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Abstract
Purpose of Review Simulation devices and training protocols are being developed across all surgical fields to teach trainees and
optimize learning to improve performance when operating on live patients. This article presents a review of the available
literature specific to training and simulation in endoscopic endonasal skull base surgery.
Recent Findings A systematic review of the literature was performed on simulation and training in endoscopic endonasal skull
base surgery. The level of evidence, simulation fidelity, and the level of learning effectiveness (Kirkpatrick scale) were assessed
for each available study. Thirty studies were included in the review. One study describes a validated training program for training
in skull base surgery. The other included studies of present simulation training using cadaveric models, 3D-printed models,
virtual reality trainers, or a combination of these modalities. The overall level of learning effectiveness and level of evidence from
these studies are low.
Summary The level of evidence and fidelity of simulators in endoscopic skull base surgery has improved over the years, but
high-quality studies are needed to demonstrate the effectiveness of these learning methods on surgical training.
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Introduction

Cranial base surgery is constantly evolving, with improved
understanding of the pathologies involved, introduction of
new technologies, and development of new surgical tech-
niques. Training surgeons for the operative management of
these pathologies is a challenge as these procedures are rare,
complex, and potentially high-risk [1, 2]. With new con-
straints on working hours, patient safety concerns, and current
work load, training opportunities are limited. As an adjunct to
traditional surgical teaching methods, new training strategies
and simulation models are being developed across all surgical

fields. An increasing body of literature supports simulation
and in 2008, the American Residency Review Committee
for Surgery mandated all surgical residency programs to facil-
itate skills acquisition through training laboratories [3, 4]. This
article presents a review of the literature on training strategies
and the use of surgical simulation models currently available
in endoscopic skull base surgery.

Methods

A systematic review of the published literature on training
methods and surgical simulation in cranial base surgery was
performed for the primary outcome. The MEDLINE and
Embase databases were searched for articles published be-
tween January 1st 1950 and November 5th 2019. Table 1
presents the MeSH terms that were used in the search strategy.
The bibliographies of identified articles were also reviewed
for additional relevant articles. Anatomical and radiological
studies were excluded if not performed as part of an educa-
tional or training protocol. After the search was completed,
study selection was performed by abstract review. Only arti-
cles published in English and French were included.
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The level of evidence for learning effectiveness of the in-
cluded studies was then classified according Kirkpatrick’s
training evaluation model (Fig. 1). Fidelity, which describes
the extent to which the appearance and generated behaviors of
the simulation reflect the ones in the actual setting, was graded
between high and low.

Results

Initial database search generated a total of 2405 studies. Title
screening for articles on simulation and training in endoscopic
endonasal surgery reduced this number to a total of 202 stud-
ies. Subsequent abstract review led to the inclusion of 34
articles for the final analysis. The selection process is outlined
in Fig. 2. The identified themes pertaining to training in cra-
nial base surgery were training program, learning of surgical
skills, and simulation of complications.

One article described a step-wise approach to skull base
surgery training over 5 levels based on the complexity of the
anatomy, the technical difficulty, the risk to neurovascular
structures, and the vascularity of the tumor [5•]. The authors
provided evidence for construct validity, as these levels corre-
late with clinical outcome.

When looking at simulation devices, two major
themes were identified: simulation and learning of en-
doscopic endonasal surgical skills and simulation of
complications.

For the simulation of surgical procedure and endoscopic
skills learning, several devices and modalities were identified
(Table 2). The modality and level of fidelity used in these
studies varied on the learning objective: initial learning of
endoscope and instrument handling was often taught with
low-cost trainer boxes supplemented with 3D-printed compo-
nents or egg shells that can simulate bone drilling [18, 21, 22,
24, 28, 33]. High fidelity simulation models were developed
for advanced surgical training of specific tasks. For example,
the chicken wing model covered by a trainer box was used for
learning of endoscopic neurovascular structure dissection [34,
36].

Several models have been developed to simulate an entire
endoscopic endonasal approach using either cadaveric
models, 3D-printed models, or virtual simulators.
Interestingly, the development and accessibility of 3D printing
have led to an increase in studies using this modality over the
last 3 years (see Table 2). This model eliminates the need for
cadaveric heads and their preparation and it can allow incor-
poration of variations to the experience such as presence of
tumors or anatomical variations. Similarly, virtual reality

Fig. 1 Kirkpatrick levels of
evidence

Table 1 Systematic review search strategy

Themes MeSH terms used in search strategy

1 Endoscopy, endoscope, skull base surgery, sinonasal, cranial base surgery.

2 Medical education, teaching, graduate education, residency.

3 Simulation training, patient simulation, interactive learning, computer simulation.
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simulators have the benefit of being customizable to a specific
task or case, and can also be used for otologic training.
Varshney et al. found improved performance (efficiency
measures—like distance traveled within the nasal cavity)
when a cohort of novice surgeons were trained with the
McGill Simulator for Endoscopic Sinus Surgery (MSESS)
[35]. Stephenson et al. used the PHACON sinus trainer and
compared training on the virtual reality trainer to traditional
study materials. In this randomized control trial, the authors
found improved psychomotor endoscopic skills and increased
confidence in the intervention group [33].

For the simulation of complications, two surgical situations
were identified: cerebrospinal fluid (CSF) leak and vascular
injury. Three studies investigated CSF leak repair simulation
and used a cadaveric model [10, 17, 36]. The goal of the
simulation for these studies was training for endoscopic wa-
tertight closure of skull base defects after the dural space is
pressure-infused with CSF-like fluids. All studies showed that
such training was feasible, but the educational outcomes that
were assessed were limited to Kirkpatrick levels I and II.

Simulation for vascular injury was assessed in 6 studies
[15, 19, 20, 23, 25]. Of these, two used the SIMONTsynthetic
sinusmodel (SinusModel OtorhinoNeuro Trainer) positioned
over the exposed cervical carotid artery of an anesthetized
sheep [23, 30]. The study by Padhye et al. was the only study
from this review that was found to assess the impact of train-
ing on medical outcomes (Kirkpatrick level IV - results). The
authors identified surgeons who had previously attended their
training course and investigated the outcomes after having had
a vascular injury in a live patient. They found that all 9 patients
treated with the technique taught at the course, the muscle
patch repair, had survived the event. The 4 other studies in-
vestigated knowledge acquisition in a carotid injury event on
perfusion-based models [15, 19, 20, 25]. Of these, 3 used a
cadaveric model connected to a pressure pump, and one used a
3D-printed connected to a pressure pump. These studies

included 5 to 37 participants and assessed satisfaction ques-
tionnaires as well at time to vascular control and the amount of
blood loss. They then compared the results between groups of
differently experienced surgeons and validated the model
based on increasing performance with experience.

Overall, 9 studies evaluated the Kirkpatrick level of
Reaction and 17 assessed Learning. One study assessed
Behavior changes, but only included 3 trainees in each group
[26] and one study assessed Results impact and had 9 partic-
ipants in its cohort [30]. The six remaining studies had no
measures for assessment of training.

Discussion

From a learning perspective, separating practice from per-
formance in the real environment is an expected part of
preparation in many fields other than medicine, such as
sports, music, and aviation. Training through simulation
provides the opportunity for trainees to practice and learn
in a controlled environment, without the possibility of
adverse consequences. Moreover, the current literature
suggests that simulation facilitates enhancement of psy-
chomotor skills, hand-eye coordination, and ambidextrous
surgery, elements that are especially important in endo-
scopic endonasal surgery [40]. At this time, none of the
available models can simulate every aspect of an endo-
scopic endonasal surgery, and prepare a novice trainee for
a live case. However, each model can provide learning of
a specific task. Cadaveric dissection provides drilling sen-
sory feedback similar to a live situation. 3D-printed
models can incorporate anatomical variations and tumor
components that can replicate neurovascular structure dis-
placement or encasement. New virtual reality trainers
have improved haptic feedback and allow trainees to have
repeated attempts at a specific task over a single training

Fig. 2 Article selection process
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session. These models provide environments that simulate
surgical decision-making and force trainees to develop
strategies to navigate through the different steps of a sur-
gery. Overall, the fidelity is improving across all simula-
tion models and most training programs have incorporated
mandatory simulation training outside of the operating
room in their curriculum.

The available literature on training and simulation in
skull base surgery is limited, and the level of evidence
for learning effectiveness according to Kirkpatrick’s train-
ing evaluation model rarely exceeds the Learning level
(Fig. 1). This remains a challenge for simulation training
across all medical specialties as studies with higher evi-
dence for learning effectiveness are costly and challenging
to design. Moreover, the methodology used to provide
evidence for learning effectiveness should be evaluated.
Of the identified studies, only one provided evidence of
knowledge acquisition using a blinded randomized con-
trolled trial of sizeable groups [33]. Most of the other
articles described small cohort studies in which a specific
task was assessed prior to and after a training intervention
using a non-validated scale. Overall, it is expected that
most training interventions, whether using traditional
methods or simulation, will provide improved outcomes
over no training interventions. Future studies should aim
at comparing outcomes with validated scales between
groups with different training modalities, instead of com-
paring groups with and without training interventions.

Conclusion

Cranial base surgery is complex and challenging, and
risks should be minimized through appropriate training.
For live surgery, an incremental training program based
on the complexity of the anatomy, the technical difficulty
of the procedure, and the risks to neurovascular structures
was previously published and validated [2]. For training
outside of the operative room, several types of simulation
models have been described: live, synthetic, or virtual
reality models. All of these models have their strengths
and weaknesses, but trainees must take advantage of each
learning opportunity to perfect their understanding of cra-
nial base surgery.
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