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Abstract Abusive head trauma is the leading cause of

severe traumatic brain injury in children\2 years of age.

Because the clinical presentation of children with abusive

head trauma can be nonspecific, CT and MR imaging play

an important role in distinguishing these cases from epi-

sodes of accidental head trauma. In this article, we review

the pathophysiology, imaging appearance, and specificity

of patterns of traumatic brain injury associated with abu-

sive head trauma, and highlight recent updates in the

understanding of these injuries.

Keywords Abusive head trauma � Non-accidental trauma �
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Abbreviations

AHT Abusive head trauma

NAT Non-accidental trauma

CCJ Craniocervical junction

DWI Diffusion-weighted imaging

SWI Susceptibility-weighted imaging

SDH Subdural hematoma

RH Retinal hemorrhage

SIDS Sudden infant death syndrome

ALTE Acute life threatening event

DVST Dural venous sinus thrombosis

DAI Diffuse axonal injury

HII Hypoxic-ischemic injury

nAHT Accidental (non-abusive) head trauma

BESS Benign enlargement of the subarachnoid space

Introduction

Abusive head trauma (AHT) is one of the commonest

subtypes of non-accidental trauma (NAT). It accounts for a

substantial proportion of NAT injuries in the first 2 years of

life [1, 2] and is the leading cause of death among abused

children [3]. AHT is responsible for the majority of severe

traumatic brain injury in children\2 years of age [3–5],

with case fatality rates above 20 % [6, 7]. Among children

who survive, more than 75 % will have permanent neuro-

logic impairment [8, 9].

AHT correlates with inconsolable crying behavior dur-

ing infancy, which peaks in the second month of life [10].

Population-based studies in the UK and US suggest an

annual incidence of 25–30 detected AHT cases per 100,000

children under the age of 1, with rapidly decreasing inci-

dence over the first 5 years of life [6, 7, 11–13]. This is

likely an underestimate due to the probability of missed

and misdiagnosed cases [14].

Children with AHT can present with nonspecific signs

and symptoms, making accurate recognition challenging.

In a retrospective review of 173 children under the age of 3

diagnosed with AHT [14], 31 % of cases were initially

missed by medical professionals. 28 % of these children

sustained repeat injury prior to correct diagnosis. In 13 %
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of cases, missed AHT was due to misinterpretation of

imaging studies. Improved awareness of the neuroimaging

features of AHT is crucial for accurate diagnosis.

Imaging of AHT

Unenhanced CT of the head is the screening examination

of choice for cases of suspected AHT [15•]. Multiplanar

reformations and 3D volume rendering of the skull increase

sensitivity for fracture and intracranial hemorrhage [16•].

Several studies have demonstrated an incidence as high as

27–39 % of unsuspected intracranial injury in neurologi-

cally asymptomatic patients with non-CNS injuries suspi-

cious for NAT [3, 17, 18]. Many experts therefore

recommend routine screening of the CNS in any child with

sufficient clinical concern to warrant a skeletal trauma

survey.

MRI of the brain is recommended for further evaluation

of all abnormal screening examinations and in the cases of

high clinical suspicion [19], generally between 3 and 5

after acute presentation. MRI in this time frame is sensitive

for the detection of small volume extra-axial hemorrhage

and for evolving parenchymal injury [20]. In addition to

standard sequences, diffusion-weighted imaging (DWI)

[21] and susceptibility-weighted imaging (SWI) [22]

increase sensitivity for detection of parenchymal injury and

microhemorrhage, and can provide prognostic information

in AHT [23••]. Administration of gadolinium-based con-

trast material is not performed routinely but can be utilized

in select cases to increase accuracy of dating extra-axial

collections [24, 25].

MR of the cervical spine, including fat-suppressed fluid-

sensitive sequences, should routinely be performed at the

time of brain imaging, as unsuspected spinal injuries may

be demonstrated in more than 75 % of cases [26, 27••, 28,

29•]. Whole spine imaging should be considered if there is

suspicion for injury based on the trauma survey or an

abnormal neurologic exam [30].

Terminology of AHT

Early publications [31–33] suggested the association of

shaking-type abuse with a specific pattern of intracranial

injuries, often in the absence of external signs of trauma.

This association came to be known as ‘‘whiplash shaken

infant syndrome’’ or simply ‘‘shaken baby syndrome,’’

terms that predominated in the literature for several dec-

ades and were considered synonymous with inflicted

injury.

Over time, awareness of the diverse array of possible

mechanisms of inflicted injury to the CNS has increased,

particularly that of concurrent shaking and impact type

injuries—the so-called ‘‘shaken impact syndrome’’ [5]. In

addition, the contribution of less common mechanisms

such as strangulation, suffocation, and penetrating trauma

has been recognized.

In 2009, the term ‘‘abusive head trauma’’ was adopted

by the American Academy of Pediatrics Committee on

Child Abuse and Neglect, in an attempt to provide a more

inclusive terminology for inflicted head injury that does not

imply a specific mechanism of injury [34].

Mechanisms of Injury and Injury Patterns

AHT most commonly results from impulsive or impact

loading [35]. Impulsive loading refers to nonimpact forces

produced by rapid alternating angular acceleration and

deceleration of the cranial contents, as with vigorous

shaking. By contrast, impact loading refers to direct

application of forces to the head. Both mechanisms can

occur alone or in combination. Impulsive and impact

loading are believed to result in distinct, but potentially

overlapping, injury patterns.

Impulse loading produces differential angular accelera-

tion of the intracranial contents, with risk for shearing

injury to the brain and meninges [36]. The original reports

of Guthkelch [31] and Caffey [32, 33] suggested the

association of shaking-type injury with the triad of sub-

dural hematoma (SDH), retinal hemorrhage (RH), and

focal or diffuse parenchymal injury, often in the absence of

external signs of injury. This association has been sup-

ported by numerous additional publications [37–40].

Impact loading typically results in soft tissue injury,

skull fracture, subperiosteal hemorrhage, and parenchymal

contusions [36]. In infants and young children, impact

loading injury is less commonly observed in AHT than in

accidental head trauma (nAHT) [41••, 42••, 43•]. When

associated with AHT in young children, impact loading

injuries are typically severe, and complex injury patterns

can be present [44]. In older children, impact loading

injuries becomes more common in AHT [44].

Goals of Imaging

The goals of imaging in suspected AHT are as follows: (1)

detect pathology requiring emergent intervention; (2)

assess the extent of the injury; (3) estimate timing of the

injury; and (4) detect mimics or predisposing conditions.
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Subdural Hematoma

SDH is the most commonly encountered imaging finding in

AHT, present in 89 % of children on imaging in a recent

prospective epidemiologic study [45]. This finding in iso-

lation is only of moderate specificity for AHT, as it can be

a feature of nAHT and non-traumatic conditions. The

specificity of SDH for AHT is increased when associated

with RH and underlying diffuse parenchymal injury [41••].

The typical SDH associated with AHT is thin and dif-

fuse, without significant mass effect on underlying brain

parenchyma [46]. The SDH is unlikely to be the cause of

the clinical presentation but may serve as a marker for an

impulsive mechanism of injury [47]. As discussed below,

the prognosis is largely determined by the extent of asso-

ciated parenchymal injury.

Pathophysiology

SDH has long been known to result from hemorrhage into

the dural border cell layer—the innermost layer of the dura

mater—and as such is actually an intradural hematoma [46,

48].

It has been considered axiomatic that traumatic SHD is

the result of rupture of bridging veins [49]. Autopsy data on

bridging vein rupture are sparse due to the technical diffi-

culty of evaluating the bridging veins without introducing

artifactual injury [50, 51]. Post-mortem imaging has

occasionally been employed to demonstrate bridging vein

rupture as the pathogenesis of SDH in fatal AHT cases

[52–54], although it is not routinely used.

Recent imaging data suggests that this mechanism is

actually more prevalent, with bridging vein thrombosis

secondary to rupture demonstrated in between 40 and 45 %

of AHT cases with SDH [55••, 56•]. When present, this

confirms the traumatic (though not per se abusive) nature of

the SDH [51, 57], and the vertex should be closely scruti-

nized in every case of unexplained SDH or suspected AHT.

In instances when bridging vein rupture is not demon-

strable by imaging, bridging vein injury without throm-

bosis remains possible. Several authors have described a

well-developed intradural vascular plexus, particularly

prominent in young children, which may provide an

alternative source for SDH [46, 48].

Imaging

SDH is well demonstrated on screening CT, but detection

and characterization both benefit from the improved spatial

and contrast resolution of MR [19, 20, 58]. Associated

bridging vein thrombosis may be evident as hyperdensity

on CT or hypointensity on susceptibility-sensitive MR

sequences (T2* or SWI), with linear intravascular throm-

bus extending into more globular extravascular clot at the

site of vessel rupture near the vertex. This appearance has

been termed the ‘‘tadpole’’ [55••] or ‘‘lollipop’’ [56•] sign

(Fig. 1).

The timing of SDH based on imaging should be

approached with caution. A recent systematic review of

studies evaluating the imaging appearance of SDH relative

to time of trauma demonstrated considerable overlap—

particularly in children, in AHT, and on MR [59••].

Fig. 1 3-month-old male presented with seizures, bruising, subcon-

junctival hemorrhages, and multilayered RH. a Axial T2-weighted

image shows focal enlargement of a parasagittal bridging vein near

the vertex (white arrows), suggesting vein rupture. b Axial SWI

image demonstrates marked hypointensity and blooming within the

distal vein and at site of venous rupture (white arrows), confirming

thrombosis. This appearance has been termed the ‘‘tadpole’’ or

‘‘lollipop’’ sign. Thin left SDH is evident as crescentic blooming

artifact on the SWI image
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Although classically the density of SDH on CT has been

correlated with age, it is clear that acute SDH can present

with a variety of imaging appearances. Unclotted blood can

result in a SDH isodense to cortex, reflecting either hyper-

acute bleeding (typically in the first 3 h) or delayed clotting

in coagulopathy [24, 25]. (Hemato)hygroma related to

meningeal tear or arachnoid cyst rupture can present as an

acute iso- or hypodense subdural collection [60, 61, 62•].

Anemia (hemoglobin \8–10 g/dL) can result in hypoat-

tenuation of acute hemorrhage [24]. SDH hyperdensity and

acute bridging vein thrombosis are reliable indicators of

acute hemorrhage (up to approximately 10 days), but their

absence cannot be used to infer the opposite.

The specific case of mixed-density collections warrants

discussion. Although mixed-density SDHs may reflect

acute-on-chronic bleeding, they should not be taken as a

priori evidence of injury of multiple ages. Hyperacute

bleeding, acute hemorrhage with sedimentation levels, and

inhomogeneous hematohygromas can all present as mixed-

density collections [24, 25] (Fig. 2). A descriptive

approach to the density or attenuation of SDH on CT is

recommended, rather than a dogmatic assertion of timing.

More specific estimates of the timing of SDH may be

possible with MR, but certain caveats apply. The timing of

evolution of blood products on MR suggested by Bradley

et al. were derived from longitudinal observation of intra-

parenchymal hematomas [63]. SDHs evolve over a

generally longer time course with slightly different imag-

ing characteristics [24, 64].

As recently emphasized by Wittshceiber et al. and oth-

ers, the fate of acute SDH is to either quickly resolve or to

rapidly evolve into subdural hygroma through interstitial

fluid or CSF transudation, which in most cases will even-

tually undergo resorption [62•, 65]. As discussed above,

subdural hygromas may present acutely as well, secondary

to an arachnoid tear, and should not be considered markers

of chronicity. Subdural hygromas are characterized by

CSF-like signal intensity and absence of mass effect,

enhancing neomembranes, and loculations.

During their evolution, SDHs often demonstrate a lay-

ering sedimentation level, and the imaging characteristics

of the serous fraction will typically approximate that of

simple fluid, which can be erroneously interpreted as

reflecting chronicity. Dating should be estimated from the

dependent sediment layer [66] (Fig. 3).

In the presence of negative intradural pressure related to

parenchymal volume loss or intracranial shunting, a small

subset of hygromas may persist and form enhancing vas-

cular neomembranes along the outer then inner margins

[24] (Fig. 4). Repeated spontaneous hemorrhage from

these membranes transforms the collections into chronic

SDHs [46, 62•]. They may be relatively simple in

appearance initially, but can assume an increasingly locu-

lated configuration with increasing mass effect over time.

Enhancing neomembranes are estimated to become

apparent between 10 days and 3 weeks after injury [46,

65], and are one of the few reliable indicators of non-acuity

in subdural collections.

The possibility that acute SDH may represent rebleeding

into a chronic subdural collection, spontaneously or with

trivial trauma, is a common dilemma in imaging of AHT.

Based on the pathophysiology proposed by Whittscheiber

and others, spontaneous hemorrhage into pre-existing

subdural hygromas can be inferred to occur [62•, 64].

Identification of enhancing subdural membranes and

associated parenchymal volume loss or shunting are sup-

portive imaging features (Fig. 4). Acute neurological

deterioration, new parenchymal injury, new subarachnoid

hemorrhage, and new discontinuous SDH should not be

present, however, and are suspicious for repeat AHT [65,

67].

Controversies

SDH has traditionally been considered a marker of possible

traumatic injury. Several recent publications have postu-

lated that a variety of relatively common non-traumatic

pathologies may result in SDH and RH, thereby mimicking

AHT. Proposed theories include hypoxic-ischemic injury

Fig. 2 5-week-old female presented with an acute onset of obtunda-

tion, fixed and dilated right pupil, and coagulation studies consistent

with hemorrhagic disease of the newborn. Axial CT image demon-

strates a right mixed-density SDH (white arrows), found to be

admixed clotted and unclotted blood at subsequent surgical decom-

pression. Note that unlike the typical SDH of AHT, there is significant

associated mass effect with midline shift, right lateral ventricular

effacement, and left lateral ventricular entrapment
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(HII), elevated central venous pressures, and primary dural

venous sinus thrombosis (DVST).

Geddes et al. have suggested that SDH and RH seen in

the setting of AHT might be the result of the HII rather

than a direct consequence of trauma [68]. This was based

on the observation that microscopic intradural bleeding

was noted in 36/50 children in their series who died of non-

traumatic causes, including HII and intracranial infection.

This line of reasoning has been coopted to support the

hypothesis that HII from any cause—including choking

events, viral lung infections, and sudden infant death syn-

drome (SIDS) [69, 70]—can result in the classic imaging

features of AHT.

It is important to note that the intradural hemorrhage

that was described by Geddes et al. in their article was in

all cases microscopic [68]. The extrapolation to cases of

macroscopic SDH such as those seen on imaging studies in

AHT is not supported by current evidence. In fact, large

Fig. 3 4-month-old male

presented with status

epilepticus, facial bruising, and

diffuse multilayered RH after

fall from bed. a, b Axial T2-

weighted and T1-weighted

images obtained 1 day after

presentation demonstrate

bilateral holohemispheric

subdural collections which

approximate CSF signal

intensity (white arrows), likely

subdural hygromas. There is a

dependent T2 hypointense, T1

isointense sediment layer on the

left (black arrows), suggesting

recent hemorrhage. Watershed

HII was also present, not shown

Fig. 4 4-month-old male imaged 1 month following acute bilateral

SDH related to AHT. a Coronal T2-weighted image shows bilateral

subdural collections. The dura can be identified as a thin hypointense

line (white arrows) between the collections and the subarachnoid

space. A loculation is present on the right (black arrows) containing

blood products with different signal intensity. Note the mass effect on

the subjacent brain surface. b Coronal contrast-enhanced T1-weighted

image shows enhancing neomembranes (white arrows) in continuity

with the loculation, confirming chronic SDH with superimposed

rebleeding. Such rebleeding can occur with minimal or no trauma and

does not in itself suggest repeated abuse
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case series examining imaging studies of children with

severe HII related to drowning [71] and cardiac arrest [72]

did not report macroscopic SDH in any case.

Dysphagic choking acute life threatening events

(ALTEs) resulting in paroxysmal cough and elevated

central venous pressures have also been postulated to result

in SDH and RH in two reports [70, 73]. Scant clinical data

exist to evaluate this contention. Supporting evidence is

based on computer modeling and two reported cases of

pertussis-related SDH that predate neuroimaging [74–76].

No recent well-documented clinical cases exist to support

this association, however [77].

DVST has been suggested to result in non-traumatic

SDH. Case reports [78] and a small case series [79] in

adults support this possibility. However, a cases series of

36 consecutive infants and young children with DVST

found no association with SDH [80••]. A second case series

of 9 consecutive infants with DVST demonstrated only 2

SDH, one 8 days after forceps delivery and another in a

child after MVA [81]. The evidence base does not support

DVST as a cause of spontaneous SDH in young children at

this time. Nonetheless, some centers routinely include a

2-D time of flight MRV through the head in cases of sus-

pected abuse to excluded DVST for medicolegal purposes.

Diffuse Parenchymal Injury

In isolation, diffuse parenchymal injury is not specific for

trauma of any etiology. In the presence of SDH, RH, and/or

cervicomedullary injury, diffuse parenchymal injury is

highly associated with AHT [27••, 29•, 41••, 42••, 43•, 44].

Thomas et al. recently demonstrated in a large series of

nAHT victims that parenchymal injury was not present in

the absence of a high-force mechanism, essentially

excluding a history of trivial trauma as an explanation for

diffuse parenchymal injury [82].

Excepting with pure asphyxiation, diffuse parenchymal

injury is rarely present in the absence of SDH and RH in

AHT [83]. Diffuse parenchymal injury is noted in less than

a third of patients with suspected AHT, but it is the most

important imaging feature predictive of outcome [23••, 43•,

83].

Pathophysiology

The etiology of parenchymal injury associated with

impulsive-type AHT is incompletely understood. It was

initially presumed to reflect traumatic diffuse axonal injury

(DAI) [84, 85], based to some extent on extrapolation from

the neuropathology of adult traumatic parenchymal injury

[36, 86, 87]. Subsequent studies have suggested based on

patterns of immunoreactivity to beta-amyloid precursor

protein (BAPP) that the predominant parenchymal injury in

children with AHT is more likely HII rather than traumatic

DAI [86–89].

These studies further described focal cervicomedullary

traumatic axonal injury, which the authors suggested may

have resulted in apnea and consequent HII. This associa-

tion is supported by both animal models [90] and clinical

series of suspected AHT [91–93]. Traumatic brain injury

may also directly result in ischemic injury secondary to

altered excitotoxicity and oxidative stress [94, 95], possibly

mediated by clinical or subclinical seizure activity [96].

Several authors have reported unilateral HII [83, 97] as a

characteristic injury pattern in AHT. The etiology of uni-

lateral HII is difficult to understand from the mechanistic

standpoint of cervicomedullary injury but has been

explained by transient unilateral vascular occlusion [93].

Another possibility is ‘‘second impact syndrome’’—an

injury pattern described primarily in adolescents subject to

repeated head trauma—characterized by catastrophic brain

edema with a unilateral HII pattern [98]. The etiology of

this syndrome is unknown but is hypothesized to reflect

disordered cerebral autoregulation.

In adolescent cases of second impact syndrome, thin

ipsilateral SDH is a universal associated feature, not unlike

AHT cases. This suggests that SDH itself may have a direct

or compounding effect on the subsequent development of

HII. Animal studies have shown altered metabolism

underlying SDH [99]. These findings suggest that the HII

seen in AHT is likely multifactorial.

Imaging

The parenchymal injury associated with AHT may be

occult on early screening CT, or may be seen as diffuse or

hemispheric hypodensity with evidence of mass effect.

Thin SDH associated with disproportionate ipsilateral

hemispheric mass effect on screening CT should raise the

possibility of early unilateral HII and prompt consideration

of AHT and further evaluation with MRI (Fig. 5).

Early injury is better demonstrated on MRI. T2 hyper-

intensity reflecting tissue edema may be subtle in the

unmyelinated brain, and DWI will dramatically increase

conspicuity of cytotoxic injury [100]. Studies examining

the patterns of diffusion restriction in AHT have suggested

a watershed pattern of HII in a majority of cases [93, 100,

101]. However, multiple patterns of parenchymal injury are

potentially consistent with AHT (Fig. 6).

A recent study that examined white matter microstruc-

tural changes in AHT using diffusion tensor imaging

demonstrated reductions in mean diffusivity largely as a

result of decreased axial diffusivity, with preserved radial

diffusivity and fractional anisotropy [102•]. These findings

are presumed to reflect hypoxic-ischemic axonopathy and
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were found to be of prognostic value in stratifying func-

tional outcome.

The time course of the evolution of HII on DWI is vari-

able, butmay be delayed relative to that seen in closed-vessel

ischemic injury typical in adults. This reflects variability in

the underlying pathologic substrate of HII in the immature

brain, ranging from acute tissue necrosis to necrosis-like cell

death to delayed apoptosis [103], depending on multiple

factors including the severity of the initial insult, contribu-

tion of inflammation and excitotoxicity, and superimposed

Fig. 5 Two and half-year-old

male presented with seizure and

decreased level of

consciousness following

unwitnessed fall down 2 stairs.

Initially misdiagnosed as stroke

at OSH and transferred to

tertiary care hospital for

rehabilitation, patient was noted

to have multiple healing

fractures and diffuse

multilayered RH on further

evaluation. a Initial CT from

OSH demonstrated thin right

SDH with disproportionate mass

effect resulting in right to left

midline shift. b Axial FLAIR

image from subsequent MR

demonstrates diffuse unilateral

cortical hyperintensity on the

right. c Axial ADC map

demonstrates a predominately

subcortical pattern of diffusion

restriction

Fig. 6 Patterns of diffusion

restriction in AHT on axial

ADC map images. a Whole

brain, b watershed,

c subcortical, d unilateral
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seizures. This variability must be considered when attempts

are made at dating parenchymal injury related to AHT.

Controversies

There is continued medicolegal debate regarding the fea-

sibility of isolated shaking as a viable etiology for

parenchymal injury in pediatric patients. A study by

Duhaime et al. using a 1-month-old baby model found that

shaking injury without impact was unable to generate

sufficient angular acceleration to meet expected thresholds

for parenchymal injury including concussion and DAI

[104].

Other authors [105] have called into questions this

conclusion, pointing out problems with the biofidelity of

the model used. They further noted that injury thresholds

were scaled from single high-frequency impulsive loading

studies in adult primates, and their comparability to repe-

ated low-frequency shaking injury in infant children is

unknown.

In light of the evolving understanding of the nature of

parenchymal injury in abused children and the diversity of

probable underlying mechanisms, the continued relevance

of early estimates of the biomechanical feasibility of

shaking alone as a cause for traumatic DAI and concussion

is of questionable importance.

Focal Parenchymal Injury

Focal parenchymal injuries in AHT may result from

impulsive or impact loading injury and are less common

and less well described than diffuse injury. The pattern

of focal parenchymal injury secondary to impulsive

loading evolves with increasing age, likely due to pro-

gressive myelination and changes in brain parenchymal

viscosity.

In children under 5–6 months of age, shear injury can

result in very distinctive parenchymal lacerations or con-

tusion clefts [36]. First described by Lindenberg and

Freytag in 1969 [106], these lacerations have received very

little attention in the imaging literature, largely limited to

an older cases series using cranial ultrasound [107]. A

recent report by Palifka et al. reaffirmed that these lesions

are highly associated with AHT and reported them on MR

in children up to 11 months of age [108•].

In older children, multifocal parenchymal lesions may

uncommonly occur with severe trauma, likely representing

classic DAI [101]. At any age, focal hemorrhagic contu-

sions may be present reflecting an impact loading mecha-

nism, typically with overlying skull fracture and

occasionally with a coup-contrecoup pattern.

Imaging

Parenchymal lacerations or contusional clefts appear as

linear tears in the brain parenchyma, predominately within

the cortex or at the gray-white junction of the gyral crests.

They predominate in the frontal and temporal lobes. They

frequently demonstrate layering sedimentation levels on

both CT and MR (Fig. 7). When superficial, they can be

associated with overlying subpial hemorrhage.

Focal parenchymal lesions in older children may occur

and are presumed to be related to DAI. They are charac-

terized by multifocal T2 prolongation, most common in the

white matter of the frontal lobes and splenium. FLAIR is

incrementally more sensitive for demonstration of lesions

than T2, while SWI is substantially more sensitive [22,

109]. Presence of parenchymal microhemorrhage on SWI

in AHT has been shown to correlate with poor clinical

outcome, particularly when associated with underlying

diffuse parenchymal abnormality [23••]. Occasionally, a

pattern of multifocal punctate diffusion restriction is evi-

dent [101].

Retinal Hemorrhage

RH is estimated to occur in up to 85 % of AHT, but similar

to SDH is of only moderate specificity [110]. Specificity is

increased when RH is bilateral, multilayered (involving the

pre-, intra-, and subretinal layers), and when it extends

peripherally to the ora serrata on fundoscopic examination

[111]. A recent report by Binenbaum et al. found that RH

severity was correlated with severity of HII in children

with traumatic brain injury [112].

Pathophysiology

RH in AHT is believed to result from traumatic

retinoschisis or splitting of the retinal layers by shearing

forces [113]. This mechanism can sometimes be suggested

on fundoscopic examination by identification of retinal

folds at the periphery of the hemorrhage, though this is

inconstant [111].

Imaging

RH has not traditionally been considered an imaging

diagnosis, although it has occasionally been reported [114].

It presents as high-attenuation foci at the posterior globes

on CT, and low-signal foci on MR sequences (Fig. 8).

Data recently published by Beavers et al. demonstrated a

61 % sensitivity for confirmed RH [115••] using concurrent

analysis of T2*, T2, FLAIR, T1, and T1 post-contrast

sequences. They demonstrated decreasing sensitivity of
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sequences in the order listed. They went on to correlate MR

detection rates with fundoscopic severity, concluding that

high-grade hemorrhage was significantly more likely to be

detected by MR than low-grade hemorrhage, at 76

versus14 %.

With the clinical implementation of SWI, MR has

become more sensitive for the detection of RH. Zuccoli

et al. demonstrated a sensitivity of 62 % for the detection

of RH with this single sequence using a gold standard of

dilated fundoscopy [116•]. Sensitivity increased to 80 %

when a dedicated high-resolution orbital SWI sequence

was employed, and all missed cases were of mild severity

on fundoscopic evaluation.

Given that increasing severity of RH has been shown to

correlate with increasing risk for AHT, MR-visible RH

must be viewed as suspicious. Detection of signal

Fig. 7 6-week-old female

presented with vomiting,

seizures, abnormal breathing,

abdominal bruising, and facial

abrasions. a Axial-unenhanced

head CT image shows

hyperdense (acute) right frontal

subdural hemorrhage (black

arrows) and a hypodense left

frontal cleft containing

dependent hyperdense blood

(white arrows). b, c Axial T2-

weighted and SWI images show

the acute blood products as T2

hypointense material in the

subdural space (black arrows)

and layering within the

contusional tear (white arrows)

Fig. 8 4-month-old male presented with seizures and decreased level

of consciousness. Dilated fundoscopic examination demonstrated

multilayered retinal hemorrhage with a macular schisis cavities in the

bilateral eyes. a Axial T2-weighted image demonstrates retinoschisis

of the posterior globes bilaterally (white arrows). b Axial SWI images

demonstrate increased conspicuity due to blooming artifact (white

arrows), confirming RH
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abnormality in the posterior globes in children absent

adequate clinical history of severe trauma should prompt

close scrutiny for additional intracranial abnormalities and

consideration of dilated fundoscopic examination.

Controversies

Many alternate theories of causation for RH and SDH have

been proposed, many of which have already been discussed

in the section on SDH.

Skull Fractures

Skull fractures are not specific for AHT. Non-displaced

linear skull fractures and associated small volume subpe-

riosteal hemorrhage are common findings in low-impact

nAHT, such as with short-distance falls [42••]. Contradic-

tory data exist regarding which features, if any, may

increase the specificity of skull fractures for AHT [117–

119]. Fractures which are multiple, complex, diastatic, or

growing suggest a high-energy mechanism and are con-

cerning in the absence of appropriate history (Fig. 9).

Fig. 9 1-year-old male presented with head injury after mother’s

boyfriend ‘‘fell on him’’ while removing him from his car seat.

a Axial-unenhanced CT image shows impact injury pattern with scalp

swelling and cephalohematoma (white arrows), diastatic right occip-

ital fracture, and hemorrhagic contusion (black arrows). b Volume-

rendered CT image demonstrates complex occipitoparietal fractures

crossing sutures (white arrows), with fracture diastasis (black

arrows). c Volume-rendered CT image at 2-month follow-up

redemonstrates complex fractures (black arrows), with increasing

diastasis of the displaced fracture suggesting a ‘‘growing fracture.’’

d Volume-rendered T2-weighted MR image after skull stripping

demonstrates a large posterior pseudomeningocele or ‘‘lep-

tomeningeal cyst’’ as the cause of the growing fracture
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Pathophysiology

Skull fractures occur when impact forces result in defor-

mation of the calvarium in excess of the failure strength of

the bone. The calvarium of young children is considerably

more pliable than that of older children and adults, and

significant deformation can occur without consequent

fracture. In addition, a plastic ‘‘ping-pong’’ type fracture

can occur.

Imaging

Skull fractures in children are best evaluated on CT

reconstructed at submillimeter slice thickness. Multiplanar

reconstructions and volume-rendered images of bone

should be routinely performed and are helpful for identi-

fying ‘‘in plane’’ fractures which are easily missed on axial

images only.

Dating of skull fractures on CT can be difficult, as

expected imaging findings associated with healing long

bone fractures are not typical. In our experience, blurring

of the fracture margins and new bone formation by the

intact periosteal layer of dura are features of subacute

healing fractures and are inconsistent with recent trauma

(Fig. 10). Absence of these features cannot reliably be used

to conclude acuity, however. Soft tissue swelling and

subgaleal hemorrhage are suggestive of more recent injury

but are not universally present in acute injury.

Spine Injuries

Until recently, spine injury had been considered rare in

NAT, with a reported incidence of \2 % [120, 121].

Incidence of spine fracture is increased to almost 10 % in

the setting of a positive skeletal survey and is significantly

associated with intracranial injury [122]. Occult spine

injuries are often not routinely sought in evaluation of

AHT, however, and their prevalence is likely significantly

underestimated.

Indeed, recent evidence supports that spine injury in

children with AHT is not uncommon. Ligamentous injury

at the craniocervical junction (CCJ) and spinal SDH are

reported in 36–78 % [27••, 29•] and 44–63 % [24, 26] of

AHT cases, respectively, in several recent retrospective

studies. Fracture [122], bone contusion [122], epidural

hematoma [123], and cord injury have also been reported

[29•].

CCJ injury in particular is highly correlated with abusive

HII and can be helpful in establishing the traumatic etiol-

ogy of SDH [27••, 29•].

Pathophysiology

The mechanisms of spine injury in AHT can be diverse. Of

particular importance in children under 12 months of age is

ligamento-osseous injury at the CCJ, as it may be expected

to result from the whiplash-like motion of the cervical

spine associated with impulsive loading of the cranium

[124]. Pathologic studies have demonstrated CCJ injury in

[75 % of fatal AHT cases [86, 87, 91, 125–127]. Specific

injuries included subdural and epidural hemorrhage; cer-

vical cord contusion, laceration, and hemorrhage; cervical

nerve root avulsions; and ligamentous or soft tissue

injuries.

Imaging

MR imaging of the cervical spine is recommended routinely

along with MR brain imaging in all cases of suspected AHT.

Although an early report demonstrated low sensitivity for

detection of CCJ injury with MR in cases of severe AHT

[126], this study predated the widespread clinical availabil-

ity of STIR and other fat saturation techniques that increase

the conspicuity of soft tissue and subtle bony injury. Recent

studies have demonstrated improved rates of detection of

abnormalities at the CCJ with MR [27••, 29•, 120], with

ligamentous injury the most commonly reported finding

(Fig. 11). Routine utilization of fat-saturated fluid-sensitive

sequences is therefore recommended.

Fig. 10 6-month-old male

presented with head injury after

being stuck with a hammer.

a Axial-unenhanced CT image

shows an acute diastatic right

parietal fracture (black arrows)

with associated scalp swelling

(white arrows). b Axial-

unenhanced CT image

performed after 4 weeks shows

linear periosteal reaction

consistent with healing (black

arrows), as well as decreased

scalp swelling (white arrows)
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A recent report by Koshy et al. highlighted the associ-

ation of head trauma and retroclival hematoma, both

epidural and subdural [128]. Retroclival epidural hema-

toma occurs anterior to the tectorial membrane and is

associated with ligamentous injury at the CCJ [128, 129]. It

should be differentiated if possible from SDH at the CCJ

which occurs posterior to the tectorial membrane, as this

latter finding likely represents redistribution of posterior

fossa SDH. Although classically associated with severe

nAHT, Silvera et al. demonstrated that retroclival hema-

tomas were present in a third of cases with AHT in their

series [123] (Fig. 11).

The value of routine screening of the whole spine in

suspected AHT is being increasingly recognized. Studies of

MR limited to the cervical spine have demonstrated a

relatively low incidence of spinal SDH [29•, 126]; detec-

tion is significantly increased when imaging is extended

through the thoracolumbar spine [26, 28] (Fig. 11).

Although detection of spinal SDH is rarely associated with

a change in management, Choudhary et al. have reported

that the presence of spinal SDH is highly associated with

an inflicted rather than accidental mechanism (present in

46 % AHT vs. 1 % nAHT in their cohort), and therefore,

may be of diagnostic value.

Routine MR screening may also help to identify occult

bony injury. Barber et al. found that spine fractures were

present in up to 10 % of children with positive skeletal

surveys [122]; spine injuries were reported at all levels in a

recent review of spine injuries in AHT by Kemp et al. [30].

As it is known that MR increases the yield for detection of

spine fractures in AHT [130], whole spine MR may have

added value for identifying subtle bony injury in this

population. For these reasons, some authorities now sug-

gest that routine screening of the whole spine be performed

in any child receiving an MRI of the brain for suspicion of

AHT [28, 30, 120, 121].

Differential Considerations of AHT

Accidental HT

The primary differential consideration for AHT is nAHT.

A number of studies have analyzed the imaging injury

patterns present in children with AHT and nAHT in an

attempt to establish the association of particular injuries or

patterns of injury with AHT.

Two recent comprehensive systematic reviews [42••,

43•] demonstrated that SDH, HII, RH, and skull fracture

associated with intracranial injury were associated with

AHT; epidural hematoma, isolated skull fracture, and scalp

swelling were associated with nAHT; subarachnoid hem-

orrhage, focal contusion, and DAI were not consistently

associated with either etiology of trauma.

These findings were corroborated by Roach et al. who

recently published the largest single cases series of AHT to

date [131]. Among 2015 children with traumatic head

injury under age 5, they found that patients with AHT were

significantly less like to have skull fracture and epidural

hematoma, and significantly more likely to have SDH and

parenchymal injury.

Another recent case series of 345 children with trau-

matic head injury published by Kelly et al. [44] found that

patients with AHT were significantly more likely to have

absence of impact injuries, SDH, and HII. They found that

this association held only for children under 2 years of age,

suggesting that older abused children suffer more impact-

related AHT. When AHT was associated with impact

injuries in younger children, however, they were more

likely to be severe with associated intracranial injury

(Fig. 9).

It is important to address the potential effect of ‘circu-

larity of reasoning’ as it impacts the data on patterns of

injury with AHT and nAHT. To the extent that presence of

certain injuries (e.g., SDH) or particular patterns of injury

(e.g., SDH, RH, and HII) themselves led to the initial

categorization of head trauma as abusive or accidental, an

analysis of the association of these same features with

abuse will be spuriously strengthened.

Fig. 11 6-week-old male found down at home. MR of the brain

revealed diffuse HII, bilateral SDH, and bridging vein thrombosis.

Left intraretinal RH on dilated fundoscopy. a Sagittal STIR image

shows hyperintense signal in the nuchal ligament and underlying

posterior cervical fat (white arrows), consistent with ligamentous

injury. b Sagittal T1-weighted image shows mildly hyperintense

retroclival and thoracolumbar extra-axial collections (white arrows),

consistent with subdural hemorrhage
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In an attempt to control for this, Vinchon et al. published

an analysis of prospectively identified, corroborated cases

of head trauma in children under age 2 (45 confessed AHT

and 39 publicly witnessed nAHT) [132••]. Identical to the

aforementioned studies, they reported that SDH, HII, RH,

and absence of scalp injury were strongly associated with

AHT, while extracranial hemorrhage, fracture, and contu-

sion were highly associated with nAHT. These findings

suggest that the relationship between impulsive injury

patterns and AHT in children under age 2 is robust.

Birth-Related Trauma

A subset of nAHT is related to birth trauma. In a series of

41 consecutive patients with symptomatic birth injury,

Pollina et al. reported 73 % SDH, 25 % extracalvarial

hemorrhage, 20 % subarachnoid hemorrhage, 20 % intra-

parenchymal hemorrhage, and 5 % fracture [133]. There

was an increased risk of birth trauma with vacuum- and

forceps-assisted vaginal delivery.

Rooks et al. reported SDH in 46 % of asymptomatic

newborns MR within 3 days of birth, with lowest rates

reported with caesarian section and the highest rates

reported in assisted vaginal deliveries [134]. Lower rates of

detection have been reported in other studies with

decreased field strength [135] and longer time to initial

imaging [136]. Birth-related SDH in these studies were

generally dependent and thin (\ 3 mm) (Fig. 12). All

resolved within the first postnatal month [134, 136].

Evolution to chronic SDH was not demonstrated, as

expected given lack of predisposing factors [62•]. One

patient in the study by Rooks et al. had a new separate SDH

incidentally noted on a 2-week follow-up examination in

the context of benign enlargement of the subarachnoid

space, which subsequently resolved by 3 months.

Laghmari et al. reviewed over 2000 children born by

spontaneous vaginal delivery and demonstrated that nearly

one-third of children had RH [137]. These tended to be few

in number and localized to the optic disks and posterior

pole of the retina. There is currently no imaging data to

suggest that such RH is routinely visible by MR. Similar to

SDH, all cases of birth-related RH resolved within

1 month.

Non-Traumatic SDH

SDH is reported to occur in the context of numerous

underlying medical conditions, though these are rare.

Potential etiologies include vascular malformations,

hematologic malignancies, coagulopathy (Fig. 2), and

metabolic disorders such as Menkes kinky hair syndrome

and glutaric aciduria type I (Fig. 13). Awareness of

underlying medical conditions that might present with

spontaneous hemorrhage that can mimic AHT is crucial for

accurate diagnosis, and reinforces the notion that the

evaluation of AHT must be accomplished in a multi-dis-

ciplinary fashion on a case-by-case basis.

Fig. 12 4-day-old term female delivered by Cesarean section,

imaged for hypotonia. Sagittal T1-weighted image shows thin

subdural blood products along the occipital convexity and in the

posterior fossa (arrows), without mass effect. This finding is common

in the first postnatal month

Fig. 13 6-month-old male with developmental delay and macro-

cephaly, subsequently confirmed to have glutaric aciduria type I.

Axial T2-weighted image shows bilaterally enlarged perisylvian

subarachnoid spaces secondary to frontal and temporal opercular

hypoplasia and a left subdural collection (black arrows)
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Mimics

Normal Neonatal Imaging Features

Care must be taken not to interpret normal imaging features

of neonates and young infants as evidence of AHT. Normal

sutural prominence in the neonatal period, hypodense or T2

hyperintense unmyelinated white matter, and dense dural

venous sinus blood are potential pitfalls that can mimic

sutural diastasis, parenchymal edema, and sinovenous

thrombosis or layering SDH, respectively. Accessory

sutures can occasionally mimic fractures in children but

can usually be distinguished based on their frequent bilat-

erality, sclerotic borders, and serpiginous course [138].

Benign Enlargement of the Subarachnoid Space

(BESS)

From 0.5 to 0.8 in 1000, children will demonstrate mild to

moderate enlargement of the subarachnoid spaces in the

first 18 months of life, resulting in macrocephaly [139].

This appearance can easily be confused with hypodense

bifrontal SDHs, particularly on CT. A key discriminating

feature is the presence of normal subarachnoid vessels

traversing the enlarged fluid space in BESS; these vessels

are notably absent in SDH, in which case the subarachnoid

space is compressed over the cerebral convexities

(Fig. 14). Slight differences in signal intensity between the

different fluid spaces is often accentuated on the FLAIR

sequence, and the displaced dural-arachnoid membrane can

be well visualized on high-resolution steady-state free

precession sequences (CISS, FIESTA, and b-FFE) in

unclear cases.

It is worth noting that some publications suggest that

BESS can itself predispose to SDH in the setting of min-

imal or no trauma, and that the two can occasionally co-

exist. In two retrospective reviews of children diagnosed

with BESS on imaging, asymptomatic SDH was identified

in between 3 and 4 % [140••, 141].

Several retrospective case reviews have reported the

existence of acute symptomatic SDH in the setting of

trivial trauma in young children, with a majority occurring

in the setting of BESS [142–144]. In a prospective evalu-

ation of 164 children under age 2 presenting with symp-

tomatic SDH, 16 (10 %) were categorized as spontaneous,

among which 75 % were associated with BESS and

macrocephaly [41••]. Additional risk factors included sev-

ere dehydration and lumbar puncture with intracranial

hypotension.

These data should be interpreted with caution. 25 %

of patients with SDH in the setting of BESS in the series

by McKeag et al. manifested additional injuries sugges-

tive of physical abuse [140••]. In addition, many cases of

SDH deemed secondary to trivial trauma in retrospective

case reviews were associated with RH or went on to

develop diffuse encephalomalacia [142, 143], suggesting

a likelihood of missed AHT in some cases. Given this,

thorough clinical, ophthalmologic, laboratory, and radi-

ologic evaluation of all children with unexplained SDH

is warranted.

Conclusion

AHT is a common cause of morbidity and mortality in the

pediatric population, and imaging evaluation is crucial for

accurate diagnosis and prognostication. A comprehensive

review of the imaging of AHT has been provided. Recent

advances in the field of imaging of AHT have been

emphasized, including limitations of imaging for dating

AHT, emerging concepts in the evolution of SDH over

time, the importance of parenchymal lacerations as high-

specificity injuries in AHT, and the increasing utility of

MR for the detection of RH and spine injuries in AHT.

Understanding of the common patterns of abusive and

accidental injury can help increase accuracy of diagnosis,

both by increasing recognition of high-specificity injuries

and by preventing unwarranted concern in cases of clearly

concordant history and injuries.
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Fig. 14 7-month-old male imaged for macrocephaly. Axial T2-

weighted image demonstrates prominent bifrontal extra-axial spaces

with traversing vessels (white arrows), consistent with enlarged

subarachnoid spaces
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