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Abstract
Purpose of Review This article aims to review some of the recent advances and utilization of different CT techniques in the 
assessment of major neurovascular emergences such as acute ischemic stroke, traumatic brain injuries, blunt cerebrovascu-
lar injuries, ruptured intracranial aneurysms, ruptured arteriovenous malformation, and cerebral venous thrombosis, which 
constitute a large number of patients presenting to the emergency room.
Recent Findings Many advanced imaging techniques have been developed in the past two decades aiming to improve the 
diagnosis of neurovascular emergencies, including CT angiography, CT perfusion, dual-energy CT, subtraction CTA, and 
imaging-related artificial intelligence.
Summary Reviewing and understanding the concepts and interpretation of new imaging techniques will help improve the 
diagnostic yield and provide prompt information vital for the triage and management of patients. Advanced, accurate, safe, 
and cost-effective imaging techniques are required to expedite the diagnosis and patient management process to achieve the 
best possible clinical outcomes.

Keywords Advanced imaging · Advanced neuroradiology · Neurovascular emergencies · Subtraction CT · CT perfusion · 
Artificial intelligence

Introduction

Neurological emergencies are the conditions affecting the 
brain, spinal cord, cranial and peripheral nerves. Acute onset 
neurological conditions are a major cause of patients visits to 
the emergency departments and a large percentage of these 
patients require one or more radiological examinations [1]. 
These neurological emergencies include but not limited to 
acute ischemic stroke (AIS), traumatic brain injuries (TBI), 
blunt cerebrovascular injuries (BCVI), ruptured intracranial 
aneurysms (rIA), intracranial hemorrhages related cerebral 
vascular malformation, and cerebral venous sinus thrombo-
sis (CVT) [2–5•].

Imaging of neurovascular disorders has evolved tremen-
dously in the past years including advances in non-contrast 
CT brain, CT angiography (CTA), CT perfusion (CTP), 
dual-energy CT, and subtraction CTA [2–5•]. Moreover, 

use of Magnetic resonance imaging is constantly increasing 
as problem-solving tools to answer a specific question about 
certain neurovascular disorders [2–5•]

In this review we will re-visit some of the advances and 
utilization of different CT techniques in assessing various 
neurovascular emergencies.

Acute Ischemic Stroke (AIS)

Stroke is the second leading cause of morbidity and mortal-
ity worldwidee [2]. There were around 13 million strokes in 
2016 and approximately 87% of these patients had ischemic 
strokes [2]. Main role of neuroimaging in the setting of AIS 
is to identify intracranial hemorrhages, large vessel occlu-
sions and tissue penumbra to triage patients appropriately for 
IV tPA and/or mechanical thrombectomy [1, 2, 6•].

Standard Imaging

Non-contrast CT head (NCCT) and CT angiogram (CTA) 
are standard imaging techniques for the evaluation of patient 
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presenting to the emergency department with acute stroke 
symptoms [2, 6•]. NCCT is used to exclude intracranial 
hemorrhage and established large infarct core [6•, 7]. This 
has a vital role in confirming the eligibility of patients suit-
able for intravenous administration of tissue plasminogen 
activator (tPA) presenting within 6 h from symptoms onset 
and have a measurable neurological deficit [2, 6•]. The main 
role of CTA is to assess large vessel occlusion and patients 
selection for mechanical thrombectomy [7]. In addition, 
CTA source images provide additional information about 
parenchymal enhancement and are superior to define infarct 
core as compared to NCCT [8].

Advanced Imaging

CT perfusion (CTP) technique in AIS provides the physi-
ological status of brain tissue perfusion and differentiates 
between infarcted tissue (core infarction) and viable tissue at 
risk (penumbra) [1]. CT perfusion techniques in the evalua-
tion of patients presenting with acute ischemic strokes have 
been validated in many recent trials such as MR CLEAN-
LATE, DAWN, and DEFUSE and all these trials have docu-
mented better patient outcomes with the use of CT perfusion 
for patient’s selection for endovascular intervention [9–11].

CTP calculate different parameters that determine the 
core and penumbra, and these parameters include time to 
peak enhancement (T-max), mean transient time (MTT), cer-
ebral blood flow (CBF), and cerebral blood volume (CBV) 
[1]. T-max reflects the time delay between the contrast 

bolus arriving in the proximal large vessel arterial circu-
lation (arterial input function) and brain parenchyma after 
administration of intravenous contrast agent. MTT refers to 
the average amount of time for a volume of contrast to pass 
through a specific volume of brain tissue [1]. CBF refers to 
a specific volume of blood that passes through a specific 
volume of brain tissue in a given time unit [1]. CBV refers 
to the volume of flowing blood in a given volume of brain 
tissue [1]. Infarcted tissues have an increased T-max, MTT, 
decreased CBF and CBV, while brain tissues penumbra have 
an increased T-max, MTT, decreased CBF and normal or 
increased CBV [1] (Fig. 1).

Multiphase CTA is another technique used to assess 
patients collateral arterial flow in the territory of large ves-
sel occlusion [6•, 12]. The multiphase CTA is performed by 
using iodinated contrast medium and the images are acquired 
in a time resolved manner in the peak arterial phase, peak 
venous phase and delayed venous phase [6•]. It has been 
shown that patients presenting with large vessel occlusion 
and good collateral arterial flow of the affected territory have 
good outcomes provided they have small core infarction 
[12]. However, this technique has been used in the ESCAPE 
trial and showed minimal benefits when compared to single 
phase CTA [6•]. Moreover, it has been shown that perfusion-
based patient selection is superior to collateral flow-based 
patients’ selection for post mechanical thrombectomy good 
outcomes [6•, 13].

Artificial intelligence is playing a major role nowadays 
in the assessment of acute stroke [14, 15]. There are many 

Fig. 1  Seventy-nine-year-old male patient presented with slurred 
speech, left upper and lower limbs weakness. Increased Tmax over 
the right MCA-territory compared to the left MCA-territory indicates 

the area at risk of infarction, A. Decreased CBF and CBV indicate the 
established infarcted tissue. Source: Personal-collection
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different software that calculates and identify the core 
infarction, viable ischemic tissue, the site of large vessel 
occlusion and collateral vessels using different machine 
learning algorithms [14, 16]. One of the commonly used 
applications is RapidAI (iSchemaView, Menlo Park, Cali-
fornia, USA) [16]. By using automated analysis, RAPID 
performs the measurements and segmentations to iden-
tify the core infarction and penumbra [16]. RAPID core 
infarction is identified as a region of brain tissue in one 
hemisphere with a relative CBF < 30% compared to the 
contralateral hemisphere, and penumbra with brain tissue 
volume having a Tmax > 6 s minus total volume of core 
infarct defined by CBF > 30% [16, 17] (Fig. 2).

Dual energy CT (DECT) is a promising advancement in 
neuroimaging that enhances the contrast resolution among 
different tissues [18, 19]. DECT enables neuroradiologists 
and neurointerventionalists to differentiate between iodine 
contrast and hemorrhage after mechanical thrombectomies 
[18]. DECT can show early areas of ischemia better than 
the routine single-energy NCCT brain, it also decreases 
the beam hardening artifacts and metallic artifacts from 
coils or surgical clips [19]. Basically, DECT is acquired 
by two different tube voltages, one low kilovoltage x-ray 
tube and one high kilovoltage X-ray tube simultaneously 
and then the two acquired sets of images are blended or 
undergo algorithmic materials decomposition [18, 19]. 
The results are 3 substances/views that can help in better 
tissue characterization, for example differentiating hemor-
rhage from iodinated contrast [18, 19] (Fig. 3).

Traumatic Brain Injury

Traumatic brain injury is one of the leading causes of mor-
bidity and mortality and is defined as a damage to the brain 
caused by an external force [20, 21]. Either penetrating head 
injuries such as gunshots or knife wounds, or closed head 
injuries such as falls or motor vehicle accidents [20]. TBI is 
classified according to the Glasgow coma scale (GCS) into 
mild (GCS ≥ 13), moderate (GCS 9–12), and severe (GCS 
3–8) [21].

Standard Imaging

According to the American College of Radiology Appro-
priateness Criteria, patients with moderate to severe closed 
head injuries (GCS < 13) should initially undergo NCCT 
of the brain to rule out intracranial hemorrhages [21]. The 
NCCT brain sometimes has limitations identifying brain 
contusions, diffuse axonal injuries (DAI), and signs of 
intracranial hypertension [21]. MRI brain with gradient echo 
(GRE), diffusion-weighted imaging (DWI), or fluid-atten-
uated inversion recovery sequences (FLAIR) can identify 
areas of microbleeds, DAIs, and intracranial hypertension 
even in mild TBI (GCS ≥ 13) [21, 22].

Advanced Imaging

Although MRI brain susceptibility-weighted imaging (SWI) 
sequence is beyond the scope of this review, this is an impor-
tant advanced MRI technique that is more sensitive in detect-
ing microbleeds in patients with TBI in the early and mild 
stages which can also predicts the cognitive outcomes on 
the long run [22].

Recently, CT perfusion has been used in patients with TBI 
to assess for viable brain tissue at risk (traumatic penumbra) 
and secondary TBI events that can happen hours to days 
after the injury [23•]. As mentioned above with regards to 
using CTP in AIS, different parameters MTT, CBV, and CBF 
are also used in TBI to assess the brain parenchyma [16, 
23•]. The brain tissues viability is dependent on CBF, thus, 
alterations in CBF can disturb the electrical and metabolic 
neuronal activities [23•]. This process is managed by cere-
bral autoregulation which ensures adequate CBF to the brain 
tissues during these TBI alterations [16, 23•]. The sensitivity 
and specificity of CTP in TBI cases were 87.5% and 93.9%, 
respectively [23•].

The CTP findings in patients with cerebral contusions 
are seen in the cortical/subcortical regions with increased 
MTT, decreased CBV and CBF [23•]. In regions adjacent 
to an extra-axial traumatic hemorrhage or collection, the 
CBF would be decreased and improved after evacuating the 

Fig. 2  The same patient in Fig. 1. The RapidAI shows the right tem-
poral lobe core infarction (purple) as an area of decreased CBF of 
less than 30% compared to the same area in the left temporal lobe. 
The green area shows the area at risk of infarction which has a maxi-
mum residue function that takes more than 6.0  s. Source: Personal-
collection (Color figure online)
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hematoma/collection [23•]. In patients with post-TBI intrac-
ranial hypertension CTP showed increased MTT, decreased 
CBF and CBV [23•].

Blunt Cerebrovascular Injuries BCVI

BCVI is an umbrella term used to define blunt trauma to 
the extracranial, intracranial carotid arteries, and verte-
bral arteries [4, 24]. BCVI prevalence is 1–3% in blunt 
trauma population and up to 9% in patients with severe 
head injuries  [4, 24]. The outcomes of BCVI depend 
largely on the grade of the injury starting from grade 1 
luminal irregularities, dissections and up to higher grades 
of vascular occlusion and transection [4, 24]. The BCVI 
if left untreated can lead to brain infarctions and death 
[4, 24, 25]. It has been estimated that untreated cervical 
carotid injuries can lead to morbidity and mortality up to 

67% and 38%, respectively, whereas untreated vertebral 
arteries BCVI can lead to morbidity and mortalities rates 
up to 24% and 18%, respectively [4]. There are screening 
guidelines during the initial trauma evaluation to identify 
patients who need further evaluation with radiological 
exams, which are beyond the scope of this article [4, 25].

Standard Imaging

The gold standard imaging technique in patients with 
BCVI is digital subtraction angiography (DSA) with high-
est sensitivity to detect BCVI and allows also the evalu-
ation of collateral circulation [4, 24]. However, due to its 
invasive nature it is usually used in high-risk population 
and in patients with negative CTA scans but with persis-
tent clinical suspicion of BCVI injury [4].

Fig. 3  Examples of hemorrhagic transformation and contrast extrava-
sation with iodine overlay map (IOM), virtual non-contrast (VNC), 
and mixed images. A–C were mixed image, IOM, and VNC, respec-
tively, from a patient’s dual energy CT (DECT) immediately after 
endovascular thrombectomy (EVT). A  showed hyperdensities in 
the right lentiform nucleus and caudate nucleus. In B, C  combined, 
the hyperdensities were classified as pure iodine contrast. D–F were 

mixed image, IOM, and VNC, respectively, from the same patient’s 
DECT 24 h after EVT. D also showed hyperdensities in the right len-
tiform nucleus and caudate nucleus. In E, F combined, the hyperden-
sities were classified as hemorrhage with iodine contrast. Adopted 
from Liu et  al., 2020 [36], Copyright© 2020 Liu, Jiang, Ruan, Xia, 
Huang, Niu, Yan and Yin. CC BY
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Advanced Imaging

Because of the higher cost and invasiveness of DSA, CTA 
has largely replaced DSA as a screening tool in patients sus-
pected of BCVI [4]. In the past, CTA usage in BCVI patients 
was limited by the thick CT slices with low sensitivity and 
specificity identifying the injuries. However, recently with 
the availability of 32 channel and higher multidetector CT 
scanners, CTA sensitivity has reached up to 98% and speci-
ficity up to 100% [4, 24].

Ruptured Intracranial Aneurysms (rIA)

Subarachnoid hemorrhage (SAH) due to aneurysm rupture 
accounts for 85% of non-traumatic SAH [26, 27]. Patients 
presenting with symptoms related to SAH undergo NCCT 
of head to identify the site and amount of hemorrhage and to 
rule out the presence of hydrocephalus [28]. After confirm-
ing the presence of an intracranial aneurysms as the source 
of hemorrhage by CT angiogram, the treatment plans would 
include endovascular treatment with coiling with or with-
out stenting or flow-diverters; or surgical clipping of the 
aneurysm [5•, 28]. Cerebral vasospasm is the main cause 
of mortality and morbidity in patients after successful treat-
ment of ruptured intracranial aneurysms. Transcranial Dop-
pler (TCD) is used as a screening tool to assess and monitor 
the prevalence of cerebral vasospasm [29•]. CT angiogram 
is used on a regular basis in high-risk patients for follow-up 
and to assess for vasospasm [28].

Standard Imaging

NCCT of the brain will be the first step to exclude the pres-
ence of an intracranial subarachnoid hemorrhage [26–28]. 
The site of the maximum bleeding and the higher blood den-
sity can sometimes suggest the site of the ruptured aneu-
rysm; however, these are not always reliable findings [27, 
28].

Most institutions perform CT angiogram as a second step 
to identify the cause of subarachnoid hemorrhage [28]. How-
ever, CT angiogram may have limitation and lower sensitiv-
ity for the detection of small aneurysms and vascular mal-
formations. DSA is still considered gold standard imaging 
to identify small (less than 3 mm) aneurysm and high flow 
vascular malformations [28].

Advanced Imaging

The utilization of CTA to identify the presence of an intrac-
ranial aneurysm has been adopted by a large number of insti-
tutions due to its relatively safer and faster access than DSA 
[28]. The advances in modern multislice CT scanners have 

resulted in better sensitivity and specificity of aneurysm 
detection reaching up to 100% even in aneurysms smaller 
than 5 mm [30, 31]. 3D reformats images can be recon-
structed after performing the CTA present more accurate 
morphological features of the aneurysm [28]. Better mul-
tiplanar reconstruction techniques have further facilitated 
detection of small aneurysms in difficult to assess areas.

Recently, ultra-high-resolution (UHR) CT scanners 
(Aquilion Precision, Canon Medical Systems, Otawara, 
Japan) have been developed and a new promising technique 
called subtraction CTA (sCTA) [5•]. Meijer et al. have used 
this technique in the follow up of patients with treated intrac-
ranial aneurysms either by endovascular means or surgical 
clipping and has shown comparable results to DSA [5•]. 
This technique basically uses a NCCT of the brain and sub-
tracts it from the CTA in the postprocessing phase [5•]. 
UHR sCTA provides an in-plane spatial resolution of up to 
0.234 mm which can show the fine details of the vascular 
structures [5•]. Using a metal artifacts reduction algorithm 
further increases the clarity and accurateness of the UHR 
sCTA by overcoming the metallic artifacts caused by the 
endovascular or surgical devices used to treat the aneurysm 
[5•] (Fig. 4, 5).

Moreover, CT perfusion can be used to assess the location 
and severity of cerebrovascular vasospasm and its related 
perfusion abnormalities [32]. It can identify severe vasos-
pasm with risk of delayed ischemia and can thus guide the 
invasive treatment [32].

Arteriovenous Malformation AVM

AVM-related hemorrhagic events are considered one of the 
emergency conditions that patients present acutely with to 
the ER [33]. Different management approaches including 
conservative treatment, endovascular treatment, radiosur-
gery, open surgery or a combination of these approaches 
can be performed [33]. The standard imaging examination 
to diagnose AVMs are NCCT, CTA, MRA, and DSA which 
have been explained above [33]. AVMs are complex vascu-
lar pathologies that need thorough and detailed assessment 
of their angioarchitectures and flow hemodynamics which 
is typically achieved by using DSA [33]. CTA and MRA 
can determine the AVM location, nidus size, arterial feed-
ers [33]. The flow hemodynamics and venous drainage are 
difficult to assess by standard CTA and MRA [33].

Advanced Imaging

The recent advances in multiphase CTA (time-resolved 
CTA or 4-dimention CTA) have shown promising results 
in identifying the critical key-imaging features of an AVM, 
which are important in the treatment planning and are almost 



6 Current Radiology Reports (2024) 12:1–8

1 3

comparable to DSA. In addition, these noninvasive tech-
niques provide better anatomical localization of the AVM, 
information about possible site of the rupture, venous 
drainage pattern, and secondary changes related to outflow 
obstruction [33].

Cerebral Venous Thrombosis (CVT)

CVT is defined as complete or partial thrombosis of a cer-
ebral vein or a dural sinus. CVT accounts for up to 1% of all 
strokes and commonly patients present with headache or sei-
zures [34]. The females are at increased risk of developing 
CVT especially at young ages. NCCT and CT venography 
of the head are usually the first radiological examinations to 
assess for CVT [34].

Standard Imaging

CT venography is usually the first radiological tool to diag-
nose CVT [35]. After performing a thin slices NCCT brain, 
approximately 100 ml of iodinated contrast is injected 
through a percutaneous venous canula [35]. Simultaneously 
CT venography is performed with standard CT parameters 
at a standard delay time of 30 s [35].

Advanced Imaging

In contrast to the standard CT venography, subtraction CT 
venogram (sCTV) scan be performed by digitally subtract-
ing the thin slices NCCT from postcontrast scans to gener-
ate the 3D reconstructed images of the venous system [35]. 
A new protocol is described in the recent literature aim-
ing to reduce both the amount of radiation exposure and 
the administered iodinated contrast, and to maximize the 

Fig. 4  Sixty-nine-year-old female with surgical clip-treated anterior 
communicating aneurysm. Follow-up with subtraction CTA demon-
strates a remnant of the aneurysm (arrows). Image quality of subtrac-
tion CTA is superior on the UHR system (left image) as compared 

to subtraction CTA on a conventional CT system (right image) due 
to increased spatial resolution (0.25 × 0.25 mm versus 0.5 × 0.5 mm). 
Adopted from Meijer et al., 2019 [5•], CC BY

Fig. 5  Fifty-seven-year-old female with flow diverter placement for 
treatment of internal carotid artery (ICA) aneurysms on both sides. At 
follow-up, occlusion of the right ICA aneurysm and residual contrast 
filling of the left ICA aneurysm (arrows) was seen with full consist-
ency between UHR subtraction CTA (top) and conventional angiog-
raphy (bottom). Adopted from Meijer et al., 2019 [5•], CC BY
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venous system enchantment for better visualization by using 
a time-density curve (TDC) [35]. TDC determines the time 
of peak enhancement of the intracranial venous system with 
the administration of a small dose of iodinated contrast [35]. 
The results of this technique showed better contrast attenu-
ation of the intracranial main venous structures allowing 
for accurate assessment of small nonocclusive thrombi [35].

Conclusion

Neurovascular emergencies such as AIS, TBI,  BCVI, rIA, 
AVM and CVT are among critical events that can affect the 
patient’s short-term and long-term clinical outcomes. CT is the 
core modality for the evaluation of most neuro emergencies. The 
recent advancements in CT neuroimaging are providing prompt 
diagnosis and helping in optimal management of patients pre-
senting in busy ER departments with acute neurological condi-
tions. Understanding the new emerging imaging techniques will 
help to improve the patient’s care and outcomes.
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