
Progress in Artificial Intelligence
https://doi.org/10.1007/s13748-024-00332-1

REGULAR PAPER

A comparative study of linear type multiple instance learning
techniques for detecting COVID-19 by chest X-ray images

Matteo Avolio1,3 · Antonio Fuduli1,3 · Eugenio Vocaturo2,3 · Ester Zumpano2,3

Received: 28 February 2024 / Accepted: 6 July 2024
© The Author(s) 2024

Abstract
At the end of 2019, the World Health Organization (WHO) referred that the Public Health Commission of Hubei Province,
China, reported cases of severe and unknown pneumonia. A new coronavirus, SARS-CoV-2, was identified as responsible
for the lung infection, called COVID-19 (COronaVIrus Disease 2019). Although the definitive COVID-19 diagnosis is made
through specific molecular tests, an early diagnosis by imaging became crucial to contain the spread, morbidity and mortality
of the pandemic. In such context, chest X-ray radiography, as an element that assists the diagnosis allowing also the follow-up
of the disease, plays a very important role since it is themost easily available and least expensive alternative. This work focuses
on applying different linear type instance-level Multiple Instance Learning techniques to discriminate between COVID-19
and common viral pneumonia chest X-ray images, which is a difficult task due to the strong similarity characterizing the two
classes. A relevant advantage of such approaches is that they are also suitable in terms of interpretability, as they easily allow
clinicians to identify abnormal subregions in a positive radiographic image. Numerical experiments have been performed on
a set of 200 images, obtaining the following results: accuracy = 95%, sensitivity = 99.29%, specificity = 91.24% and MCC
= 0.9. The used algorithms appear promising in practical applications, taking into account their high speed and considering
that no particular pre-processing techniques have been employed.
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1 Introduction

Very recently the world has coped with the COVID-19
pandemic. COVID-19 is caused by a Severe Acute Respira-
tory Syndrome Coronavirus (SARS-CoV-2) and its common
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symptoms are: fever, dry cough, fatigue, short breathing, van-
ishing of taste, loss of smell. The first known case of this
Coronavirus disease was reported in Wuhan, China in the
last days of 2019 [35] and, since then, the virus propagated
all over the world. The main sources of infection are asymp-
tomatic (but infected) people which can become a source
of spread. Transmission mainly occurs by air through the
droplets, but also by indirect transmission, such as through
contact with contaminated surfaces. On March 11, 2020 the
World Health Organization (WHO) declared the epidemic
a global emergency (pandemic). Lockdown measures and
drastic restrictions of movements and social life affected the
lives of billions of people. COVID-19 was the most sig-
nificant global crisis since the Second World War, but its
repercussions exceeded those of a war.

COVID-19 has interstitial pneumonia as the predominant
clinical manifestation. The interstitium is a particular entity
located between the alveolus and the capillaries, which is
investigated mainly with radiological techniques. Radiolog-
ical imaging does not represent a diagnostic criterion for
SARS-CoV2 infection, but it is able to highlight any pneu-
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monia that can be associated with it, and in this case it is
possible to see an opacity on the radiograph, called thick-
ening. In the first four days (initial phase) the X-ray image
is characterized by blurred thickening in the lower part of
the lungs. From the fifth to the eighth day, there may be a
clinical worsening of the patient who will present cough and
difficulty in breathing (worsening dyspnea): in such case,
the radiography image shows a greater extension of the pul-
monary thickening and the lungs, so to speak, appear more
and more white (Fig. 1).

Differently from computer tomography, X-ray imaging is
cheaper and easier to perform: this simple and widely avail-
able imaging test can actually tell a lot about patient’s clinical
status and whether the COVID-19 patient requires hospital-
ization for mechanical ventilation or intubation. Finally a
last, but non negligible, aspect is that the X-ray machines
(even portable) are much more available also in poor and
developing countries.

Table 1 summarizes the main clinical features which can
be detected by any chest X-ray radiography of patients
affected by COVID-19, reporting also the major pros and
cons relating to its adoption.

As confirmedby [51], artificial intelligence systems nowa-
days play a very important role in supporting early diagnosis,
illness evaluation and treatment response assessment for dif-
ferent diseases. As a consequence, we believe that using
medical imaging techniques, in combination with more
sophisticated machine learning systems, can effectively help
also in the diagnosis and the follow-up of patients with
COVID-19.

Since 2020 up today, several works have been published
on COVID-19 detection bymeans of chest X-ray image clas-
sification. Most of them are convolutional neural network
(CNN) approaches or, more in general, deep learning tech-
niques. One of the first papers in this field is [27], where two
algorithms were presented, including a deep neural network
on fractal features of the images and CNN methods directly,
the latter providing an accuracy of 93.2% in discriminating
between COVID-19 and normal X-ray images.

In [4] an enhanced dense convolutional network (Dense
Net) was proposed, while in [7] a new approach based on
existing deep learningmodels was used, focusing on enhanc-
ing the pre-processing stage. In [37] the authors proposed
a method based on an optimized robust CNN architecture,
while in [45] a linear regression approach was designed in
addition to a deep CNN, the former providing an accuracy
of 97.6% for discrimination between healthy and COVID-
19 patients. In [46], a combination of CNN, support vector
machine (SVM) and Sobel filter was proposed on 1332
images, starting from 333 original images (77 images of
COVID-19 patients and 256 images of normal subjects),
whose number was increased to 1332 by a data augmentation
operation. Three augmentation strategies (rotation, random

noise and horizontal flips) were also adopted in [26], while
a fuzzy logic based on deep learning approach was pro-
posed in [30] to differentiate between images of patients with
COVID-19 pneumonia and with interstitial pneumonias not
related to COVID-19, obtaining an accuracy of 80.9%. In
[31], an evolutionary deep learning approach was designed
to discriminate between COVID-19 and healthy patients,
obtaining an accuracy of 98.57%. In [32] a stacked ensem-
ble of four heterogeneous pre-trained computer vision deep
learning models was presented, while in [38] a new deep
learning framework was designed, based on the fusion of a
dense convolutional network and a capsule neural network. In
[17], a new pre-processing model for COVID-19 images was
analyzed and a feature extraction was performed according
to RGB values. In [42] a screening system was developed to
differentiate among COVID-19, common viral pneumonia,
bacterial pneumonia and normal chest X-ray images, using
two different stages. The first stage is a pre-processing phase
involving bone suppression and lung segmentation models,
the former investigated also in [43]. The second stage is the
classification task, based on a CNN system.

More recently, in [29] a deep learning method based on
a custom CNN was proposed, utilizing dropout and batch
normalization to enhance the performance and to reduce the
overfitting. The proposed approach achieved a classification
accuracy of 98.19% for discriminating among COVID-19,
normal and common viral pneumonia images. In [48] an
appropriate CNNmodel was enhanced using a feature fusion
strategy from multi-modal imaging datasets and an SVM
classifier was employed to discriminate between COVID-
19 and healthy people, achieving an accuracy of 98.7%. In
[22] after a pre-processing phase, the classification algorithm
uses pre-trained CNNmodels, achieving an accuracy of 95%
in the binary case between normal and COVID-19 X-ray
images, while in [47] a densely attention mechanism-based
network was proposed.

Other more general works on deep learning methods for
COVID-19 X-ray classification are [33, 34, 49], while a sur-
vey on applying machine learning techniques in this field is
reported in [19].

In this paper we present a comparative study of some
instance-level Multiple Instance Learning (MIL) techniques
applied to COVID-19 detection by means of chest X-ray
images. As observed in the above literature review, most of
the works in this field are deep learning models based on
neural networks. Although the neural network approaches
usually work well, on the other hand these models generally
require a lot of data in the learning phase and, moreover, they
are often uninterpretable, where by interpretability we mean
the definition reported in [36], that is the degree to which an
observer can understand the cause of a decision. Vice versa,
as we will see in the next section, MIL approaches (espe-
cially the instance-level ones) are easily interpretable and
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Fig. 1 Normal and COVID-19 X-ray images: a normal case, b COVID-19 at early stage, c COVID-19 at advanced stage [25]

Table 1 Clinical COVID-19 features of chest X-ray radiography: main advantages and disadvantages

Main clinical features Advantages Disadvantages

• Ground glass opacity (GGO) pulmonary nodules • Easy to perform at the bed
of the patient for
follow-up

• Insufficient sensitivity to
identify low density GGO

• Interstitial changes

• Consolidation • Availability • Unable to detect pulmonary
embolism and crazy
paving

• Bilateral pneumonia

• Post-infiammatory focal atelectatis

consequently more suitable for image classification: in fact,
once the discrimination task is performed, it is not difficult
to practically interpret why an image is classified positive or
negative. In addition, even though screening for COVID-19
no longer exists in most countries, we believe that this work
is still relevant because it proposes to clinicians, if necessary,
a new rapid and automatic approach to discriminate between
different pneumonia.

The paper is organized in the following way. In the next
section we recall the main concepts characterizing the MIL
paradigm. In Sect. 3we describe some recent linear typeMIL
techniques, that we have adopted in our numerical exper-
imentation detailed in Sect. 4 and aimed at discriminating
between COVID-19 and common viral pneumonia chest X-
ray images. Finally some conclusions are drawn in Sect. 5.

2 Multiple instance learning

Multiple Instance Learning [28] (MIL) is a technique con-
sisting in classifying sets of points: such sets are called bags
and the points inside the sets are called instances. In com-

parison with the standard supervised classification, the main
characteristic of a MIL approach is that in the learning phase
only the class labels of the bags are known, whereas the class
labels of the instances are unknown.

MIL techniques are applied in different contexts such as
in bankruptcy prediction, image classification, text classifi-
cation, speaker identification and so on. In particular, the first
MILproblemencountered in the literature [21] concerned the
classification of drug molecules (bags), on the basis of the
possible three-dimensional conformations (instances) they
can assume.

We focus on MIL classification with two classes of bags
(positive and negative) and two classes of instances (positive
and negative), using the so-called standard MIL assumption,
which considers positive a bag containing at least a posi-
tive instance and negative a bag containing only negative
instances. Such assumption fits very well diagnostic imag-
ing (see [39]), where a patient is classified non-healthy (that
is positive) if his/her medical image (bag) contains at least an
abnormal subregion and is considered healthy (that is nega-
tive) if all the subregions forming his/her medical image are
normal.
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In the literature, for solving a MIL problem, there exist
mainly three kinds of approaches (see [5, 18]). The first one is
the bag-level approach where each bag is treated as a global
entity, while the second one is the instance-level approach
where the classification is performed in the instance space,
obtaining the class label of each bag as aggregation of the
class labels of the corresponding instances. The last approach
is a compromise between the two previous ones: it consists
in representing each bag by one of its instances, that will be
successively used to perform the classification process.

Some recent MIL works in diagnostic imaging are [11,
15, 16, 50]. In particular, in [11] a MIL approach has been
adopted for melanoma detection on clinical data constituted
by some color dermoscopic images, with the aim of discrimi-
nating betweenmelanomas (positive bags) and common nevi
(negative bags) images. Extensive numerical experiments,
performed on a dataset constituted by 80 melanomas and 80
common nevi images, provided an accuracy of 92.5%, with
sensitivity and specificity equal to 97.5% and 87.5%, respec-
tively. These results encourage to investigate on the possible
use ofMILapproaches also inCOVID-19detection bymeans
of chest X-rays images, which is the scope of our study focus-
ing on the discrimination between COVID-19 and common
viral pneumonia patients, which is not an easy task due to
the similarity of the X-ray images in the two classes.

TheMIL techniques thatwe adopt to this end are described
in the next subsection and fall into the instance-level class.All
of them are designed to satisfy the standardMIL assumption,
introduced above. As mentioned in the introduction section,
the instance-level MIL techniques are really suitable in diag-
nostic imaging, especially in terms of interpretability: in fact
an instance-level approach is aimed at assigning a label to
each instance inside the bags, making a bag positive in case
at least one of its instances is classified positive. Since in
the MIL perspective the images are identified with the bags
and the subregions forming the images are the corresponding
instances, this criterion, based on the standard MIL assump-
tion, allows the doctors to identify abnormal subregions in a
positive X-ray image.

3 Some recent MIL linear type approaches

In this section we describe some recent MIL techniques, that
wehaveused for our comparative study, aimed at discriminat-
ing between COVID-19 and viral pneumonia X-ray images.
All these approaches provide a linear type separation of the
bags, starting from the standard MIL assumption. In particu-
lar,while three of them (MIL-RL,mi-SPSVMandMIL-kink)
provide a separation hyperplane, the last one (MI-POLY)
separates the positive and the negative bags by constructing
a polyhedron, based a prefixed finite number of hyperplanes.

We use the following notation.Wedenote by uT v the inner
product between two n-dimensional real vectors u, v ∈ R

n

and by ‖w‖ the Euclidean norm of vector w ∈ R
n . We

indicate by m the number of positive bags, by k the num-
ber of negative bags and by x j ∈ R

n a generic instance
characterized by n features. Finally, we denote by J+

i , for
i = 1, . . . ,m, the index set corresponding to the instances of
the i-th positive bag and by J−

i , for i = 1, . . . , k, the index
set corresponding to the instances of the i-th negative bag.

3.1 MIL-RL

Algorithm MIL-RL [9] is an instance-level MIL technique,
providing a separation hyperplane of the type:

H(w, b)
�= {x ∈ R

n | wT x + b = 0}, (1)

where w ∈ R
n is the normal to the hyperplane and b ∈ R is

the bias. The algorithm is based on a heuristic solution to the
following SVM type model introduced in [6]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
y,w,b

1

2
‖w‖2 +C

m∑

i=1

∑

j∈J+
i

max{0, 1 − y j (w
T x j + b)}

+C
k∑

i=1

∑

j∈J−
i

max{0, 1 + (wT x j + b)}

∑

j∈J+
i

y j + 1

2
≥ 1 i = 1, . . . ,m

yj ∈ {−1,+1} j ∈ J+
i , i = 1, . . . ,m,

(2)

where the unknowns y j represent the class labels to be
assigned to the instances of the positive bags. As in the
standard SVM approach, the positive parameter C tunes the
weight between the maximization of the margin, obtained by
minimizing the Euclidean norm of w, and the minimization
of the misclassification errors of the instances, given by the
second and the third term of the objective function. Finally,
the constraints

∑

j∈J+
i

y j + 1

2
≥ 1 i = 1, . . . ,m (3)

impose that, for each positive bag, at least one instance should
be positive (that is with label equal to +1).

Note that, when m = k = 1 and y j = +1 for any j ,
problem (2) reduces to the classical SVMquadratic program.
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MIL-RL is based on solving successive Lagrangian relax-
ation problems of (2), obtained by relaxing constraints (3). In
[9] it has been shown that, considering the Lagrangian dual
of (2), in correspondence to the optimal solution there is no
duality gap between the primal and dual objective functions.

3.2 mi-SPSVM

Algorithm mi-SPSVM, recently introduced in [13, 14],
combines the nice properties exhibited for supervised classi-
fication by the SVM technique in terms of accuracy, and by
the proximal support vector machine (PSVM) approach [24]
in terms of computational complexity. It computes a separat-
ing hyperplane of the type (1) by solving, at each iteration,
the following quadratic problem:

min
w,b

1

2

∥
∥
∥
∥

w

b

∥
∥
∥
∥

2 C

2

∑

j∈J+
[1 − (wT x j + b)]2

+C
∑

j∈J−
max{0, 1 + (wT x j + b)}, (4)

by varying of the sets J+ and J−, which contain the indexes
of the instances currently considered positive and negative,
respectively. In the separable case, while the third term of
problem (4) makes the hyperplane

H−(w, b)
�= {x ∈ R

n | wT x + b = −1} (5)

a supporting hyperplane for the instances indexed by J−
(as in the standard SVM), the second term maximizes the
proximity of the positive instances (indexed by J+) around
the hyperplane

H+(w, b)
�= {x ∈ R

n | wT x + b = 1}. (6)

Moreover, differently from SVM, in the PSVM approach
the maximization of the margin is obtained including in the
norm also the bias b, making problem (4) stricly convex also
with respect to b.

In mi-SPSVM, the inizialization of the sets J+ and J− is
done by inserting in J+ the indexes of all the instances of
the positive bags and in J− the indexes of all the instances
of the negative bags. Once an optimal solution (w∗, b∗) to
problem (4) has been computed, the two index sets J+ and
J− are updated in the following way:

J+ := J+ \ J̄ and J− := J− ∪ J̄

where

J̄ = { j ∈ J+ \ J ∗ | w∗T x j + b∗ ≤ −1},

with

J ∗ = { j∗i , i = 1, . . . ,m | w∗T x j∗i + b∗ ≤ −1}

and

j∗i
�= arg max

j∈(J+
i ∩J+)

{w∗T x j + b∗}.

Note that a particular role in the definition of the set J̄
is played by the set J ∗, introduced for taking into account
constraints (3), which impose the satisfaction of the stan-
dard MIL assumption. At the current iteration, the set J ∗ is
the index set (subset of J+) corresponding to the instances
closest, for each positive bag, to the current hyperplane
H(w∗, b∗) and strictly lying in the negative side with respect
to it. If an index, say j∗i ∈ J ∗, corresponding to one of such
instances entered the set J−, all the instances of the i-th
positive bag would be considered negative by problem (4),
favouring the violation of the standardMIL assumption. This
is the reason why the indexes of J ∗ are prevented from enter-
ing the set J−: in this way, for each positive bag, at least an
index corresponding to one of its instances is guaranteed to
be inside J+.

3.3 MIL-kink

This approach, described in details in [23], provides a sepa-
ration hyperplane of the type (1), by heuristicallyminimizing
the following error function:

m∑

i=1

max

{

0, min
j∈J+

i

{1 − (wT x j + b)}
}

+
k∑

i=1

∑

j∈J−
i

max
{
0, 1 + (wT x j + b)

}
, (7)

which is easily derived by taking into account the standard
MIL assumption. In fact a positive bag, indexed by J+

i , is
correctly classified if

wT x j + b ≥ 1, for at least one j ∈ J+
i ,

that is if

1 − (wT x j + b) ≤ 0, for at least one j ∈ J+
i .

As a consequence the bag is misclassified if

1 − (wT x j + b) > 0, for each j ∈ J+
i ,
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that is if

min
j∈J+

i

{1 − (wT x j + b)} > 0.

On the other hand, a negative bag, indexed by J−
i , is cor-

rectly classified when

wT x j + b ≤ −1, for each j ∈ J−
i ,

that is when

max
j∈J−

i

{1 + (wT x j + b)} ≤ 0,

and, consequently, it is misclassified when

max
j∈J−

i

{1 + (wT x j + b)} > 0.

Function (7) is very difficult to be minimized, since it
is nonconvex and nonsmooth. For this reason, in [23], the
authors proposed to adopt a very fast heuristic approach,
based on computing the optimal value of b in correspondence
to a prefixed value of w (judiciously chosen in advance) and
in simply exploring the kink points of (7).

In [23] a variant of the algorithm was also proposed, on
the basis of a simple modification of (7).

3.4 MI-POLY

Differently from the above MIL approaches, which provide
a single separation hyperplane, Algorithm MI-POLY [8] is
based on the concept of polyhedral separability, obtainable
by generating a separating polyhedron by means of a finite
number, say h > 1, of hyperplanes. In order to recall theMIL
model proposed in [8], we first report the basic definition of
polyhedral separability for supervised learning.

Let

P = {p1, . . . , pr }, with p j ∈ R
n, j = 1, . . . , r

and

Q = {q1, . . . , qs}, with q j ∈ R
n, j = 1, . . . , s,

be two disjoint point sets. They are polyhedrally separable
[12] if and only if there exists a finite number h of hyperplanes

Ht (wt , bt )
�= {x ∈ R

n | wT
t x + bt = 0},

with wt ∈ R
n and bt ∈ R, for t = 1, . . . , h, such that, for all

j = 1, . . . , r ,

wT
t p j + bt ≤ −1, for all t = 1, . . . , h

and, for all j = 1, . . . , s,

wT
t q j + bt ≥ 1, for at least an index t ∈ {1, . . . , h}.

On the basis of the above definition, the two sets P and
Q are polyhedrally separable if there exists a polyhedron
generated by a finite number h of hyperplane, such that all
points of P are inside the polyhedron and all points ofQ are
outside.

To extend the supervised polyhedral separation toMIL, in
[8] the authors proposed to heuristically solve the following
nonsmooth nonconvex optimization problem, by means of
DC (Difference of Convex functions) techniques:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
y,w,b

1

2

h∑

t=1

‖wt‖2 + C
m∑

i=1

∑

j∈J+
i

+max{0, 1 + y j max
1≤t≤h

(wT
t x j + bt )}

+C
k∑

i=1

∑

j∈J−
i

max{0, 1 − max
1≤t≤h

(wT
t x j + bt )}

∑

j∈J+
i

y j + 1

2
≥ 1 i = 1, . . . ,m

yj ∈ {−1,+1} j ∈ J+
i , i = 1, . . . ,m

(8)

Problem (8) exploits the standard MIL assumption, by
imposing that, for each positive bag, at least an instance
should lie inside the polyhedron and, for each negative bag,
all the instances should be outside. Similarly to model (2),
the first term of the objective function is aimed atmaximizing
the margins in correspondence to the h hyperplanes, while
the successive two termsminimize themisclassification error
of the instances belonging to the positive and negative bags,
respectively. Note that, in case h = 1, problem (8) reduces
exactly to problem (2) taking into account the symmetric role
played by the two halfspaces generated by a single hyper-
plane.

4 A comparative study on chest X-ray images

We have performed a comparative study of the MIL algo-
rithms described in the previous section, with the aim at
discriminating between COVID-19 (positive X-ray images)
and common viral pneumonia (negative X-ray images). The
flowchart of the overall experimentation is reported in Fig. 2.

All the algorithms have been run on a Microsoft Win-
dows 11 system, characterized by 16 GB of RAM and a
2.30 GHz Intel Core i7 processor. They have been tested
on 200 X-ray chest images, randomly taken from the pub-
lic dataset described in Sect. 4.1: 100 images are relative to
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Fig. 2 Flowchart of the
experimentation: MIL-RL [9],
mi-SPSVM [13] and MIL-kink
[23] generate a separating
hyperplane, while MI-POLY [8]
a separating polyhedron. On the
basis of the standard MIL
assumption, the blue outlined
images are classified as
(positive) COVID-19 images,
while the red outlined ones are
classified as (negative) common
viral pneumonia images (colour
figure online)
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Fig. 3 100 COVID-19 chest X-ray images (positive images)

Fig. 4 100 viral pneumonia chest X-ray images (negative images)

people affected by COVID-19 (Fig. 3) and 100 correspond
to people with common viral pneumonia (Fig. 4).

4.1 Dataset description

The original dataset from which we have drawn the images
used in our computational study is named COVID-19 Radio-
graphy Database [40] and it is detailed also in [20, 41]. The
overall dataset is constituted by 3616 COVID-19 images,
10,192 normal images, 6012 lung opacity (that is non-
COVID lung infection) images and 1345 common viral
pneumonia images. Among the COVID-19 images, 2473
were collected from the BIMCV-COVID19+ dataset [1], 183

from a German medical school [2], 559 from the (SIRM),
GitHub, Kaggle & Twitter, and 400 from another reposi-
tory [3].

4.2 Implementation details, segmentation and
futures

We have used the same MATLAB implementations of MIL-
RL adopted in [11], of mi-SPSVM tested in [13] and of MI-
POLY presented in [8]. About MIL-kink, we have used both
the implementations tested in [23] and namedMIL-kink1 and
MIL-kink2, corresponding, respectively, to the minimization
of function (7) and to its variant cited at the end of Sect.
3.3 when w is fixed. For each code, we have maintained the
optimal tuning of the parameters described in the respective
papers.

As for the segmentation process, we have adopted a pro-
cedure similar to that one used in [10] and [50]. In particular,
we have reduced the resolution of each image to 128 × 128
pixels dimension and we have grouped the pixels in appro-
priate square subregions (blobs). In this way, each image is
represented as a bag, while a blob corresponds to an instance
of the bag. For each instance (blob), we have first considered
the following 10 features:

• the average and the variance of the grey-scale intensity
of the blob: 2 features;

• the differences between the average of the grey-scale
intensity of the blob and that ones of the adjacent blobs
(upper, lower, left, right): 4 features;

• the differences between the variance of the grey-scale
intensity of the blob and that ones of the adjacent blobs
(upper, lower, left, right): 4 features.

To exploit information about the texture of the images, for
each blob we have also computed the corresponding grey-
scale co-occurence matrix, by using the graycomatrix
subroutine provided by the ImageProcessingMATLAB tool-
box. In particular, fixing the number of gray levels equal to 3,
for each blob we have generated a 3×3 co-occurencematrix,
having in this way a total number of features equal to 19.

4.3 Numerical results

In order to consider different sizes of the testing and the
training sets, we have used two validation protocols: the 5-
fold cross-validation (5-CV) and the 10-fold cross-validation
(10-CV). In Table 2 and in Table 3, we report the respective
average results computed on the testing set and expressed in
terms of the following performance indicators:
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Table 2 Dataset constituted by
100 COVID-19 and 100 viral
pneumonia chest X-ray images:
5-CV average testing values,
provided by MIL-RL [9],
mi-SPSVM [13], MIL-kink [23]
and MI-POLY [8]

5-CV MIL-RL mi-SPSVM MIL-kink1 MIL-kink2 MI-POLY

CPU time (s) 1.84 0.18 0.01 0.00 8.99

Accuracy (%) 93.50 94.50 78.50 80.00 92.50

Sensitivity (%) 98.26 98.08 75.36 78.46 98.89

Specificity (%) 89.29 91.02 81.43 81.43 86.38

PPV (%) 89.98 91.57 79.67 80.31 87.89

NPV (%) 97.78 97.75 77.65 79.84 98.75

F-score (%) 93.78 94.67 77.24 79.24 92.92

κ 0.87 0.89 0.57 0.60 0.85

MCC 0.88 0.89 0.57 0.60 0.86

Table 3 Dataset constituted by
100 COVID-19 and 100 viral
pneumonia chest X-ray images:
10-CV average testing values,
provided by MIL-RL [9],
mi-SPSVM [13], MIL-kink [23]
and MI-POLY [8]

10-CV MIL-RL mi-SPSVM MIL-kink1 MIL-kink2 MI-POLY

CPU time (s) 2.31 0.38 0.00 0.00 13.32

Accuracy (%) 93.50 95.00 79.00 79.50 94.50

Sensitivity (%) 98.57 99.29 76.64 78.46 98.04

Specificity (%) 89.74 91.24 81.22 80.38 91.52

PPV (%) 89.72 91.69 79.40 78.82 91.27

NPV (%) 97.50 98.57 78.27 79.45 97.74

F-score (%) 93.64 95.18 77.51 78.27 94.37

κ 0.87 0.90 0.57 0.58 0.89

MCC 0.88 0.90 0.58 0.59 0.89

• accuracy =
TP+TN

TP+TN+FP+FN
∈ [0, 1]: it provides the

proportion of the correctly classified images, with respect
to the overall dataset.

• sensitivity =
TP

TP+FN
∈ [0, 1]: called also true positive

rate or recall, it measures the proportion of the correctly
classified positive images, with respect to the total num-
ber of positive images.

• specificity =
TN

TN+FP
∈ [0, 1]: called also true negative

rate, it measures the proportion of the correctly classi-
fied negative images, with respect to the total number of
negative images.

• PPV = TP

TP+FP
∈ [0, 1]: called also precision, it is the

positive predictive value and it measures the proportion
of the correctly classified positive images, with respect
to the total number of images classified as positive.

• NPV =
TN

TN+FN
∈ [0, 1]: it is the negative predictive

value and it measures the proportion of the correctly clas-
sified negative images, with respect to the total number
of images classified as negative.

• F-score = 2
sensitivity · PPV
sensitivity + PPV

∈ [0, 1]: it is the harmonic

mean of sensitivity and PPV.
• κ=2 · TP·TN−FP·FN

(TP+FP)·(FP+TN)+(TP+FN)·(TN+FN)
∈ [−1, 1]:

it is the Cohen’s kappa coefficient, providing a measure

of the agreement between the actual and the predicted
observations.

• MCC = TP·TN−FP·FN√
(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)

∈ [−1, 1]: it is the Matthews correlation coefficient.

In the above list, the quantities TP, TN, FP and FN are the
entries of the so-called 2× 2 confusion matrix. In particular,
TP (true positive) indicates the number of correctly classified
positive images, TN (true negative) is the number of cor-
rectly classified negative images, FP (false positive) denotes
the number of misclassified negative images and FN (false
negative) is the number of misclassified positive images.

In Tables 2 and 3, we also report the average CPU time
spent by the classifier to determine the optimal separation
surface in the learning phase. For each of these performance
parameters, the best result is highlighted in bold.

Looking at the the two tables, we observe that, apart
from MIL-kink1 and MIL-kink2, the three codes MIL-RL,
mi-SPSVM and MI-POLY provide quite comparable results
(reaching in all the cases an accuracy greater than 92%),
even if mi-SPSVM is the best performing also in terms of
CPU time. On the other hand, both the versions of Algorithm
MIL-kink have a non negligible advantage in terms of speed,
providing however a reasonable accuracy close to 80%.MIL-
RL,mi-SPSVMandMI-POLYperformswell also in terms of
MCC, which is a more informative parameter than F1-score,
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since it takes into account the number of correctly classified
negative images (TN), that is not considered by the F1-score
indicator.

Finally it is worth noting that the Cohen’s kappa coef-
ficient κ is fully aligned with MCC and it shows an almost
perfect agreement between the actual and the predicted obser-
vations in case ofMIL-RL, mi-SPSVM andMI-POLY, while
for MIL-kink it provides a moderate agreement.

5 Conclusions

COVID-19 quickly spread around the world creating an
emergency situation. The use ofX-ray chest radiographs is an
element that assists the diagnosis, allowing also the follow-up
of the disease.

In this context, we have focused on Multiple Instance
Learning (MIL) techniques, which have proven to be effec-
tive in image analysis. In particular, we have presented a
comparative study of some very recent MIL approaches,
tested on a set of 200 chest X-ray images with the aim of
discriminating between COVID-19 and common viral pneu-
monia. This study has highlighted the great potentiality of
MIL, providing an accuracy result equal to 95% and a value
of MCC equal to 0.9. Differently from the deep learning
techniques, MIL approaches (especially the instance-level
ones) are easily interpretable and consequently more suitable
for image classification, since it is not difficult to practically
interpret why an image is classified positive or negative.

The promising results of this study open up several
avenues for future research, which may involve the imple-
mentation of more complex MIL systems, including addi-
tional features and more sophisticated segmentation and
pre-processing techniques, such as those used in [44]. Com-
bination ofMILwith deep learning approaches could exploit
the strengths of both methodologies. For instance, hybrid
models that use MIL for interpretability and CNNs for fea-
ture extraction might offer higher performance. A further
direction of research aims to include a wider range of cases,
encompassing various stages of COVID-19 and other respi-
ratory conditions, across different populations and healthcare
settings.
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