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Abstract
Purpose of Review Treatment for alopecia remains limited in terms of medication side effect profile, patient adherence to 
treatment, and clinical response. We sought to review the literature for burgeoning therapies affecting hair growth through 
regulation of paracrine signaling and its effect on dermal papilla cells.
Recent Findings Newly proposed treatments for alopecia, including stem cell therapy derived from adipose tissue, hair fol-
licles, umbilical cord blood, or bone marrow, and extracellular vesicles, such as exosomes, are tied to hair follicle regulation 
and regeneration through paracrine factor signaling, specifically through the Wnt/β-catenin signaling pathway.
Summary Recent advances in hair follicle regeneration and regulation, including stem cell therapy or treatment with 
exosomes, modulate alopecia through dermal papilla cell regulation and promoting hair follicle growth through anagen 
phase induction. Randomized, high-quality studies are needed to determine safety, efficacy, and appropriate treatment pro-
tocols using these newest therapies.
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Introduction

Hair loss poses significant psychosocial sequelae in both 
men and women. The desire to pursue prevention and treat-
ment is evident in the global valuation of the alopecia mar-
ket, which was valued above $9.08 billion in 2019 and is 
expected to reach over $13.65 billion by 2027 [1]. Andro-
genetic alopecia (AGA) represents a vast majority of hair 

loss cases, affecting around 50 million men and 30 million 
women in the USA alone [2].

The most common types of non-scarring alopecia 
include involutional alopecia, that which occurs with age, 
AGA, telogen effluvium, and alopecia areata (AA). AGA, 
otherwise known as male or female pattern hair loss, is 
a hereditary condition causing progressive thinning of 
the hair secondary to increased androgen receptors and 
5-alpha reductase resulting in diminution/miniaturization 
of dermal papilla cells (DPCs), which are mesenchymal 
stem cells of the hair follicle and play a major role in 
hair follicle morphogenesis and regeneration. A defect in 
conversion from stem cell to progenitor cell phenotype 
may play a role in patients suffering from AGA, as the 
amount of hair follicle stem cells remains stable while 
the number of proliferating progenitor cells decreases [3]. 
Telogen effluvium can be acute or chronic and most com-
monly secondary to acute severe illness, surgery, iron defi-
ciency, thyroid pathology, malnutrition, chronic disease, 
and medications, such as oral contraceptives and lithium 
4. AA is autoimmune inflammatory in etiology and most 
often results in non-scarring patches of hair loss, but may 
be diffuse in nature.
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Hair follicles each have their own lifecycle divided into 
three phases occurring simultaneously: anagen, catagen, and 
telogen. The anagen phase is the active phase, during which 
time the cells within the hair bulb divide rapidly resulting 
in hair growth, which lasts 2–6 years, and 85% of hair on 
the head is in this phase. The catagen phase is a transitional 
phase that lasts 2–3 weeks wherein hair growth halts, as its 
blood supply is disconnected. The telogen phase is a resting 
phase lasting 2–3 months during which time the hair sheds 
as new hair replaces it within 2 weeks. Hair is in telogen for 
10–15% of one’s life.

When evaluating patients with alopecia, it is important to 
obtain from the patient a thorough family and medical his-
tory, medication list, hair styling practices, hormonal imbal-
ance history, menstrual cycle history, and menopausal symp-
toms. Depending upon history and presenting symptoms, 
laboratory work-up may be warranted, including hormonal 
profile, thyroid function testing, iron panels, vitamin D, and 
possibly skin biopsy to rule out underlying pathology as a 
cause for alopecia, such as polycystic ovarian syndrome, 
thyroid disease, or scarring alopecia.

Only two FDA-approved medications for hair loss exist: 
minoxidil and finasteride. These medications can be admin-
istered either topically or orally; however, both therapies 
may result in significant adverse effects, which may limit 
use or adherence to therapy. Although non-pharmacologic 
therapies, such as platelet-rich plasma and low-level laser 
therapy, may prove beneficial in the treatment of hair loss, 
the quality of evidence to support the use of these treatments 
is considered to be generally low [4, 5].

Emerging injectable therapies, such as stem cells and 
exosomes, are proposed to stimulate hair follicle regenera-
tion and growth through the activation of specific signal-
ing pathways, such as Wnt-mediating signaling. Herein, we 
will review these recent advances in hair restoration therapy 
and their proposed mechanism of action through paracrine 
signaling.

Importance of Wnt‑Mediated Signaling 
in Hair Growth

The Wnt signaling pathway is a primary player in the regula-
tion of hair morphogenesis, cycling, and regeneration, pro-
moting hair follicle growth by advancing the hair follicle 
from telogen to anagen phase and increasing hair-related 
and anagen gene expression [6, 7, 8••, 9–14, 14•, 16–19]. 
Various Wnt proteins promote hair cycling and regenera-
tion through the activation of β-catenin signaling, thereby 
inducing anagen and new hair follicles [8••, 17, 20–23]. 
Wnt-mediated signaling also plays a significant role in 
the maintenance and proliferation of stem cell reservoirs; 

Wnt/β-catenin signaling is paramount to the growth and 
maintenance of DPCs [10, 24, 25].

Circulating androgens have been proposed to inhibit 
canonical Wnt-β-catenin pathway causing hair loss in AGA 
[26]. Downregulated genes in AGA belong to that of the 
Wnt and TGF-β signaling pathways, further implicating 
the importance of the Wnt signaling pathway in alopecia 
[27]. Furthermore, the aging process causes a gradual loss 
of sex hormones, by which the hair follicle is negatively 
impacted. This is perhaps best realized in menopausal 
females, wherein substantial decreases in hair density and 
diameter are seen, as is decreased anagen phase and transi-
tion to greater amounts of finer vellus hair, likely secondary 
to lack of ovarian estrogen production [28–30]. Likewise, 
when treating osteoporosis in menopausal women, the pri-
mary therapies induce osteoblast differentiation from bone 
marrow stem cells via Wnt/ β-catenin signaling, an element 
necessitating further consideration when evaluating response 
of alopecia in menopausal women during treatment with 
these therapies [31, 32].

Newly proposed treatments for alopecia, including stem 
cell therapy and exosomes, are tied to hair follicle regulation 
and regeneration through paracrine factor signaling, specifi-
cally affecting the Wnt/β-catenin pathway, and may prove 
to be exciting treatment options for patients with alopecia.

Stem Cell Therapy

Stem cells secrete molecules, such as nucleic acids, extracel-
lular vesicles, and proteins, which play a role in paracrine 
factor signaling, thereby regulating hair follicle cycles and 
regeneration [15•, 33, 34]. Stem cells may be derived from 
adipose tissue, bone marrow, hair follicles, or umbilical cord 
blood [19, 35–38]. Patients who underwent one treatment of 
intradermal injection of autologous stem cells, either from 
follicular or bone marrow-derived stem cells, demonstrated 
significant improvement in both AA and AGA [36]. Further-
more, stem cells derived from hair follicles have been shown 
to increase hair density in patients with AGA [37].

Adipose-derived stem cells (ADSCs) are mesenchymal 
stem cells (MSCs) found in subcutaneous adipose tissue. 
MSC-derived signaling and growth factors stimulate hair 
follicle development through β-catenin 39. ADSCs increase 
proliferation of DPCs and have been shown to decrease 
healing time in transplant-induced wounds, shorten telo-
gen phase, and improve hair growth following hair trans-
plantation [35, 39–42]. When combined with micronee-
dling, ADSCs increased both hair density and thickness in 
women [43]. Response to ADSCs may be augmented by 
its surrounding environment. For example, when placed in 
conditioned medium (CM), a nutrient-rich medium with 
signaling molecules including nucleic acids, extracellular 
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vesicles, and proteins from stem cells, ADSCs have been 
shown to improve hair growth and hair numbers in both men 
and women, increase anagen hair rate and human follicular 
cell proliferation, improve hair growth, and protect human 
DPCs against cytotoxic injury by androgen and reactive 
oxygen species [44–50]. Additionally, when combined with 
nappage mesotherapy, multiple treatments with ADSC-CM 
demonstrated increased hair numbers without reported com-
plications [46]. Similarly, adipose-derived stromal vascular 
cells demonstrated improvement in hair thickness in 19/20 
patients and increase in hair density and decrease in hair-pull 
test scores in 18/20 patients, while adipose-derived regen-
erative cells increased mean hair counts following injection 
into the subcutaneous scalp in patients with AGA [51, 52].

Bu et al. through the use of CK15 expression, demon-
strated that hair follicle cells can be differentiated from 
umbilical cord blood MSCs [53]. Human umbilical cord 
blood–derived MSCs prevent hair regression resulting from 
dexamethasone in mouse catagen induction models and 
increase proliferation of human DPCs [54].

Although reported side effects have been minimal when 
using stem cells, with the exception of procedural pain 
affecting patient compliance, CM preparation and contents 
vary widely, and degradation of CM factors may require 
both frequent administration and large quantities for effect 
thereby limiting clinical application [47, 55, 56].

Exosome Therapy

Exosomes are 30–150-nm extracellular vesicles responsible 
for transmission of transcription factors, cytokines, mRNA, 
and microRNA [57–60]. Exosomes transport Wnt proteins, 
which induce activation of β-catenin signaling pathways 
[7, 13, 14, 61]. Studies have shown that exosomes promote 
hair follicle stem cell proliferation and differentiation and 
cell migration and angiogenesis and aid in tissue repair [9, 
19, 62–65].

Exosomes derived from MSCs increase proliferation, 
migration, and growth factor expression and release in 
DPCs66 and, thus, have been evaluated for their role in hair 
follicle regeneration and growth. MSC-derived extracellu-
lar vesicles both activate DPC hair inductivity and regulate 
DPC proliferation and have been shown to convert hair fol-
licles from telogen to anagen phase [61, 64, 66].

DPC-derived exosomes may augment hair follicle regen-
eration through regulation of hair follicle growth via par-
acrine mechanisms [64, 67, 68]. DPC-derived exosomes 
regulate growth and development of hair follicles through 
proliferation of DPCs, hair matrix cells, and outer root 
sheath cells and increase growth factors in DPCs [67, 69, 
70]. Additionally, DPC-derived exosomes have also been 
shown to prolong anagen phase and increase hair shaft elon-
gation [67, 69, 70]. For example, human DP exosomes, when 
injected into mouse skin, promote hair growth through an 
induction of β-catenin and Shh levels [67].

Although there are no published clinical trials evaluating 
exosomes in hair restoration, exosomes have been shown to 
stimulate hair follicle proliferation with an increased hair 
density and thickness in patients with AGA after 12 weeks 
of treatment without reported serious adverse reactions 
[71]. Although no significant adverse events are cited, there 
are potential risks of transferring genetic information and 
immune responses [72–74]. See Figs. 1, 2, and 3 for clinical 
examples of patients treated with exosomes.

Gene Engineering

Wnt protein expression can be modified to positively impact 
the hair cycle. CM derived from gene-engineered retroviral-
mediated Wnt1a-overexpressing bone marrow MSCs has 
been shown to result in hair regrowth through effect on DPCs 
when injected intradermally, while Wnt7a-MSC-CM induces 
more hair follicle regeneration when compared to MSC-CM, 
further demonstrating the importance of Wnt signaling in 
hair growth [19, 75, 76].

Fig. 1  5-ml exosomes at 
6 months post injection
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Choi et al. introduced genes of three trichogenic platelet-
derived growth factor-A, SOX2, and β-catenin to ADSCs 
and demonstrated that these ADSCs with trichogenic factors 
were similar to DPCs in terms of mRNA expression and 
have enhanced hair-regenerative potential, as they accelerate 
the telogen to anagen transition [77].

Conclusion

Recent advances in hair follicle regeneration and regulation, 
including stem cell therapy or treatment with exosomes, 
modulate alopecia through DPC regulation and promoting 
hair follicle growth through anagen phase induction. Wnt-
mediating signaling seems to play an important role in the 
response of DPCs to stem cell and exosomal therapies. Bur-
geoning therapies using stem cells or exosomes for alope-
cia still require randomized, double-blinded, high-quality 
human studies with adequate power to determine safety, effi-
cacy, and appropriate treatment protocols. Further data col-
lection is also needed to ensure appropriate preparation and 

administration of product and gather information pertaining 
to side effects and expected treatment response in patients.
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