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Abstract
Purpose of Review This review describes the current literature on the use of data science to predict readmissions of patients with
heart failure. We examine the chronology of heart failure management from the emergency department, inpatient unit, transition
of care, and home care. We examine the software and hardware which may improve readmission rates of this common and
complex disease process.
Recent Findings There are multiple novel applications of data science which have been used to predict readmissions of heart
failure patients. In the emergency department, efforts are focused on identifying patients who can be safely discharged after a
brief period of stabilization; while inpatient endeavors have attempted to predict those patients at risk for decline after discharge.
Overall, prediction rules have had mixed results. Outpatient telemonitoring with invasive devices seems to hold promise. New
technologies may be the key to future improvements in readmission rates.
Summary Heart failure holds a high morbidity and mortality, and hospitalizations are common. A number of technological
interventions have been developed to prevent readmissions in this complex population. Improvements in technology may lead to
reductions in heart failure admissions, reduced mortality, and improved quality of care.
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Introduction

Heart Failure (HF) is associated with high morbidity, mortality,
and significant decreases in quality of life. Nearly half the people
given a diagnosis of HF die within 5 years of that diagnosis.With
a prevalence of 5.7 million people, and an annual incidence of
670,000 in the USA alone, HF is one of the top burdens facing
the American healthcare system. The weight of this burden man-
ifests itself in 1 million annual hospital visits and 30.7 billion
dollars in annual spending [1, 2].

Hospitalization continues to be the mainstay of HF man-
agement in the USA. Once discharged, however, patients are
likely to require hospitalization again in the future [3]. The
rate of re-hospitalization has risen as a fundamental marker of
quality that directly influences hospital re-imbursement [3].
Strategies to reduce HF readmission have thus been the basis
for a great deal of HF literature, specifically in the applied data
sciences (i.e., transforming data into information then infor-
mation to usable knowledge to address a problem). This paper
will attempt to catalog themany promising ways in which data
sciences are being deployed to address the problem of HF
readmissions at the pre-hospital, inpatient, and outpatient
stages of management. More specifically, we look at predic-
tion and risk modeling, machine learning, telemonitoring, an-
alytics, remote devices, and consumer wearables, to see what
their recent effect has been on HF readmissions and what the
future holds.

Background

The data sciences have been particularly useful in developing
a host of metrics that are, justly or unjustly, used as proxies for
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quality of care. Two decades ago, the Centers for Medicare
and Medicaid created the National Heart Failure Project,
which tracked four metrics: evaluation of left ventricular
(LV) ejection fraction, ACE inhibitor use in patients with
left-sided HF, HF discharge instructions, and whether or not
smoking cessation counseling had been given [4]. Since that
time, these data collected have expanded to include a wider
range of structural process, outcome, and patient experience
metrics in an attempt to better characterize and benchmark the
care of HF patients. Of the metrics that look directly at patient
outcome; inpatient mortality, hospital length of stay, and 30-
day readmission rates are being used to guide reimbursement,
which makes them a vital area of study [5].

The metric of 30-day readmission is unique among the out-
come markers; several studies indicate it may be a poor indicator
of quality [6], and despite quality of care, a large portion of HF
patients experience a readmission [3]. And yet, since 2012, CMS
has been tracking 30-day hospital readmission rates with associ-
ated financial penalties for underperformance [7, 8]. Given that
HF readmissions account for a great deal of hospital spending
and reimbursement, it is no wonder that the greater medical
community is constantly searching for novel approaches to re-
duce the rates of HF readmissions.

Emergency Department Management

Themost effective method of preventing readmissions may be
to stop the initial admission. The Emergency Department
(ED) is uniquely positioned to see the majority of HF patients
in the acute phase of decompensation. Therefore, EDmanage-
ment of HF represents a critical area of study in the quest to
lower readmission rates. Current practices heavily favor ad-
mission as the ultimate disposition of patients with heart fail-
ure. In the USA, patients with HF are admitted at rates of up to
80% [9]. However, some studies estimate that as many of 50%
of patients with HF could be safely discharged from the ED
(after stabilization and a brief period of observation) [10].

If the disposition rates could be adjusted by just 5% from
admission to observation or discharge in low-risk patients, it
would save $80 million and 80 million hospital days [11].
However, objectively defining low-risk patients suitable for dis-
charge is complicated. Even if a patient lacks high-risk markers
(i.e., elevated troponin or B-type natriuretic peptide (BNP)), the
inability to provide vital bedside education, ensure proper med-
ical regimen, and guarantee proximate follow-up make ED dis-
charge a risky proposition [12]. Therefore supplying instruments
with which to risk stratify ED patients presenting in HF has been
and remains a main focus of the data sciences.

Hsieh et al. retrospectively derived a model from a database
of 8384 adult patients admitted with HF using medical history,
vitals, leukocytes, glucose, electrocardiogram (ECG) changes,
renal function, and imaging findings. The model found that

19.2% of patients admitted for HF were at low risk for serious
adverse events (SAE) within 30 days, with an inpatient mor-
tality of 0.7% and 30-day mortality of 0.7% [13]. Collins et al.
attempted to prospectively validate a HF ED decision tool.
The STRATIFY study enrolled 1033 adult ED patients admit-
ted with HF at four US hospitals. By using data commonly
obtained during routine evaluation of HF (history, medica-
tions, vital signs, lab results, and ECG findings), they were
able to identify 105 patients (10%) that could have potentially
been discharged from the ED [14].

In an effort to validate the Ottawa Heart Failure Risk Score
(OHFRS), Stiell et al. examined discharged and admitted pa-
tients, enrolled at 6 different Canadian teaching hospitals.
Regardless of disposition, 1100 patients were monitored to a
primary outcome of adverse event at 30 days. The analysis
showed SAE rates of 19.4% for admitted patients and 10.2% in
discharged patients. When compared with actual practice, an
OHFRS threshold of 2 or greater was more sensitive for the
detection of SAEs and had a similar admission rate [15].
Nonconsecutive sampling and small sample size is a valid criti-
cism of theOHFRS. In response, theMultiple Estimation of Risk
based on the Emergency Department Spanish Score in patients
with HF (MEESSI-AHF) was derived using a cohort of 4867
consecutive patients, enrolled from 34 Spanish EDs [16].
Although the score only predicts mortality and not SAEs, it
was found to be discriminating in categorizing the 10% of pa-
tients at very high risk for 30-day mortality (45%), as well as the
40% of patients at low risk for 30-day mortality (< 2%) with C-
statistics of 0.836 in the validation cohort. By virtue of having
such a large and coordinated data set, the study was prone to
missing data, and as the study was only conducted in non-
randomly selected Spanish EDs, it may not be generalizable to
populations in the USA [16].

The most recent and promising attempt at developing an
ED decision rule for HF has been the Emergency Heart
Failure Risk Grade (EHMRG). The EHMRG is a 7-day mor-
tality estimator for HF patients presenting an ED. With the
addition of a single variable (ST depression on a 12 lead
ECG), the EHMRG30-ST can be used to predict 30-day mor-
tality. Lee et al. prospectively validated the rule, in a cohort of
1983 patients at 9 Canadian EDs, compared it with physician-
estimated risk and performed comprehensive follow-up.
Patients were stratified into 5 groups from very low to very
high risk. Patients stratified into the very low category by
EHMRG30-ST had a 0% mortality rate at 30 days. At 7 days,
patients stratified into the “very low–risk” or “low-risk” cate-
gories by the EHMRG7 had a 0% mortality rate. When phy-
sicians were asked to estimate the risk of the same cohort, they
tended to overestimate. When physicians were allowed to re-
classify their estimates, based on EHMRG calculation, the
study showed a significant trend towards the improved reclas-
sification as compared with physician estimate alone [17,
18••, 19].
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Despite the significant steps in deriving and validating pre-
dictive instruments to aid in determination of ED disposition
in patients with HF, there has yet to be a randomized control
trial (RCT) that looks directly at the implementation of such
an instrument. The future goal of the data sciences with regard
to the EDmanagement of HF is thus a very clear one: continue
to design and improve decision tools that can then be applied
and validated, both prospectively and clinically, to assist in the
selection of candidates for safe discharge. By diverting pa-
tients from typical admission pathways, it is possible that
HF readmission rates can also be lowered, subsequently de-
creasing the overall financial burden of HF.

Inpatient

If the ED is the point of primary stabilization for patients with
HF, then inpatient floors are the definitive point of stabilization.
Once admitted to the hospital, patient’s diet, medication regimen,
vitals, laboratory analyses, and imaging are all scheduled and
optimized by using computerized provider order entry (CPOE)
systems in an electronic health record (EHR). By building in
clinical decision support systems (CDSS) into EMRs, providers
get prudent evidence-based recommendations at the appropriate
time. The data sciences have therefore had a crucial role on
inpatient care for decades. While both CPOE and CDSS have
been shown to change provider behaviors, decrease mortality, as
well as length of stay metrics, they have not been shown to
directly reduce readmission for HF patients [20]. Standardized
order sets and efforts to systematize best practices have shown
similar limitations [21].

There are very few inpatient interventions that have been
shown to have a mortality benefit and reduce HF
readmissions. The list can be reduced to medication reconcil-
iation with neurohormonal blockade (ACE-I, ARBs, beta
blockers, and aldosterone), cardiac resynchronization therapy
(CRT), aerobic exercise, and early palliative care consultation
[22]. When examining readmission risk only, pre-discharge
planning, patient education, and ensuring timely follow-up
have shown benefit [23]. Combined with close monitoring
and increased physician regulation of the patient’s daily regi-
men, these interventions can aid most patients admitted for
HF. Naturally, some patients will maintain this modified base-
line longer than others. Developing tools to identify HF pa-
tients, who are at risk of declining more precipitously post-
discharge is paramount to ensuring high-quality low-cost care.

Several models have been proposed to achieve this goal.
The models vary widely based on data types, timing, sources,
and number of variables studied. A systematic review done by
Ross et al. attempted to identify models to compare hospital
readmission rates or predict readmissions. They identified five
prediction models which utilized administrative or clinical
data only, but methodologies and results were inconsistent

[24]. Other models showed comparably poor predictive ability
ranging from C-statistics of 0.59 to 0.60 [25–27].

Machine learning (ML) is expected to aid in development
of predicting HF readmissions. Recently, Frizzell et al. used
three different ML approaches to analyze the Get With The
Guidelines Heart Failure registry with Medicare (GWTG-HF)
data [28]. ML was set to the task of predicting 30-day read-
mission and then compared with standard admin and clinical
models. While the ML approaches did yield better predictive
ability (C-statistic 0.607–0.624) compared with a non-ML
approach (C-statistic 0.589), both ML and standard models
failed to predict 30-day readmission in HF patients with
enough discrimination to be widely applied [28].

Some have posited that non-clinical factors (such as socio-
economic status or functional ability), when combined with
clinical data, may have better discrimination. In 2011,
Amarasingham et al. collected markers of social instability
and lower socioeconomic status as well as clinical data.
They found that it led to a significant increase in the predictive
ability of their model (C-statistic 0.72) when compared with
models that relied on clinical or administrative data alone [29].
In 2018, Huynh et al. built upon previous studies by deriving
and then validating a model that incorporated mental health
(PHQ9 and GAD-7 scores), cognitive ability (MOCA), and
pre-discharge echocardiogram in addition to demographics,
socioeconomic status, admin, and clinical data [30•]. The
model generated a C-statistic of 0.77 for prediction of 30-
day readmission or death in patients with HF, and to date
appears to be the most discriminatory instrument for short-
term adverse events in this population. This instrument, how-
ever, was derived using a nationwide Australian (mostly
Caucasian) cohort. Validating the model in other populations
will be an important future step [30•].

Over the last decade, several 30-day readmission risk pre-
diction tools for patients with HF have been developed.
Despite numerous novel techniques, using clinical and admin-
istrative data alone only produces modest to poor discrimina-
tion. The addition of non-clinical factors has shown the ability
to increase discrimination, yet further research is required.
ML, a nascent field, has already shown some promise. In the
future, the data sciences will continue to identify important
non-clinical factors, create improvedML algorithms, and con-
ceive new statistical tools, to better understand HF patients
and derive better prediction instruments. Without these ad-
vancements, it is likely that readmission rates for HF patients
will remain extremely high.

Transitions of Care and Outpatient
Management

Per the American college of cardiology’s (ACC) 2013 guide-
lines on the management of heart failure: “The transition from
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inpatient to outpatient care can be an especially vulnerable
period” [31, 32]. A transition of care is the movement of a
population from one care setting to another, and interventions
established to prevent returns are considered “transitional care
interventions” [33]. Advances in new technologies may hold
the key to improving transition of care and chronic outpatient
management of patients with HF. The 2016 European Society
of Cardiology guidelines for the diagnosis and treatment of
acute and chronic HF specifically make a class IIb recommen-
dation for some forms of remote monitoring [34]. Physiologic
telemonitoring through either structured outpatient manage-
ment programs or consumer grade devices, with or without
the benefit of ML and predictive analytics may aid in the
predictions of failure of management in the outpatient setting.

Telemonitoring

Telemonitoring has been extensively studied in the manage-
ment of HF. Andrès et al. summarize the literature and divided
the history of telemedicine research in the setting of the man-
agement of HF into two generations [35].

First-generation studies were very heterogeneous in their
methodology and inconclusive in their results. These studies
generally used nurses for phone or inperson follow-up and
lacked the advanced home monitoring technologies we con-
sider part of modern telemedicine, such as remote sensors
[35]. Some meta-analyses did demonstrate positive results,
with reductions in all-cause mortality [36, 37] as well as all
hospitalizations and heart failure–related hospitalizations [37].

Despite some evidence of value in telemedicine through
meta-analsysis, prospective randomized trials have had mixed
results [35]. Some randomized trials showed that
telemonitoring reduced mortality and hospital length of stay
[38], while others demonstrated no difference in readmissions
or mortality [39–41], though some suggest this may be attrib-
utable to patient non-compliance [40]. Specifically, one study
had 14% of its participants never used the telemonitoring sys-
tem and experienced a large drop in particpation during the
study period [39]. Despite these shortcomings, many studies
did demonstrate cost reduction [35].

A more recent investigation by Burdese et al. examined 48
elderly Italian HF patients discharged from the hospital over
20 months. A visiting nurse performed a tele-examination
with ECG, scale, oxymeter, and sphygmomometer. Alarm
criteria prompted a cardiologist to initiate an intervention such
as alert the ED or contact the patient’s primary care provider.
The results demonstrate a high adherence to the protocol with
significant reduction in annual re-hospitalizations, ED visits,
and overall costs [42].

Second-generation telehealth studies incorporate many more
of the technologies commonly associated with telemedicine to-
day such as web 2.0 tools, cloud-based technologies, ML, and

wirelessly connected devices [35]. Monitoring of HF in France
with bluetooth-connected devices and automated alerts demon-
strated high positive and negative predictive values for cardio-
vascular decompensation [43]. Another system developed in
California showed a reduction in the number of biometric read-
ings above a predetermined threshold for weight and blood pres-
sure, and a statistically significant reduction in weight for those
who participated longer than 2 months [44–46].

In 2018, Koehler et al. published the first second-generation
RCT demonstrating a reduction in unplanned cardiovascular ad-
missions and all-cause mortality [47••]. The TIM-HF2 study
examined a multicenter population in Germany of 1571 New
York Heart Association class II and III patients. They compared
remote patient monitoring and usual care with usual care alone.
The authors demonstrated a reduction in days lost due to un-
planned cardiovascular hospital admissions and all-cause mortal-
ity for the intervention arm of 4.88%comparedwith 6.64% in the
control arm. There was a lower all-cause death rate per 100
patient years in the control armwith a hazards ratio of 0.7, though
there was no statistical difference for cardiovascular mortality
[47••]. While the results of this study are promising, questions
have risen as to whether the intervention versus the resources
provided to the intervention group played a larger role in the
results observed [35].

Some of the most convincing evidence to support
telemonitoring comes from research on invasive devices [48].
The EVOLVO study demonstrated that monitoring through im-
plantable cardioverter-defibrillators (ICD) or cardiac
resynchronization therapy defibrillators (CRT-Ds) resulted in
fewer ED and urgent office visits [49]. Following this, the IN-
TIME trial demonstrated improved clinical outcomes from mul-
tiparameter telemonitoring of ICD and CRT-Ds when comparing
telemonitoring and standard of care with standard of care alone;
the telemonitoring group had better composite clinical HF scores
and lower all-cause mortality rates [50]. Similarly, the EFFECT
trial demonstrated that remote monitoring of ICDs led to reduced
cardiovascular hospitalizations and all-cause mortality [51],
while the COMMIT-HF trial demonstrated a reduction in mor-
tality at 3-year follow-up [52]. Contrary to the previously de-
scribed studies, the OptiLink HF RCT found no difference in
all-cause death or cardiac hospitalizations with ICD
telemonitoring of intrathoracic fluid status [53].

A meta-analysis of 9 RCTs studying ICD remote monitoring
demonstrated no difference between all-cause mortality and car-
diovascular mortality when compared with conventional office
follow- up, but did demonstrate a reduction in all-cause mortality
for those trails that used daily verifications of transmission [54].
A later meta-analysis of 11 RCTs showed that remotemonitoring
reduced overall visits but increased unplanned hospital and ED
visits. Survival was similar but remote monitoring appeared to
reduce costs by 15–50% [55].

Invasive monitoring is not limited to ICDs. Rizema et al.
demonstrated in a small 40-person cohort that remote monitoring
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of left atrial filling pressure was safe and effective in physician-
directed patient self-management of HF [56]. In 2011, Abraham
et al. published the CHAMPION trial that used a wireless,
battery-less radiofrequency sensor that measured pulmonary ar-
tery pressures. The authors demonstrated a reduction in cardiac
hospitalizations of 37% over the study period [57]. A 2016 up-
date to the trial showed that these effects were long term and
access to device data in the previous control group improved
HF hospitalization rates by 48% [58]. A post hoc analysis of
the initial study demonstrated a 50% reduction in hospitalizations
for those with preserved ejection fraction [59].

The COMPASS-HF trail examined an implantable device
that monitors right ventricular pressures and estimated pulmo-
nary artery diastolic pressure, as well as other hemodynamic
measurements. The intervention group had a 21% reduction in
rate of HF events but this was not statistically significant [60].

These studies may support continuous monitoring of car-
diopulmonary pressures, especially in patients with preserved
ejection fraction for which there are limited interventions [61].
Criticism of these studies includes the lack of standardization
of medication interventions, which were at the discretion of
the physician responding to the telemonitoring system [48].

ML has also been applied to telemonitoring data.
Motrazavi et al. demonstrated that when using data from a
previously published telemonitoring study, ML performed
better than some standard statistical techniques. ML predicted
30-day all-cause mortality with a 17.8% improvement over
logistic regression and improved prediction of admissions
for HF by 24.9% [62]. Further work is expected to yield im-
proved methods for prediction of adverse outcomes using
these advanced software technologies.

Expanding Data Sources

Technological advancements in the twenty-first century have led
to a growth of Mobile Health (mHealth) devices, portable tech-
nologies that allow powerful health monitoring in small foot-
prints [61, 63]. mHealth devices are anticipated to have a major
impact on the global delivery of healthcare [64], and integrated
data generated by the mHealth revolution could play significant
roles in the future of reducing HF readmissions.

The vast majority of Americans own smart phones [65], and
with these have come a wealth of cardiovascular health mobile
phone applications that can integrate smartphone sensors tomon-
itor activity and aid in medication adherence [66]. Mobile phone
developers are integrating health records from multiple health
systems into their applications so patients have concise medical
records on their mobile device [67], and mobile frameworks
allow smartphone and wearable sensory data integration into
research and health-related software [66, 68].

In addition to software, a number of mHealth devices exist on
the market that focus specifically on cardiovascular health.

Smartphones can be used for arrhythmia detection where con-
nected devices can generate complete sets of vital signs and
hand-held ultrasound can be utilized for echocardiography [69].
These devices have even been used to identify onset of atrial
fibrillation and provide support for ED cardioversion [70].
Single-lead ECG monitors are available as phone adaptors,
patches, and on watches which connect to mobile devices via
bluetooth [69, 71, 72].

Physical activity as measured by actinography has been
shown to have independent predictive value for morbidity
and mortality in patients with HF and in general was associ-
ated with higher health-related quality of life [73]. Both pa-
tients and providers are including the application of wearable
devices with activity monitoring in their management [66],
and some of these devices record similar measurements that
could be useful in HF care [74, 75].

It is also known that medication nonadherence is associated
with readmissions and mortality in HF [76], and many HF pa-
tients forget to take their medications [77]. There have been
many attempts at electronic solutions to medication adherence
with mixed results [78]. Murray et al. were able to demonstrate
improved adherence to medications via a pharmacist-led inter-
vention that was measured by electronic monitors in prescription
container lids. However, the digital health tool was not the inter-
vention, and the positive effects of pharmacy-led methods re-
duced after the intervention ended [79]. Volpp et al. studied the
effects of electronic pill bottles on medication noncompliance in
survivors of acute myocardial infarction and found no difference
in medication adherence or readmissions [80].

While many mHealth devices may hold future potential for
application in the management of HF, some have been designed
specifically for this purpose. The MUSE clinical system is a
noninvasive monitoring devise that measures heart rate, respira-
tory rate, body impedance, posture, and overall activity [81]. The
MUSIC trial demonstrated 65% sensitivity and 90% specificity
for identification of a HF event with rehospitalization, with a
false positive rate of 0.7 per year. However, the device had a high
failure rate [82]. The CoVA necklace is a connected device under
development which may be able to monitor thoracic fluid index,
heart rate variability, and respiratory rate which may improve
management of HF [69]. The Cova Monitoring System 2 was
recently cleared by the FDA to cover stroke volume, cardiac
output, and single-wave ECG [83, 84].

The VitalConnect [85] biosensor was used in conjunction
with analytics software to study one hundred subjects from 4
US veterans’ affairs hospitals with HF for 3 months. The
system had a sensitivity of 84.2% and a specificity of 85.9%
for the prediction of readmission [86, 87].

Finally, The ReDS™ system [88] is a noninvasive vest that
measures a patient’s fluids status through remote dielectric sens-
ing [89]. A longitudinal study of 50 patients in Israel demonstrat-
ed a reduction in hospital admissions with use of the device and
an increase in readmissions once the study period ended [90].
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While the popularity of mHealth devices continues to grow,
questions remain about the evidence to support their use clinical-
ly, what factors maximize their efficacy, and when and how their
use should be initiated [61]. However, the future of
telemonitoring will require rapid access to data with information
returning to the patient allowing for self-empowered interven-
tions [91]. As technologies improve future devices may require
less physician intervention and allow increased patient-drive
management [91]. We anticipate that devices like these will be-
come more integrated into the technology-driven healthcare en-
vironment and will have a larger role to play in the management
of HF.

Conclusion

The application of health information technology and data sci-
ence in the management of heart failure is developing at a rapid
pace. Novel decision instruments, ML, and advanced statistical
techniques combined with ubiquitous mobile networks and ever
smaller complexwearable devices are expanding the possibilities
of ED, inpatient, and outpatient management.

Further research should focus on developing improved pre-
dictive models and decision instruments to aid in characterizing
HF patients. Improvements in interoperability and future devices
could add additional data sources to predictive models, possibly
linking the various stages of HF care, thus improving transitions
and reducing need for repeat admission. This could ultimately
lead to improved quality of care and reduced overall costs.
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