̇O2 plateaus as
the limit of tolerance is approached (defined as V̇O2 max).
Surrogate endpoints that are used in healthy subjects to de-
termine whether the effort was maximal in the absence of a
plateau in V̇O2 are problematic in a clinical population where
drugs which affect the chronotropic response are common
(e.g. beta blockade). Likewise using the generation of a sig-
nificant metabolic acidosis (Respiratory exchange ratio
(RER) > 1.15 at peak exercise) as an index of maximal effort
may be invalid in a patient with limiting respiratory disease.
Thus V̇O2 peak, although easy to determine, may be affected
by factors other than functional capacity or fitness. Despite
these limitations however, it has been consistently linked to

clinical outcomes after surgery and in cardiac disease [15].
The anaerobic threshold is an index of sustainable exercise
capacity, marking a metabolic transition during incremental
exercise from predominantly oxidative phosphorylation to an
increasing proportion of glycolysis which is ultimately unsus-
tainable. The AT cannot be influenced by volition, but iden-
tification is more complex, and consequently inter-rater reli-
ability is less than for V̇O2 peak [16]. Furthermore, AT cannot
be reliably identified in approximately 5% of cases (particu-
larly in the presence of chronic lung disease) [17]. The ven-
tilatory equivalent for carbon dioxide (V̇E/V̇CO2) is an index
of gas exchange efficiency. In the perioperative literature,
predominantly the V̇E/V̇CO2 at the AT is reported. However
in the absence of a discernible AT, the minimum recorded
value or the gradient of the V̇E/V̇CO2 slope is approximately
equivalent and can be used instead [17]. Thus an index of V̇E/
V̇CO2 should be obtained in all incremental exercise tests. V̇E/
V̇CO2 is a measure of gas exchange efficiency rather than
exercise capacity per se and reflects both ventilation-
perfusion matching and physiological dead space. It is elevat-
ed and has prognostic value in heart failure (HF) and chronic
obstructive pulmonary disease (COPD), pulmonary hyperten-
sion and other respiratory disease. In the perioperative setting,
it has been reported as predicting postoperative complications
(particularly cardiopulmonary complications) [12, 13] and
long-term mortality [14].

CPET as a part of preoperative evaluation in non-
cardiothoracic surgery was first proposed in the early
1990s by Older and colleagues [18••] who observed an
association between reduced AT and worsened postopera-
tive outcomes following major intra-cavity surgery.
Specifically an AT <11 ml.kg−1.min−1 was associated with
a higher incidence of postoperative mortality. Prior to this,
V̇O2 peak had been used in thoracic surgery to identify
high-risk patients for lung resection surgery [8].
Subsequently, observational studies have supported the
use of CPET for preoperative risk evaluation across a va-
riety of surgical specialties including colorectal [19, 20],
intra-abdominal [12, 18], vascular [13, 21], urological [22,
23], bariatric [24], thoracic [8, 9], oesophageal [25, 26]
and hepatobiliary [10, 27] (including liver transplant sur-
gery [10, 28]). Table 1 summarises the major cohort stud-
ies and risk thresholds, and the reader is referred to a num-
ber of recent review articles in this area for an exhaustive
list of relevant studies [2, 29•]. In the vast majority of
cohorts, exercise capacity expressed as either V̇O2 peak
or AT is associated with postoperative morbidity and mor-
tality. Of note unlike many other risk prediction tools for
noncardiac surgery which focus on cardiac risk specifical-
ly, CPET predicts all-cause morbidity including respirato-
ry complications and sepsis which in most case series are
more prevalent than cardiac complications [11, 30].
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More recent studies have focused on the use of V̇E/V̇CO2 to
predict complications after lung resection surgery [31], where
it may have greater predictive precision than V̇O2 peak and in the
prediction of long-term mortality postoperatively [14]. The

CPET literature is, however, limited by the fact that the majority
of reports are retrospective and single centre, although recently
multicentre cohorts have been reported [32–34, 35••]. The pre-
dictive precision of CPET varies in reported case cohorts, and it

Table 1 Predictive role of CPET in non-cardiothoracic surgery

First author [ref] n AT
risk threshold
(ml.kg−1.min−1)

V̇O2 peak
risk threshold
(ml.kg−1.min−1)

V̇E/V̇CO2

risk threshold
Outcome

Intra-abdominal surgery
Older [18] 187 major intra-abdominal < 11 NM NM Mortality: IH
Older [5] 548 major intra-abdominal < 11 NM N Mortality: IH
Wilson [12] 847 intra-abdominal < 10.9 NM > 34 Mortality: 90 days
Snowden [11] 116 intra-abdominal < 10.1 Excluded in model N Morbidity: POMS
Hightower [98] 32 intra-abdominal < 60% pred AT N NM Morbidity: SD
Colson [99] 1725 major thoraco-abdominal N N N Mortality: 30-day/1-year/5-year
James [100] 83 intra-abdominal < 10.6 < 14 NM Morbidity: SD

Colorectal surgery
Lai [101] 269 colorectal surgery < 11 NM NM Mortality: 2 years

Morbidity: LOS
West [19] 136 colon resections < 10.1 < 16.7 32.9 Morbidity: POMS, CD
West [20] 105 rectal resections < 10.6 < 18.6 N Morbidity: POMS, CD

AAA surgery
Nugent [102] 30 AAA N N NM Mortality: 1 year
Carlisle [13] 130 AAA Y, no cut-off value Y, no cut-off value > 42 Mortality: Median 35 months
Thompson [103] 102 AAA < 11 N N Mortality: 30 months

Morbidity: CD 30 days & SD
Hartley [104] 415 AAA < 10.2 < 15 > 42 Mortality: 30 days/90 days
Prentis [105] 185 AAA < 10 Y, no cut-off value

Odds ratio
N Morbidity: SD, LOS

Goodyear [106] 188 AAA Y, no cut-off value NM NM Mortality: 30 days
Morbidity: LOS

Grant [21] 506 AAA < 10.2 < 15 > 42 Mortality: 3 years
Rose [107] 124 AAA N < 13.1 ≥ 34 Mortality: 2 year

Hepatobiliary surgery
Epstein [108] 59 liver transplant < 50% pred < 60% pred NM Mortality: 100 days
Ausania [27] 124 whipples N NM N Morbidity: PFD, POMS
Ausania [109] 50 pancreatic surgery N NM N Morbidity: POMS
Junejo [110] 108 hepatic resection < 9.9 N > 34.5 Mortality: IH

Morbidity: POMS
Prentis [111] 60 liver transplant < 9 N N Mortality: 90 days
Chandrabalan [112] 100 pancreatic surgery < 10 NM NM Morbidity: PFD, CD, LOS
Kaibori [113] 61 hepatectomy < 11.5 < 16.5 N Mortality: 2 years

Morbidity: CD
Bernal [114] 223 liver transplant < 9.2 < 13.4 NM Mortality: 1 year

Morbidity: LOS
Snowden [10] 389 major hepatobilary < 10.1 N N Mortality: IH

Morbidity: LOS
Dunne [115] 197 liver surgery N N N Morbidity: CD, LOS
Junejo [116] 64 pancreatico-duodenectomy N N > 41 Mortality: 30 days

Morbidity: SD
Neviere [28] 263 liver transplant N < 17.1 N Primary composite endpoint including

1 year mortality
Morbidity: SD

Upper gastrointestinal surgery
Nagamatsu [26] 52 oesophagectomy Y, no cut-off value Y, no cut-off value NM Morbidity: SD
Nagamatsu [25] 91 oesophagectomy N 800 mL.min−1.m−1 NM Morbidity: SD
McCullough [24] 109 bariatric < 10.5 < 15.8 N Primary composite end-point including

IH mortality
Hennis [117] 106 bariatric < 11.1 N N Morbidity: POMS, LOS
Moyes [118] 108 upper GI < 9.0 N N Morbidity: SD

Urological surgery
Ulubay [119] 37 renal and cardiac transplant < 9.5 N > 53.6 Mortality: IH

Morbidity: SD
Ting [120] 70 renal transplant < 9.4 < 14.9 N Mortality: 5 years
Prentis [22] 82 radical cystectomy < 12 N N Morbidity: CD, LOS
Tolchard [23] 105 radical cystectomy < 11 N > 33 Morbidity: CD, LOS

AT anaerobic threshold; AAA abdominal aortic aneurysm; N no; NM not measured; IH in-hospital; POMS postoperative morbidity survey; % pred %
predicted; CD Clavien-Dindo complication; SD self-defined; LOS length of stay: PFD pancreatic fistula definition; V̇E/V̇CO2 ventilatory equivalent for
carbon dioxide; V̇O2 peak peak oxygen consumption. Reproduced and updated from [15] with permission
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is notable that it tends to be greater in blinded cohorts than
unblinded cohorts which may reflect confounding by indi-
cation [2]. The thresholds for identifying a high-risk group
also differ in different surgical cohorts and surgical procedures
which probably reflect variation in the physiological stress
induced by the procedure (e.g. open oesophagectomy vs lap-
aroscopic colorectal surgery). Overall there has been a tenden-
cy for the exercise capacity thresholds at which risk increases
to decrease over time [11], (e.g. the AT reported risk thresh-
olds falling from 11 to 9–10 ml.kg−1.min−1 in some types of
surgery) possibly because of evolution in surgical techniques
(e.g. laparoscopic surgery) and improvements in perioperative
care. There is a need for ongoing multicentre, prospective
cohort data to define contemporaneous risk thresholds. Of
note, the recent large prospective and blinded Measurement
of Exercise Tolerance before Surgery (METS) study com-
pared the prognostic accuracy of a variety of methods of
assessing preoperative functional capacity (including subjec-
tive clinical assessment). CPETwas found to be the only test
predictive of in-hospital moderate or severe complications
[35]. The Duke Activity Status Index (DASI) questionnaire
(a physical activity questionnaire designed for cardiac pa-
tients) and beta natriuretic protein (BNP) were better at
predicting myocardial infarction (MI) and myocardial injury
and mortality at 1 year. This cohort study aimed to evaluate a
high-risk surgical population but the overall mortality was
only 0.4% (a low risk population). This may reflect a “healthy
bias” effect which is common in exercise studies generally,
whereby the study participants are fitter than the population
mean. The average V̇O2 peak at 19.2 ml.kg−1.min−1 in the
study is higher than in unselected retrospective cohort studies.
The design of future studies should take this effect into ac-
count when predicting event rates to ensure the study is ade-
quately powered [36]. Of note new arrhythmias or myocardial
ischaemia were detected in 27 cases during CPET in the
METS study leading to unblinding of clinicians and a signif-
icant change in management for the patients. These changes
included delaying the surgical procedure for investigation
such as angiography, referring to other medical specialists
for optimisation and changing the previously planned surgical
procedure. This illustrates CPET’s potential role in the detec-
tion and optimisation of both known and previously undiag-
nosed comorbidity even in a low risk population.

Novel and Emerging CPET Variables
for Preoperative Evaluation

Oxygen Pulse

There is physiological rationale and emerging evidence to
support the utility of several other CPET variables in

perioperative risk prediction. The oxygen pulse provides an
indirect assessment of dynamic stroke volume and oxygen
extraction under stress. Oxygen pulse is defined as the ratio
of oxygen consumption to HR (V̇O2/HR) and is the volume of
oxygen ejected with each cardiac contraction. As can be de-
r i v e d f r o m t h e F i c k e q u a t i o n , [ ( V̇ O 2 = Q̇
(SV x HR) x (CaO2 – CvO2)], where Q̇ is cardiac output, SV
is stroke volume and CaO2 – CvO2 is the difference between
arterial and venous oxygen content (O2 extraction), it equates
to the product of stroke volume and the arterial oxygen extrac-
tion. However, a note of caution should be raised. Despite the
V̇O2/HR being widely reported and interpreted clinically as a
surrogate marker of exercise SV, whether this relationship
holds true during incremental ramp exercise remains to be
fully elucidated and thus V̇O2/HR should not be interpreted
as a definitive indicator of cardiac disease in isolation. The
profile of the oxygen pulse is abnormal (flattened) in the pres-
ence of exercise induced ischaemia [37], significant aortic
stenosis or a dynamic impairment in ventricular function
[38]. The peak oxygen pulse is reduced in cardiac failure but
also impacted by other factors independently of changes in SV
such as general deconditioning/training status, medications
(e.g. beta blockers), pulmonary arterial hypertension, anaemia
and in lung disease (particularly in cases where exercise in-
duced desaturation occurs). Recent work found an association
between a reduced oxygen pulse (< 90% of population-
predicted normal values) and lower preoperative arterial pulse
pressure (≤ 53 mmHg), the latter being associated with excess
morbidity in a cohort of high-risk surgical patients [39]. The
prognostic implication of peak oxygen pulse requires further
evaluation in multifactorial models along with other possible
indicators of increased cardiac risk such as increased preoper-
ative BNP.

Oxygen Uptake Efficiency Slope

The oxygen uptake efficiency slope (OUES) was first pro-
posed as a potentially useful measure of cardiorespiratory re-
serve by Baba and colleagues [40•]. OUES is derived from the
relationship between V̇O2 (ml.min−1) and logarithmically
transformed minute ventilation (V̇E, L.min−1) during in-
cremental exercise and represents the effectiveness of V̇O2

that is related to both metabolic acidosis and pulmonary
dead space. In common with the measurement of AT, one
benefit of the OUES is that it can be obtained from a
submaximal test, and so it is not as dependent on patient
volition as a V̇O2 measurement. It may also be useful in
patients who are unable to perform a maximal exercise
test as may be the case in morbid obesity [41] and those
with poor mobility or joint problems. It is therefore pos-
sible to obtain useful data for the vast majority of patients.
OUES shows excellent test retest reliability [42, 43] and
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is positively correlated with V̇O2 peak [44–46] and AT
(r = 0.80, p < 0.001) [45]. In addition, OUES is a sensitive
and specific predictor of clinically utilised AT risk thresh-
olds (≤ 11 ml.kg−1.min−1), with an area under the curve
(95% CI) of 0.876 (0.780–0.972, p < 0.001) [46]. This
suggests that OUES may provide a valid measure of pre-
operative cardiorespiratory fitness and assist in discrimi-
nating those at higher risk of postoperative morbidity,
particularly where an AT cannot be determined. In the
preoperative setting, the OUES has been quantified in
patients with lung cancer undergoing CPET prior to lung
resection [45, 47], in elderly patients scheduled for major
colorectal surgery [46] and in candidates for major intra-
cavity surgery from mixed surgical specialties [48].

In 49 lung resection candidates, OUES was lower in those
experiencing postoperative cardiopulmonary complications
and showed a good ability to discriminate between those with
and without postoperative complications [area under the re-
ceiver operating characteristic (AUROC) curve: 0.81] [47].
Furthermore, the OUES was associated with postoperative
survival in 125 patients scheduled to undergo lung surgery
(r = 0.69, p < 0.01) and correlated with V̇O2 peak (r = 0.69,
p < 0.01) [45]. No sensitivity or specificity analysis or Kaplan-
Meier survival estimates were reported in this study, however,
which limits interpretation of the predictive precision of the
OUES. Furthermore, not all studies have reported an associa-
tion between OUES and outcomes, and in another cohort of
1725 patients undergoing major intra-cavity surgery, CPET-
derived OUES was not predictive of 30-day, 1-year or 5-year
mortality. Interestingly exercise capacity variables were also
not predictive of mortality in this cohort [48]. Although en-
couraging, the data supporting the prognostic value of OUES
is limited to date due to a lack of appropriately powered pro-
spective studies and warrants further investigation. The OUES
displays prognostic value in patients with HF [49–51] and
coronary artery disease (CAD) [52, 53] and has been shown
to be responsive to physical training in patients with CAD [54,
55].

Haemodynamic Responses Measured
during CPET

Haemodynamic indices such as resting HR, chronotropic
response during incremental exercise and HR recovery are
simple and routine measures recorded during CPET that
may provide a useful indicator of autonomic nervous sys-
tem activity. Both an impaired HR response to exercise
(chronotropic incompetence, (CI)) [56–58] and attenuated
recovery of HR post exercise (labelled HR recovery
(HRR)) [59–61] are associated with cardiac and all-

cause mortality. In addition, an elevated resting HR has
been shown to be associated with an increased risk of
multiple cardiovascular outcomes including CAD, sudden
cardiac death, HF, atrial fibrillation, stroke, cardiovascular
disease, as well as total cancer and all-cause mortality in a
dose-response manner (apart from atrial fibrillation which
showed a J-shaped relationship) [62].

These haemodynamic indices have also been investi-
gated in the perioperative setting. In 15,000 patients
undergoing noncardiac surgery, raised preoperative
HR > 96 beats.min−1 was associated with postoperative
myocardial injury after noncardiac surgery (MINS), MI
and mortality within 30 days of surgery [63]. An ele-
vated resting HR (> 87 beats.min−1) was also indepen-
dently associated with impaired CPET-derived V̇O2

peak (≤ 14 ml.kg−1.min−1) and a delayed HRR (≤ 6
beats.min−1). In addition, a CPET-derived exaggerated
HR (EHRR) increase (underpinned by raised sympa-
thetic autonomic activity) during unloaded cycling (de-
fined as ≥ 12 beats.min−1) was associated with an in-
creased risk of exercise ischaemia on ECG (defined as
> 1 mm ST depression in lead II) and inferior cardiore-
spiratory fitness (AT 10.6 versus 11.1 ml.kg−1.min−1,
p = 0.008; V̇O2 peak 74% versus 78% of predicted,
p = 0.05) and reduced cardiac performance (quantified
by the oxygen pulse, being a surrogate marker of left
ventricular stroke volume) 85% versus 95% predicted,
p = 0.0001. This study also demonstrated a prolonged
hospital stay in patients exhibiting an EHRR [64].

Impaired HRR after exercise is common with 40%
occurrence being reported in the METS study [65].
Cardiac vagal dysfunction defined as a delayed HRR
(where impaired HRR is defined as ≤ 12 beats.min−1

measured 1-min post cessation of preoperative CPET)
is also associated with an increased risk of perioperative
cardiac injury (defined by serum troponin concentration
within 72 h of undergoing noncardiac surgery) [66]. In
addition, cardiorespiratory fitness is reduced in patients
exhibiting an impaired HRR (V̇O2 peak standard devia-
tion [SD] 17.1 (5.6) versus 20.8 (6.5) ml.kg−1.min−1; AT
11.6 (3.4) versus 13.4 (4.4) ml.kg−1.min−1). Taken to-
gether these findings highlight that both resting and re-
covery haemodynamic responses that can be routinely
obtained during CPET, but are rarely utilised clinically,
can be used to identify a group of patients with impaired
cardiopulmonary performance consistent with markers of
subclinical cardiac failure prior to surgery and at in-
creased risk of deleterious perioperative cardiac out-
comes. This may allow more tailored perioperative man-
agement strategies to alleviate these risks as well as bet-
ter inform the preoperative evaluation process in higher
risk surgical candidates.
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A recent planned secondary analysis of two prospective,
multicentre, blinded observational studies (the METS and
POM-HR study) also found that all-cause morbidity (defined
using the Postoperative Morbidity Survey and Clavien-Dindo
grading of postoperative complications) within 5 days of non-
cardiac surgery was more common in patients with impaired
cardiac vagal function (HRR ≤ 12 beats.min−1 after preopera-
tive CPET) than those with a normal HRR (OR: 1.29, 95% CI
1.06–1.58; p = 0.001) [67•]. Importantly, an impaired HRR
was associated with specific domains of in-hospital morbidity
includingmore frequent episodes of cardiovascular (OR: 1.39,
95% CI 1.15–1.69; p < 0.001), pulmonary (OR: 1.31, 95% CI
1.05–1.62; p = 0.02), infection (OR: 1.38, 95% CI 1.10–2.70;
p = 0.006), renal (OR: 1.91, 95% CI 1.30–2.79; p = 0.02),
neurological (OR: 1.73, 95% CI 1.11–2.70; p = 0.02) and pain
morbidities (OR: 1.38, 95% CI 1.14–1.68; p = 0.001). This
has important implications for patients in the immediate post-
operative period but may also have longer survival conse-
quences, given the previously reported observation that post-
operative morbidity of any aetiology increases risk of death
for up to 3 years after surgical intervention [68]. This data may
therefore have utility in better informing collaborative/shared
decision-making around the short-term and longer-term risks
of surgery and thereby aid the preoperative evaluation and
decision-making processes.

The chronotropic response to exercise can be defined as
the ability to increase HR appropriately to match cardiac
output to metabolic demands [69]. When the ability to aug-
ment HR is impaired, this is termed chronotropic incompe-
tence (CI) [70]. CI during exercise is a predictor of major
adverse cardiovascular events in patients with cardiovascular
diseases [71–73] but may also be a phenotype that is associ-
ated with cardiovascular risk and impaired gas exchange (V̇
O2 peak) in the general population [74]. Variation in cut-off
values and methods used to define CI underpin the disparity
in reported prevalence rates, but figures of between 25% and
75% have been reported in HF [75–77], patients with known
or suspected CAD [78] and prior to high-risk noncardiac
surgery [65]. Although related to preoperative biomarker in-
dicators of subclinical HF (N-terminal pro-B-type natriuretic
peptide [NT pro-BNP] > 300 pg ml−1) and more common in
patients with impaired CPET-derived cardiorespiratory fit-
ness ðV̇O2 peak ≤ 14 ml.kg−1 min−1) and gas exchange inef-
ficiency (V̇E/V̇CO2 slope ≥ 34), preoperative chronotropic
incompetence (defined as chronotropic index (CI) < 0.6, a
surrogate marker of sympathetic dysfunction) was not asso-
ciated with postoperative myocardial injury on day 3 or 1-
year mortality. Whether this is the case for other markers of
postoperative morbidity remains to be elucidated. The au-
thors suggest that these findings add support to the notion
that cardiac vagal dysfunction is the most important auto-
nomic determinant of myocardial injury and perioperative

outcomes [79, 80]. Such impairments can be quantified pre-
operatively through the use of CPET.

Alternative Testing Protocols: High Intensity
Constant Work Rate Tests and Metabolic
Efficiency

The traditional CPET protocol is the incremental-ramp exercise
test whereby work rate is increased linearly, or quasi-linearly,
until the patient reaches their limit of tolerance, ideally
performing 8–12 min of ramped exercise [81]. Constant work
rate tests may also have applications in the perioperative setting.

High Intensity Constant Work Rate Tests to Evaluate
Exercise Interventions

Exercise programmes either as stand-alone interventions or as
part of multimodal prehabilitation are increasingly used in the
preoperative period. A test that is sensitive to changes in fitness
is required to evaluate the efficacy of such interventions. A high
intensity constant work rate test at 75%–80% of the maximal
work rate achieved on an incremental exercise test is more sen-
sitive to changes in fitness than V̇O2 peak and AT or the 6-min
walk test [82]. The tolerance time or endurance time (tLIM) is the
duration from the imposition of the work rate to the point of task
failure expressed in seconds or minutes. The clinically meaning-
ful difference for a prehabilitation exercise intervention is un-
known, although it is of note that in the one prospective
randomised controlled trial of prehabilitation to demonstrate a
50% reduction in postoperative complications, there was a
135% increase in the tLIM in the intervention group [6].
Interestingly, despite the 135% increase in tLIM, the 6-min walk
test distance did not change, suggesting that it is not sensitive to
clinically meaningful changes in fitness in this context.

Low Intensity Constant Work Rate Tests to Evaluate
Metabolic Efficiency

CPET measures the ability of the integrated respiratory-
circulatory-metabolic unit to meet the increasing O2 demands
of exercise. Surgery, like exercise, places significant metabolic
stress on the body and requires effective O2 delivery to the
tissues and efficient O2 utilisation to aid recovery in the pro-
inflammatory and hypermetabolic postoperative period [83].
Metabolic efficiency reflects the ratio of work generated to the
total metabolic energy cost [84] and provides an index of how
effectively an individual can convert chemical energy into
mechanical power. The oxygen cost of any given work is
reduced in an individual with enhanced metabolic efficiency.
This may potentially translate into a greater physiological re-
serve for sustainable aerobic oxidative phosphorylation before
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supplemental anaerobic energy pathways are required to con-
tribute to overall energy production.

The most commonly used measure of metabolic efficiency
is gross efficiency, the product of (work accomplished/energy
expended) × 100. Energy expenditure can be calculated from
the steady-state V̇O2 and the respiratory exchange ratio (RER)
measured during a sub-anaerobic threshold constant work rate
test [83] and from this metabolic efficiency can be determined.
Pedalling cadence must be standardised as it influences effi-
ciency, and a test duration of at least 6 min is required to
ensure that steady-state V̇O2 and V̇CO2 are achieved.
Skeletal muscle efficiency reflects mitochondrial function
and efficiency [85, 86]. Mitochondrial dysfunction and mito-
chondrial coupling inefficiency have been directly implicated
in the reduced exercise efficiency observed with age [87, 88],
greater fatigability in older subjects [89], sarcopenia and can-
cer cachexia, type 2 diabetes [85], impairments in aerobic
capacity [90],all conditions commonly observed in a surgical
population. Skeletal muscle efficiency has not been reported
in surgical patients to date; however, it provides a potential
opportunity for targeted intervention to improve exercise per-
formance given that it is at least in part determined by mito-
chondrial function. Exercise training induces changes in mi-
tochondrial volume, density and enzyme activity [91, 92,93,
94], and there is a suggestion that mitochondrial coupling
efficiency may be improved with dietary nitrate supplementa-
tion although this is controversial [95–97].

Conclusion

In summary, CPET informs the preoperative evaluation pro-
cess by providing individualised risk profiles; guiding shared
decision-making, comorbidity optimisation and preoperative
exercise training; and informing perioperative patient manage-
ment. V̇O2 peak, AT and V̇E/V̇CO2 at AT have been the CPET
variables routinely used for risk prediction, and the literature
supports an association between exercise capacity and surgical
outcome. Future risk prediction studies should prospectively
evaluate CPET variables in combination with other known
predictors of outcome such as BNP, renal function and albu-
min in prospective cohorts. CPET can both quantify exercise
capacity and identify the cause of exercise intolerance, which
provides an opportunity for targeted optimisation of known
and newly identified comorbidities in the preoperative period
(e.g. rate control in atrial fibrillation). Although CPET pro-
vides a wealth of physiological data, to date much of this is
underutilised clinically. For example, impaired chronotropic
responses during and after CPETare simple to measure and in
recent studies are predictive of both cardiac and noncardiac
morbidity following surgery but are rarely reported. Exercise
interventions are increasingly being used preoperatively, and

tLIM derived from a high intensity constant work rate test
should be considered as the most sensitive method of evalu-
ating the response to training. Further research is required to
identify the clinically meaningful difference in tLIM.
Measuring efficiency may have utility, but this requires explo-
ration in prospective studies.
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