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Abstract
Purpose of Review This review highlights our current understanding of the impact of unilateral hearing loss and single-sided
deafness in children, offering insight into diagnosis and management.
Recent Findings Children with unilateral hearing loss develop an aural preference toward their better hearing ear, leading to
difficulties with spatial navigation, balance, speech/language skills, and quality of life when compared with typical hearing peers.
Cochlear nerve aplasia and cytomegalovirus are among the most common etiologies for unilateral hearing loss, which has
important implications for treatment. Hearing rehabilitation relies upon early correction of hearing loss with an appropriate
auditory prosthesis. In children with single-sided deafness, cochlear implants are the only intervention that potentially offers
restoration of bilateral hearing, and studies continue to refine candidacy protocols.
Summary Unilateral hearing loss has important consequences for children. Recent studies emphasize the importance of early
diagnosis and investigate ways to appropriately restore bilateral hearing in these children.

Keywords Single-sided deafness . Unilateral hearing loss . Development . Bilateral/binaural/spatial hearing . Etiology of hearing
loss . Cochlear implant

Introduction

Unilateral hearing loss (UHL) is relatively common, affecting
approximately 1 of every 2000 newborns and at least 3% of
school-aged children [1–3]. Previous studies have found that
children with UHL have higher rates of grade failure [4] and
lower scores on speech/language and intelligence quotient testing
[5–7] when compared with children with typical hearing.

There has been growing interest in improving our manage-
ment of these children [8]. Studying the impact of UHL can be
challenging, as clinicians and researchers have often found
themselves relying on testing measures that were developed
with bilateral hearing loss in mind. In recent years, hearing
health providers have gained better understanding of the
unique challenges faced by children who have asymmetric
access to sound [9, 10]. For example, children spend much
of their day in the complex listening environment of the class-
room, which often involves group conversations and back-
ground noise; therefore, educators are being encouraged to
improve auditory access for children with UHL through stra-
tegic seating, visual aids, and remote microphone systems
[11]. Hearing health providers have also gained better appre-
ciation of the various etiologies of UHL due to improvements
in the utilization of brain and temporal bone imaging [12] and
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testing for congenital cytomelagovirus (CMV) [13]. More
rarely, genetic testing may sometimes be helpful, particularly
in children suspected of having syndromic hearing loss such
asWaardenburg syndrome [14]. There are also reports of chil-
dren with GJB2 mutations presenting with UHL [15]. It is
probably reasonable to consider genetic evaluation in children
who have normal imaging and do not have congenital CMV.

This increased awareness has promoted efforts to provide
bilateral hearing to children with UHL through hearing de-
vices. Children with single-sided deafness (SSD) have
severe-to-profound UHL with unaidable hearing in the affect-
ed ear. Cochlear implants have been provided to children with
SSDwith reported benefits [16–19], but studies are ongoing to
refine candidacy criteria, such as age in children with congen-
ital loss [20]. This review summarizes recent papers that high-
light our current understanding regarding the impact of UHL
loss and offer insight into management, with particular em-
phasis on early diagnosis and prompt restoration of bilateral
hearing as soon as possible using the most appropriate inter-
vention and/or device.

The Consequences of Unilateral Hearing Loss

Studies have suggested that UHL negatively impacts spatial
navigation, balance function, speech/language skills, and
quality of life [21]. To better understand why this occurs, it
is helpful to discuss the importance of binaural hearing in
children [22, 23]. Binaural hearing provides us with a sense
of the world in all 360 degrees around us. Time and level
differences between the two ears are detected in the auditory
brainstem and midbrain and used to code the spatial location
of the sound source [24]. Children with monaural hearing do
not have access to these binaural cues, and thus cannot make
use of spatial hearing to distinguish between multiple sounds
in the environment by their distinct spatial locations. Their
ability to localize sounds is particularly poor when the sound
comes from the side of the poorer hearing ear [25]. In addition,
children with monaural or asymmetric hearing loss rely pri-
marily on their better hearing ear, which leads to an aural
preference for that side mediated by abnormal strengthening
of auditory pathways [26, 27]. In effect, this creates a large
“head shadow” which might improve signal-to-noise ratios
when the target sound is facing the better ear but has the
opposite effect (poorer signal-to-noise) when the target sound
is facing the more impaired ear.

The importance of spatial hearing in development is shown
by the deficits experienced by children with UHL who do not
have access to accurate binaural cues. Without normal spatial
hearing in early life, children with UHL show difficulties dis-
criminating speech in noise, understanding speech when it is not
directed toward their better-hearing ear, and navigating group
conversations [28]. The over-representation of the hearing ear

within the auditory system during development, a condition
known as “aural preference syndrome” [29], may occur to sup-
port speech and language development but simultaneously dete-
riorates spatial hearing and the potential to restore it later [30].

Difficulties with spatial navigation occur due to UHL alone;
however, these problems are often compounded by the fact that
children with UHL have higher rates of vestibular and balance
impairment [31]. Children with hearing loss and vestibular im-
pairment demonstrate poorer balance skills than typically hearing
peers [32]. A comparison of 14 children with UHL and 14 chil-
dren with typical hearing found that the children with hearing
loss demonstrated significantly lower scores on the Bruininks-
Oseretsky Test of Motor Proficiency-2 (BOT-2) [33]. The BOT-
2 is a standardized test of both static and dynamic balance func-
tion, comparing a child’s performance with age-standardized
norms [34]. In addition, assessment of vestibular end-organ func-
tion (otoliths and horizontal canal) in children with UHL found
that more than half of the children demonstrated functional ab-
normality [35]. The dysfunction was more commonly associated
with the worse hearing ear.

Without the benefit of binaural cues, listening tasks may re-
quire greater mental effort. A meta-analysis found that children
with UHL demonstrated lower scores on both the Social and
School domains of the PedsQL, a well-validated generic quality
of life instrument for children, when compared with typical hear-
ing peers [36]. Researchers also evaluated quality of life using an
instrument developed for youthwith hearing loss, the HEAR-QL
[37]. They found that both children with unilateral sensorineural
hearing loss (USNHL) and those with bilateral loss reported a
worse quality of life than children with typical hearing on
HEAR-QL [38]. While there was not a statistically significant
difference between children with unilateral versus bilateral hear-
ing loss, the authors note that the mean HEAR-QL score was >
10 points higher (better) for children aged 7 to 12 years with
USNHL when compared with children in the same age group
with bilateral loss; this difference was not statistically significant,
possibly due to limited sample size.

Children with UHL also seem to experience difficulties with
auditory, social, and behavioral tasks. These differences can be
detected in early childhood. Using parent questionnaires,
Kishon-Rabin found that 21% of children with UHL (median
age 9.4 months) demonstrated delays in early auditory skills
and 41% demonstrated delays in preverbal vocalizations when
comparedwith normal hearing peers [39]. Fitzpatrick et al. found
that children with congenital UHL performed more poorly than
children with typical hearing in functional auditory listening and
in receptive and expressive language skills at age 48months [40].
In a separate study, children with UHL were also found to have
lower functional auditory skills on both the Parents’ Evaluation
of Aural/Oral performance of Children (PEACH) and the
Teachers’ Evaluation of Aural/Oral performance of Children
(TEACH) when compared with normative means for typically
hearing peers [41].
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Advances in Diagnostic Testing

Universal newborn hearing screening has decreased the aver-
age age at diagnosis of UHL significantly [42]. In 2013, a
prospective cohort study spanning 20 years at Children’s
Hospital of Eastern Ontario found median age at diagnosis
of UHL dropped from 5.3 to 0.3 years after implementation
of hearing screening, but it also raised some concern that chil-
dren with UHL were less likely to undergo early trial of am-
plification than children with mild bilateral hearing loss [43].
In 2017, a follow-up study suggested a possible shift in prac-
tice, perhaps due to increasing awareness of the benefit of
binaural hearing and evidence of reduced ability to restore
hearing from the poorer ear after a long period of unilateral
hearing [44]. In the more recent study, more than 70% of
children with UHL eventually received a recommendation
for amplification [45]. Importantly, the study also highlighted
the importance of monitoring hearing loss over time as 42% of
children with UHL demonstrated some degree of progression,
with 17% eventually developing bilateral hearing loss [45].
Progression of hearing loss likely depends on the etiology.
A study of 128 children with UHL found that 33% demon-
strated progression and that children with temporal bone
anomalies, including cochlear nerve canal stenosis, may be
at greater risk of hearing loss progression in the impaired ear
than children with normal temporal bone imaging [46].
Children with CMV-associated UHL are at risk of progressive
hearing loss in both ears. One recent study found that 46% of
children with UHL associated with symptomatic CMV devel-
oped hearing loss in their contralateral ear [47].

Asmanagement options expand, increasing importance has
been placed on determining the underlying etiology of hearing
loss [48], as etiology may have important implications for
prognosis and treatment. Studies have consistently found tem-
poral bone imaging to be of high yield in children with UHL,
with approximately 30 to 50% of children having radiographic
abnormalities of clinical significance [49–51]. One of the most
common abnormalities is cochlear nerve hypoplasia/aplasia,
often associated with cochlear nerve canal stenosis and other
cochleovestibular anomalies; cochlear nerve canal width has
been found to strongly correlate with cochlear nerve status,
such that a width < 1.7 mm identifies cochlear nerve deficien-
cy with 84% sensitivity and 98% specificity [52]. A recent
study compared CT temporal bone imaging of children with
unilateral cochlear nerve canal stenosis (< 1.0 mm) and found
both the ipsilateral and contralateral cochleovestibular appa-
ratus to be smaller in size than normal controls [53]. The
presence of cochlear nerve hypoplasia/aplasia has important
implications for auditory rehabilitation. Children with cochle-
ar nerve canal stenosis have been found to have impaired
speech discrimination, independent of degree of hearing loss
[54], and children with cochlear nerve hypoplasia have poor
outcomes with cochlear implantation [55]. Otolaryngologists

must obtain appropriate imaging to confirm the status of
the nerve prior to counseling families about the option
of cochlear implantation.

Some controversy remains regarding the role of magnetic
resonance imaging (MRI) versus non-enhanced high-resolution
computed tomography (CT) in diagnostic imaging. A recent
meta-analysis by Ropers et al. based at Leiden University
Medical Center in the Netherlands reported the pooled preva-
lence of inner ear abnormalities on imaging in children with
USNHL [56]. The authors found the pooled yield of radiographic
abnormalities to be 37% (95% CI, 25–48%) for CT and 35%
(95% CI, 22–49%) for MRI; cochleovestibular abnormalities
were found with pooled frequency of 19% (95% CI, 14–25%)
for CT and 16% (95%CI, 7–25%) forMRI,while cochlear nerve
deficiency or cochlear nerve canal stenosis was found with
pooled frequency of 16% (95% CI, 3–29%) on MRI and 44%
(95% CI, 36–53%) on CT, respectively.

A multi-institutional study compared the diagnostic yield
of CT and MRI in 219 children with USNHL. The authors
found imaging abnormalities in 42.7% of children who
underwent MRI compared with 36.7% of children who
underwent CT; importantly, they found no significant differ-
ence in diagnostic yield among the 65 children who
underwent both imaging modalities [12]. These studies sug-
gest little difference in yield of imaging modality for some
anomalies, lending support to the idea that surgeon preference
and resource availability often play a role in determining
which type of imaging is performed. However, MRI is the
only modality that can definitively assess the status of the
cochlear nerve. MRI may also detect imaging findings suspi-
cious for CMV, such as temporal lobe cysts or white matter
changes [57]. We have outlined an approach that includes
MRI for all children being assessed for cochlear implant can-
didacy with CT being added for cases at risk of being more
surgically challenging [58].

Congenital CMV is becoming well recognized as an etiology
of UHL because USNHL predominates in children with hearing
loss associatedwith the “asymptomatic” form of the disease [59].
Children with CMV-associated UHL are at risk of progressive
loss and should be monitored over time [60]. The gold standard
for diagnosis of congenital CMV is through PCR testing of urine
to detect CMV DNA within the first 3 weeks of life [61], so
providers must have a high index of suspicion very early in a
child’s life. Saliva PCR testing can also be performed as this may
be easier to obtain from a newborn; however, a positive result
must be confirmed with urine PCR due to risk of false positive
result from CMV present in breastmilk.

Some institutions have initiated “hearing-targeted” CMV
testing, in which a newborn who refers on hearing screen will
then undergo CMV PCR testing if they are < 3 weeks of age
[62]. The Utah Department of Health was the first to publish
results from its first 24 months of targeted screening, diagnos-
ing 14 newborns with asymptomatic CMV out of 509 infants
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who never passed a hearing screen [63]. Importantly, this
study found that a statewide targeted screening program is
feasible. There are currently hospitals in 18 states participating
in targeted CMV screening [64].

Concerns have been raised that targeted screening will miss
children with asymptomatic congenital CMV who have nor-
mal hearing at birth and develop hearing loss in a delayed
fashion [65]. Yale New Haven Health System recently pub-
lished their experience with targeted screening and found it to
be low yield, only identifying 3 newborns with positive saliva
PCR testing out of 10,964 live births and 171 referred hearing
screens [66]. One of the newborns was found to be negative
on confirmatory testing. Based on these concerns, the
Province of Ontario became the first region in North
America to initiate universal newborn screening for congenital
CMV based upon dried blood spot PCR. While the sensitivity
of dried blood spot PCR is lower than that of urine or saliva
PCR, it is more feasible to carry out at the population level
because it is already being collected for other forms of new-
born screening. The results from this program will be moni-
tored closely over the coming years.

Treatment Recommendations

Hearing rehabilitation in children with UHL centers upon ear-
ly identification of hearing loss and correction of the asymme-
try of hearing by utilizing the appropriate auditory prosthesis.
Table 1 lists the various types of auditory prostheses available,
and the indication for usage.

Early recognition is particularly important for children with
congenital hearing loss who are at risk of developing aural
preference that will be resistant to treatment over time [67].
For example, children who receive conventional hearing aids
later in childhood do not perceive the same bilateral benefit as
those who were fit at a younger age [68]. In similar fashion,
children with bilateral hearing loss who are implanted sequen-
tially with long delay continue to demonstrate preference to-
ward the first-implanted ear in the auditory cortices years after
they receive their second implant [69].

In 2017, Appachi et al. published a systematic review of
studies evaluating the use of auditory prostheses among chil-
dren with UHL [70]. The review focused on the evidence for
frequency modulating (FM) systems, conventional hearing
aids, CROS devices, and osseointegrated bone conduction
implants. While still limited, there is evidence to support the
use of osseointegrated bone conduction implants in children
with moderate to profound USNHL; osseointegrated implants
were shown to improve objective audiometric outcomes in all
seven studies that were reviewed, including pure-tone aver-
ages, speech reception thresholds, and Hearing in Noise Test
(HINT) scores. For the non-surgical devices, FM systems
seem to offer an educational benefit in the classroom.
Results were more mixed for the other devices, with conven-
tional aids perhaps showing some benefit in functional mea-
sures among children who are candidates. Though they may
confer benefit, percutaneous osseointegrated bone conduction
implants are also associated with frequent complications in
children related to skin overgrowth, infection, and
osseointegration failure, so families should be counseled ac-
cordingly [71, 72].

Table 1 Indications for auditory
prosthesis for pediatric unilateral
hearing loss

Type of hearing loss Auditory prostheses

- Conductive - Behind-the-ear hearing aid

- Bone conduction device

o Non-implanted (band or adhesive-retained)

o Osseointegrated implant

▪ Percutaneous

▪ Passive transcutaneous
▪ Active transcutaneous

- Sensorineural (mild-to-moderately severe) - Behind-the-ear hearing aid

- Sensorineural (single-sided deafness) - Contralateral routing of signal (CROS) device

- Bone conduction device

o Non-implanted (band or adhesive-retained)

o Osseointegrated implant

▪ Percutaneous

▪ Passive transcutaneous
▪ Active transcutaneous

- Cochlear implant (the only prosthesis that
allows for bilateral access to sound)
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For children with SSD, cochlear implantation offers the
only means for restoration of binaural hearing. Several studies
on this subject have been carried out at The Hospital for Sick
Children in Toronto, Ontario. Polonenko et al. demonstrated a
correction of aural preference and restoration of bilateral au-
ditory input to the appropriate cortices among five fairly ho-
mogenous single-sided implant candidates who were 3 years
of age and younger at implantation [73]. Ganek et al. evaluat-
ed datalogs from follow-up clinical audiology appointments
for 23 children who had received an implant with limited
durations of SSD and found an average usage rate of 6.22 h
per day. There were no significant differences in implant use
among this group of children and adolescents based upon age
or duration of implant experience [74].

At a separate institution, the University of Wuerzburg in
Germany, Ehrmann-Mueller et al. evaluated pre- and post-
implantation audiometric measures including speech-in-
noise testing and sound localization tasks among 7 children
whowere implanted between the ages of 3 and 16 years. All of
the children demonstrated significant hearing improvements
and were consistent device users [75]. A limitation of this
study was that the etiology and duration of unilateral deafness
were not known for many of the children.

Deep et al. at the NewYork University School of Medicine
recently published a case series of 14 patients who received an
implant for SSD [76]. The mean duration of deafness prior to
implantation was 3 years. In 8 patients with at least 1-year
post-CI follow-up, the mean word recognition score in the
CI-only condition was 56%, which was a significant improve-
ment from baseline. In addition, the patients scored as well or
better with the CI-on versus CI-off in all speech-in-noise con-
ditions, indicating limited to no interference from the CI.

Though there are studies supporting the benefit of cochlear
implantation in children with SSD, it remains important to
carefully screen potential candidates and counsel families re-
garding appropriate risks and expectations of surgery. A ret-
rospective analysis of all potential cochlear implant candidates
with SSD at The Hospital for Sick Children found that 61%
ultimately did not receive an implant. Thirty percent were
excluded due to cochlear nerve aplasia, 29% were not im-
planted based upon familial preference to avoid surgery, and
the remaining 2% were not candidates based upon hearing
thresholds or duration of deafness [77]. Children who
underwent implantation were more likely to have been diag-
nosed with congenital CMV, with its recognized risk for pro-
gressive bilateral hearing loss, or have experienced sudden
loss of hearing.

Conclusion

Recent studies provide further support for the consequences of
UHL on many aspects of childhood development, including

spatial awareness, speech/language skills, and quality of life.
Various factors, such as characteristics of hearing loss, under-
lying etiology and familial preference, all play a role in deter-
mining appropriate methods for evaluation and management
of this condition.
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