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Abstract Today’s most prevalent bone disease in the

western hemisphere is osteoporosis. Predominantly post-

menopausal women and older men suffer from bone loss

caused by an imbalance in the physiological tissue renewal

process between bone formation and resorption. As a

result, osteoporosis is associated with fragility fractures,

disability, impaired bone regeneration and increased mor-

tality. The World Health Organization based the gold

standard for diagnosing osteoporosis on bone mineral

density (BMD) measurements using dual X-ray absorpti-

ometry. However, BMD measurements are limited in dis-

criminating subjects with and without osteoporotic

fractures and have been shown to only partly reflect suc-

cessful treatment of osteoporotic fractures. Bone micro-

structure is an integral determinant of bone strength.

Today, new high-resolution imaging techniques such as

high-resolution peripheral quantitative computed tomog-

raphy and high-resolution magnetic resonance imaging

make it possible to measure three-dimensional bone mic-

roarchitecture and volumetric bone mineral density with

high accuracy and a relatively low radiation dose.

Keywords Osteoporosis �Multidetector computed

tomography (MDCT) �Magnetic resonance imaging (MRI) �
Dark field imaging � High-resolution bone imaging

Introduction

The constant process of bone remodeling is a delicate

balance between bone resorption by osteoclasts and bone

formation by osteoblasts, which maintains bone mass

during adulthood. Osteoporosis is the most prevalent dis-

ruption of this complex system in our aging societies, and

is characterized by inherent bone loss and an increased risk

for fragility fractures, with sites most commonly affected

being the spine, wrist and hip [1]. The poor primary sta-

bility of the fragile bone in osteoporotic fractures results in

associated disability and increased mortality [2–4]. There is

an ongoing discussion on whether the regenerative capacity

of osteoporotic bone is likely to be additionally impaired.

With unfavorable healing conditions and an increased risk

for further bone fractures once a fracture has occurred,

consequences are drastic [5]. The rising prevalence of

osteoporosis and subsequent healthcare costs are burdens

on the individual level and socioeconomically [6].

Approximately 26 % of women aged C65 years and over

50 % of women aged C85 years are affected with post-

menopausal osteoporosis (PMO), and direct and associated

costs are estimated to reach $12–18 billion in the US [7].
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To counter these challenges, significant efforts are being

made to investigate and fully understand the underlying

etiopathology, a complex interplay of metabolic factors

and local tissue dynamics that exceed the compartmental

boundaries of the bone.

Accurate diagnosis and effective monitoring to evaluate

treatment response are crucial. The World Health Organi-

zation (WHO) based their diagnostic standard on bone

mineral density measurements (BMD) using dual X-ray

absorptiometry (DXA). Quantitative computed tomography

(QCT) is another common alternative to quantify BMD.

Both techniques compare individual values of bone density

expressed as grams of mineral per area or volume to the

peak bone mass of a reference cohort. However, these

quantitative measurements may insufficiently assess bone

health, as biomechanical strength depends on bone quality

parameters that may not be mirrored by density. Trabecular

and cortical microarchitecture, turnover, damage (e.g.,

microfractures) and mineralization play crucial roles in

bone stability. Consequently, these additional parameters

have been investigated to further investigate fracture

probability. The WHO population-based fracture risk

assessment tool (FRAX) [8] integrates clinical risk factors

to calculate the 10-year fracture probability, but does not

include bone strength and quality parameters [9]. Further-

more, the FRAX algorithm was shown to perform poorly in

men with osteoporosis [10]. High-resolution imaging pro-

vides visualization of the cortical and trabecular bone

microstructure and its three-dimensional rod- and plate-like

constituents, which have a size of approximately

50–200 lm, allowing assessment of bone quality.

Various imaging techniques have been introduced to non-

invasively evaluate bone architecture, such as micro com-

puted tomography (lCT) systems, high-resolution periphe-

ral quantitative computed tomography (HR-pQCT), high-

resolution multidetector computed tomography (MDCT)

and high-resolution magnetic resonance imaging (MRI).

Furthermore, bone structure may be further analyzed with

novel modalities such as quantitative ultrasound (QUS) and

dark field imaging, which are currently under investigation.

Techniques

Standard Techniques

The diagnostic gold standard for osteoporosis as defined by

the WHO has been based on the measurement of BMD.

Usually two skeletal sites are measured using DXA, typi-

cally the lumbar spine and the proximal femur [11]. DXA

measurements are well established and accurate, but do not

differentiate cortical and trabecular bone and do not reflect

bone quality parameters well [12•]. Computed tomography

(CT) uses reconstructed image intensity values represent-

ing the local X-ray attenuation. It allows for excellent

three-dimensional image contrast between soft and miner-

alized tissues. Standard clinical CT scanner systems

equipped with reference phantoms containing objects of

known hydroxyapatite concentrations for quantitative cal-

ibration can be used to assess BMD with quantitative CT

(QCT; Fig. 1). QCT permits separate characterization of

the trabecular and the cortical bone compartment, which

are usually analyzed in the lumbar vertebral bodies, L1–L3.

Trabecular QCT values can be interpreted similarly as

DXA results using reference cohorts. Average values

below 80 mg hydroxyapatite/cm3 are considered a diag-

nosis of osteoporosis, whereas values between 80 and

120 mg hydroxyapatite/cm3 indicate osteopenia [13].

However, QCT fails to explain the disparity found between

bone density and bone microarchitecture in assessing fra-

gility fracture risk: BMD has been shown to account for

approximately 70–75 % of bone strength, but the remain-

ing effect seems to be associated to other factors such as

bone architecture, tissue composition and trauma [14].

Saito et al. [15•] recently suggested reduced collagen cross-

linking as a potential explanation for reduced bone strength

despite normal BMD in diabetics. Furthermore, therapeutic

effects are also insufficiently reflected by changes in BMD:

studies investigating surrogate markers for bone strength

Fig. 1 QCT images (top: axial; bottom: sagittal) of the lumbar spine

showing ROIs for BMD quantification
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concluded that DXA-derived BMD is limited in predicting

fractures, indicating the need to identify the parameters

associated with fracture risk [16, 17].

High-Resolution CT Imaging Modalities

Microarchitecture has been described to be a significant

contributor to bone strength. Substance loss, trabecular

thinning, but also modified trabecular topology, such as the

change of plate-like trabeculae into rod-shaped trabeculae

and the loss of trabecular connectivity, result in the loss of

bone stability. The deterioration of cortical structures also

seems to contribute to increased fracture risk. Different

modalities based on CT technology are currently in use to

acquire high-resolution bone images evaluating micro-

architecture: lCT, HR-pQCT and MDCT. Bone trabeculae

have a diameter between about 50–200 lm, and the cor-

tical bone presents with a thickness between 0.2 and 5 mm.

Therefore, spatial resolution is the limiting factor of any

system to perform microstructure analysis.

Micro computed tomography (lCT) is a high-resolution

technique limited to in vitro studies. Small invasively

harvested bone biopsy cores from the iliac crest can be

analyzed with an isotropic voxel size below 8 lm to depict

trabecular microstructure [18]. However, there are signifi-

cant disadvantages due to the invasiveness and small

sample size, which are usually harvested from locations not

affected by fractures. Eckstein et al. [19] demonstrated that

morphological and mechanical properties vary among

anatomical locations, indicating site-specific patterns of

trabecular microarchitecture. Site-specific measurements at

adequate anatomical locations may therefore be less het-

erogeneous and more precise in predicting fracture risk.

In vitro and in vivo studies have shown that fracture risk is

assessed better by a combination of structural parameters

and BMD derived from site-specific high-resolution

imaging modalities [20–22].

High-Resolution Peripheral Quantitative CT

Since the year 2000, HR-pQCT devices have become

commercially available, specifically designed for the

imaging of bone microstructure in the peripheral skeleton.

HR-pQCT enables a non-invasive, low-radiation assess-

ment of bone providing information on the microarchitec-

ture and volumetric BMD in cortical and trabecular

compartments of the distal radius and distal tibia [23].

Currently, one manufacturer dominates the market for

commercially available scanners performing at a resolution

sufficient to analyze human bone microarchitecture in vivo

(SCANCO Medical AG, Brüttisellen, Switzerland). HR-

pQCT allows for a significantly higher SNR and spatial

resolution compared to MDCT and MRI with an isotropic

spatial resolution of 82 lm3 (the actual spatial resolution is

approximately 130 lm near the center of the field of view)

in vivo with relatively low effective radiation doses of

approximately 4 lSv per scan, a dose that is several orders

of magnitude lower compared to whole body CT [24]. A

great benefit of HR-pQCT is the possibility for morpho-

metric analysis similar to classical histomorphometry,

calculated from the binary trabecular bone images [25]. To

permit data interpretation, normative databases providing

reference for bone microarchitecture data had to be

established enabling population-based comparisons of

individual measurements: the Calgary cohort of the (Ca-

MOS) cohort, the Rochester, Minnesota, cohort and the

Cambridge, UK, cohort [26, 27]. Unlike MRI and MDCT,

which are limited by a large slice thickness compared to

their in-plane resolution, HR-pQCT enables direct mea-

surements of microarchitecture parameters in a fairly large

bone volume and can be paired with computer-based finite

element analysis modeling (FEM) for non-invasive

assessment of fracture risk. HR-pQCT has been shown to

be able to differentiate between women and men with and

without fractures and has increased our understanding of

bone architecture and its structural changes related to age,

gender, various metabolic disorders and in response to drug

therapies [27–30].

Due to high acquisition and maintenance costs and the

need for regular phantom calibration, only few systems are

clinically used, and currently most scanners are found at

research institutions. This is in part because the relatively

long scan times (approximately 3 min) frequently result in

motion artifacts. Furthermore, the technique is limited to

the evaluation of extremities, providing no information

about the more central sites commonly affected by osteo-

porotic fragility fractures.

Multidetector CT

Multidetector CT is routinely applied in clinical practice,

but to achieve adequate spatial resolution at central regions

of the skeleton, considerable radiation doses are required,

limiting the technique’s applicability in vivo. Studies

examining vertebral microstructure using high-resolution

MDCT reported estimated effective doses in the range of

3 mSv, compared to an exposure of approximately

0.1–0.3 mS delivered through a standard QCT of the

lumbar spine [31]. However, the radiation doses can be

significantly reduced using novel iterative reconstruction

algorithms [32, 33]. Baum et al. [20] have demonstrated in

a study conducted on 187 proximal femur specimens that

models combining DXA and MDCT-derived trabecular

bone structure parameters performed better at predicting

failure load than DXA alone. Furthermore, FEMs from

in vivo MDCT spine images have been shown to reliably
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assess bone strength and to differentiate subjects with and

without fragility fractures better than BMD measurements

alone [22, 34]. In studies measuring the vertebral bone

strength assessing the therapeutic effects of teriparatide,

alendronate and risedronate, MDCT-based FEMs (as

shown below) also provided more information than BMD

measurements alone [35, 36].

Magnetic Resonance Imaging

Bone tissue contains relatively low numbers of protons and

consequently yields low MR signal, appearing dark in most

clinically used sequences. The MR signal of bone marrow

on the contrary is relatively high, depending on the fat

content and the sequence used. Therefore, bone structures

can be well contrasted against the background fatty marrow

signal, and information on the microarchitecture of the

bone can be extracted from the acquired data. MRI lacks

ionizing radiation, but has mainly been used to evaluate the

peripheral skeletal sites such as the radius and tibia

(Fig. 2). A resolution with voxel sizes of up to 137 9

137 9 410 lm3 has been reported at the radius [37, 38].

Spatial resolution and image quality highly depend on the

field strength, the coils and the sequence used. MRI-

derived trabecular bone structure parameters have been

shown to be superior to MDCT in assessing bone strength

[39] and performed particularly well at high filed strength

[40]. Different from MDCT, there is no direct linear rela-

tionship between tissue signal and mineralization of the

bone. Thus, advanced post-processing for quantification

and standardization has to be applied. Furthermore, the

interdependency of SNR and spatial resolution has not

been fully clarified, and studies have suggested systematic

changes in the extracted structural parameters that may be

normalized using linear transformations [41]. However,

other studies claim that these errors may be SNR-inde-

pendent for large ranges [42].

MR-based structural parameters of the radius have been

shown to improve the prediction of radial bone strength,

outperforming DXA-derived BMD [43]. With the more

widespread use of high-field MRI and progress in sequence

and coil development, previous limitations of deeper body

locations such as low SNR and radio frequency signal

attenuation by surrounding tissue can now be overcome

[44]. Studies have shown promising results, but evaluation

of common fracture sites such as the proximal femur

remains challenging because of the presence of hemato-

poietic bone marrow [21]. Annihilating the positive back-

ground contrast of fatty bone marrow with its dark signal,

hematopoietic marrow limits the visualization of the tra-

beculae. Its content in vertebral bodies is even higher,

resulting in insufficient contrast to depict microstructures.

Additional bone marrow quantification using MR

spectroscopy to evaluate bone marrow fat content may

complement osteoporosis imaging [45, 46]. A study by

Wehrli et al. [47] demonstrated that MRI-based trabecular

bone structure parameters provide a promising tool to

evaluate structural treatment responses. The parameters

revealed drug effects partly not captured by BMD mea-

surements, indicating feasibility to monitor osteoporosis

therapy. Chestnut et al. [48] showed similar results of

successful osteoporotic treatment monitoring at the radius

using MRI-based trabecular bone structure parameters.

Parameters to quantify bone structure

To identify the cortical and trabecular bone compartments,

regions of interest (ROIs) usually have to be defined first,

and images for longitudinal studies need to be registered to

minimize reproducibility errors. Various structural param-

eters have been investigated to assess bone microstructure:

scale parameters, represented by bone volume, thickness of

the trabeculae and the spaces in between; topological

parameters differentiating plate- and rod-like trabeculae,

and orientation parameters characterizing the amount of

anisotropy within the depicted volume. Standard structural

parameters can be computed from both MDCT and MR

images similar to classic bone histomorphometry [49, 50]:

bone volume divided by total volume (BV/TV; bone vol-

ume fraction), trabecular number (Tb.N), trabecular sepa-

ration (Tb.Sp) and trabecular thickness (Tb.Th) [51].

Based on the two peaks of the signal intensity histogram

of high-resolution images and a set threshold discriminat-

ing bone and marrow voxel values, the number of bone

voxels and total voxels within an ROI can be extracted. If

partial volume effects merge the two distinct peaks of the

intensity histogram, binarization of the image into bone

and bone marrow using an empirically defined threshold

becomes necessary (Fig. 3). Commonly an optimized,

global threshold is chosen for CT images to avoid over-

estimation of bone volume in subjects with dense trabec-

ular bone or underestimation in osteoporotic subjects.

Bauer et al. [52] and Baum et al. [20] suggested a global

threshold of 200 mg hydroxyapatite/cm3 on femur speci-

mens. MR images have also been binarized for trabecular

bone structure analysis using the signal intensity of the

cortical bone in MR images as a reference, as published by

Majumdar et al. [53]. Changing thresholds for image bi-

narization can significantly influence the measured values

of trabecular bone structure parameters in MDCT and MR

images as they vary because of partial-volume effects and

subsequent SNR changes. Because of limited spatial reso-

lution, MDCT and MRI structure parameters cannot depict

the true trabecular structure, and measures are therefore

labeled as apparent values. Krug et al. [54] have proposed a
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3D approach without the need for image binarization: By

computing 3D trabecular bone thickness maps, the number

of pixels with thickness values different from zero can be

counted and divided by the total number of pixels in the

volume.

Furthermore, alternative trabecular structure parameters

that do not require a threshold have been suggested, such

as fuzzy logic [55, 56], the scaling index method [57] and

geodesic topological analysis [58]. The scaling index

method analyzes the geometry of each voxel and whether

they are rod-like or plate-like structures (Fig. 4). Mueller

et al. [59] demonstrated the scaling index method signifi-

cantly improves diagnostic performance, differentiating

postmenopausal women with and without osteoporotic

vertebral fractures. Saha et al. [60] introduced a fuzzy

distance transformation, and Carballido-Gamio and

coworkers [55] introduced fuzzy clustering analysis for

trabecular bone analysis, based on the principle that voxels

can be both part of the bone compartment and of the

marrow compartment at the same time. Lastly, geodesic

topological analysis assesses the topology and anisotropy

of the trabecular bone network without binarizing the

image, based on the fact that osteoporosis is characterized

by increased fenestration of trabecular plates and connec-

tivity loss [58]. Aside from the aforementioned morpho-

metric parameters, additional parameters such as fabric

[61], a trabecular anisotropy measurement, texture param-

eters derived from binarized images [62] and Minkowski

functionals [63] as non-linear topological parameters

evaluating volume, surface area, mean integral curvature

and Euler characteristics have been described.

Cortical bone can also be evaluated separately: averages

of the cortical thickness (in mm), cross-sectional area

(mm2), length (mm) and surface (mm2) can be calculated

[64, 65]. More recently, the evaluation of cortical porosity

has gained attention, which has been shown to be a

promising parameter of cortical stability derived from HR-

pQCT [66]. By influencing the mechanical properties of

cortical bone, it may serve as an indicator for osseous

changes related to metabolic disease. In a study on post-

menopausal women with and without fragility fractures,

Patsch et al. [67•] recently demonstrated that diabetic

women with fragility fractures showed greater intracortical

pore volume, cortical thinning and cortical porosity than

diabetic women without fractures (Fig. 5). However, at

Fig. 2 Representative MR images of the forearm of a healthy (left) and osteoporotic (right) patient acquired by using a three-dimensional

gradient echo sequence (in-plane resolution 195 9 195 lm2, axial slice thickness 500 lm) at 1.5 T

Fig. 3 Binarized axial image of a lumbar vertebral body derived

from MDCT
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present cortical porosity cannot be assessed in clinical

MDCT because of limited spatial resolution. Goldenstein

et al. [68] investigated intracortical porosity using MRI

compared to HR-pQCT: Cortical porosity did not vary

greatly between the subjects analyzed, but different types

of cortical pores with varying content were found.

Finite Element Modeling (FEM)

An alternative to the structure measurements described

above to evaluate bone strength is to calculate elastic and

shear moduli using finite element models (FEM). FEMs

can be computed within defined ROIs of trabecular or

cortical bone, or for both compartments combined, based

on 3D data from HR-pQCT, MDCT and MRI [69–71].

FEMs are based on the volumetric distribution of density

parameters and bone geometry. Loading conditions are

then implemented into the model, simulating either static

loading conditions or a localized impact caused by a fall to

the side, e.g., the greater trochanter of the femur. Various

types of FEMs have been used. FEMs of the spine and

proximal femur have been studied based on MDCT images

[69]. Furthermore, micro-FEMs (lFEMs) have been com-

puted from in vivo MR images [72]. Extensive computa-

tional power and post-processing resources are needed to

perform the complex processing, and in some cases inter-

polation to higher apparent resolution is required. So far,

FEM and lFEM analyses have been mainly limited to

research institutions, but hardware and software improve-

ments allow for future clinical application. Recent

advancements, such as the new p-version and the finite cell

method, have improved the h-version simulation algorithm,

providing more accurate prediction of bone stability.

Current Trends and Future Developments

Both clinical MDCT and MRI so far have failed to provide

true bone microstructure because of insufficient spatial

resolution and low SNR in areas with red bone marrow in

MRI. However, microarchitecture and structural parameters

obtained by MDCT and MRI have been shown to be highly

Fig. 4 Representative micro-CT images of bone samples from a healthy (top) and an osteoporotic (bottom) donor demonstrating the color-coded

visualization of the scaling index a representing the local dimensionality, which is increasing from blue over green to red color (Color figure online)

Fig. 5 Images derived from HR-pQCT demonstrating healthy tra-

becular and cortical bone structures (left) compared to a woman with

type 2 diabetes showing increased cortical porosity and reduced

trabecular microarchitecture. Images courtesy of Janina Patsch,

University of California, San Francisco, CA, USA
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correlated to lCT and HR-pQCT measurements and to

predict bone strength determined by FEM similarly well [38,

73]. Bauer et al. [74] used 20 cylindrical trabecular bone

specimens harvested from formalin-fixed human thoracic

spine vertebrae and obtained lCT images (isotropic voxel

size: 20 lm3) as well as corresponding MDCT images with a

voxel size of up to 230 9 230 9 500 lm3. Comparison of

trabecular bone structure parameters obtained from lCT and

MDCT (Fig. 6) showed R2 values up to 0.84. In addition,

trabecular bone structure parameters derived from MDCT

were highly correlated with biomechanical properties

derived from FEM analysis (R2 values up to 0.81). Images of

a spine specimen acquired with MDCT and HR-pQCT as

standard of reference (Fig. 7). Similar results were presented

for specimens harvested from the calcaneus by Diederichs

et al. [75]. Issever et al. [76] compared the performance of

64- and 320-slice MDCT scanners for the depiction of tra-

becular bone architecture and found no statistically signifi-

cant differences.

MRI-derived structural measures also demonstrated high

accordance with lCT. Krug et al. [77] used ex vivo and

in vivo peripheral trabecular bone structure parameters

derived from 3-T MRI compared to HR-pQCT as standard

of reference. Eight human specimens and 11 volunteers

were imaged with both modalities at a voxel size of

156 9 156 9 500 lm3 at 3 T MRI and 82 lm3 at HR-

pQCT. MRI- and HR-pQCT-derived bone structure

parameters showed high compliance (R2 [ 0.8). Another

study conducted by Phan et al. [40] investigated trabecular

bone structure parameters at the calcaneus derived from

in vitro lCT compared to 1.5- and 3-T MRI. The corre-

lation of bone microstructure parameters derived from

gradient echo sequences at 3-T MRI with lCT measures

was higher than the association between bone structure

parameters obtained at 1.5-T MRI and lCT measurements.

SNR increase and spatial resolution at high field

strengths are a trade-off, and larger susceptibility effects

alter the structural measurements because of artificially

thickened trabeculae. Krug et al. investigated the impact of

SNR on bone imaging using high-field MRI and found a

significant SNR increase at 7 T [78]. Baum et al. [79]

found similar reproducibility errors at 1.5- and 3-T MRI,

but absolute parameter values were significantly different,

so it remains questionable whether microarchitecture

parameters derived from 3- and 1.5-T MRI are comparable.

Various novel imaging techniques and continuous

refinement of conventional hardware as well as software

and post-processing algorithms enrich our understanding of

bone health, pushing the boundaries of imaging resolution

and functional quantification. A new generation of flat

panel scanners has been introduced, combining standard

MDCT gantries with two-dimensional flat panel detectors

allowing for fast continuous acquisitions at high spatial

resolution [80, 81]. Iterative reconstruction algorithms may

allow for radiation dose reduction of clinical MDCT

without compromising the resolution of trabecular and

cortical structures.

Quantitative Ultrasound

Quantitative ultrasound has emerged as a promising tech-

nique without ionizing radiation, and QUS-based mea-

surements have been shown to be highly correlated with

BMD: Phalangeal bone structure has been shown to

influence the velocity (SoS), shape (number of peaks) and

amplitude of the ultrasound signal [82–84]. QUS parame-

ters measured are bone transmission time (BTT) and pure

speed of sound (pSoS). QUS was shown to perform well in

fracture risk prediction, and based on QUS measurements,

subjects with and without spine and hip fractures could be

differentiated [85, 86]. Ingle et al. [87] have demonstrated

good precision over time for the follow-up monitoring of

osteoporosis therapies with different drugs such as

alendronate and oestradiol. Unfortunately, QUS is limited

Fig. 6 Comparison of lCT image (resolution: 8 lm isotropic) with images derived from MDCT (resolution: 0.2 9 0.2 9 0.5 mm3) and MDCT

with soft tissue simulation at the hip
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to peripheral sites (the radius, tibia, calcaneus and the

phalanx are currently being studied), and the clinically

most important fracture sites (spine and hip) cannot be

evaluated directly [88].

Phase-Contrast and X-Ray Dark-Field Imaging

Recently, it has been shown that complementary conven-

tional X-ray contrast modalities such as phase-contrast and

dark-field contrast may be applied in a clinical environment

[89•]. Phase-contrast imaging has been shown to be a

sensitive soft tissue imaging modality. Dark-field contrast

however may have great potential in bone imaging, pro-

viding additional information about the micro-morphology.

Dark-field imaging is based on the physical process of

scattering at features in the micrometer range. Without

resolving the individual features directly, it allows drawing

conclusions about the number of structures, their size and

their anisotropy [90]. In addition to plain acquisitions,

tomography can also be performed [91].

One commonly used experimental setup requires a so-

called Talbot-Lau interferometer, consisting of three grat-

ing structures with periods in the lm range (Fig. 8). A first

grating ensures that coherence requirements are met. It is

followed by two absorbing gratings, which introduce a

periodic phase shift to the incoming x-ray beam. The phase

shift is then converted into an intensity modulation using

the so-called fractional Talbot effect, which is analyzed

with the last grating. By moving the gratings, detector

images can be recorded for different positions, allowing for

the extraction of three registered distinct contrast channels

from each data set [90, 92].

Several proof-of-principle studies have been conducted

investigating the dark-field signal in the presence of

emphysema [93], contrast agents [94] and micro-calcifi-

cations [95]. As the grating interferometer is only sensitive

to scattering perpendicular to the grating lines, local

structure orientation can be deduced: Representative

directional dark-field images (DDFI), also termed X-ray

vector radiographs (XVR) (Fig. 9). They demonstrate the

color-coded orientation of trabecular structures for differ-

ent projections of a femoral trabecular bone cube. Direc-

tional dark-field imaging techniques are potentially useful

for analyzing the osseous microarchitecture and compatible

with standard clinical devices. However, future studies

have to demonstrate technical feasibility with a limited

Fig. 7 Corresponding MDCT

(a) and HR-pQCT (b) images of

a spinal segment unit spatial

resolution: 250 9 250 9

600 lm3 versus 41 lm3

Fig. 8 Sketch of a typical

X-ray grating interferometry

setup. X-ray tube (X) and

detector (D) encasing the

sample (S) placed between three

gratings (G0, G1, G2), which

are required to extract the three

different contrast types:

attenuation contrast, phase

contrast and dark-field contrast
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radiation dose and clinical benefits extending beyond those

of MDCT.

Conclusion

In the recent years, progress in high-resolution bone

imaging has been tremendous. CT and MRI systems are

widespread in clinical practice and are therefore potentially

available for bone microstructure analyses. Bone microar-

chitecture parameters and finite element model data

derived from high-resolution CT images, MDCT data and

MR images have improved the assessment of trabecular

and cortical bone architecture beyond BMD measurements,

allowing for more accurate diagnosis with limited radiation

exposure. In addition, microstructure parameters have been

shown to be more sensitive to structural changes associated

with pharmacotherapy effects compared to BMD mea-

surements alone and thus may also be more effective in

monitoring treatment.

Newly developed hardware, advancements in image

post-processing, MRI scanners with high field strengths of

up to 7 T in combination and newly developed software

such as UTE sequences create new promising possibilities

in evaluating bone microstructure of both trabecular and

cortical bone compartments also at more central body sites.

HR-pQCT provides in vivo images with extremely high

resolution from peripheral sites at short acquisition times.

Novel reconstruction algorithms using iterative recon-

struction may allow for reliable assessment of trabecular

bone at decreased radiation dose levels with MDCT

imaging, and new flat panel scanners are available.

In conclusion, high-resolution bone imaging is crucial

for the investigation of bone disease and the underlying

etiopathologies.
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