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Abstract
Purpose of Review Alopecia areata (AA) and vitiligo are der-
matological autoimmune diseases that, until recently, have
had no specifically targeted therapies. Here, we review the
future of therapies specifically targeted to the treatment of
alopecia areata and vitiligo, both of which have JAK-STAT
signaling implicated in their pathogenesis.
Recent Findings With a greater understanding of disease
mechanisms and pathogenesis, we are now able to target the
immune dysfunction in autoimmune diseases with more pre-
cision than topical corticosteroids and calcineurin inhibitors.
Inhibition of the JAK-STAT pathway has been shown to be
effective in the treatment of AA, vitiligo, and in some patients
with both diseases.
Summary In this review, we summarize the current molecular
and immunological understanding of AA and vitiligo, how
JAK inhibition is increasingly positioned as a new therapy
for autoimmune diseases, and the future of topical JAK inhib-
itors in the field of dermatology.
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Introduction

Immune-mediated dermatological diseases encompass in-
flammatory conditions such as atopic dermatitis and psoriasis,
as well as autoimmune disorders like alopecia areata (AA) and
vitiligo. As a significant physical and immunological barrier
between the body and the environment, the skin is the home of
complex and intricate interactions between the epithelial and
immune cells. Common first-line treatments for immune-
mediated dermatological conditions include topical corticoste-
roids, which cause blanket immunosuppression and are re-
plete with adverse effects. In this age of directed therapies
and personalized medicine, we now have a more nuanced
understanding of the various components of the immune sys-
tem, along with the technology to disrupt them selectively.
Thus, general therapies may soon be relegated to the archives,
and research and development of directed therapies are now
taking center stage. One such pathway that holds promise for
therapeutic targeting in dermatology is the Janus Kinase
(JAK)-Signal Transduction and Activators of Transcription
(STAT) pathway.

JAK-STAT Signaling

JAK-STAT signaling is a ubiquitous and pleiotropic sig-
naling pathway that is central to controlling multiple cel-
lular processes. JAKs form non-covalent interactions with
the cytoplasmic portion of cell surface receptors for over
50 growth factors and cytokines, most of which lack an
intrinsic signaling apparatus, and ligand binding results in
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their dimerization and trans-phosphorylation (Fig. 1).
Phosphorylated JAKs recruit cytoplasmic proteins known
as STATs via their Src-homology (SH2) domains.
Phosphorylation of STAT proteins on a conserved C-
terminal tyrosine residue leads to activation and dimeriza-
tion of the STATs, and translocation to the cell nucleus
where they bind to DNA elements to direct gene expres-
sion. In most eukaryotic systems, there are four different
JAKs (JAK1, JAK2, JAK3, Tyk2) and seven STATs
(STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B,
STAT6).

JAK-STAT signaling was initially discovered as the main
downstream pathway for interferon (IFN) signaling [1].
Subsequently, many other receptors have been found to em-
ploy a combination of JAKs for signaling, each system having
preferential specificity for STAT proteins. Signal transduction
is thus a product of the specific combination of JAKs and
STATs present, and is lineage and context dependent in differ-
ent cell types, leading to diverse patterns of gene expression.
Details of the JAK-STAT pathway have been reviewed exten-
sively by other authors [2•, 3].

JAK-STAT signaling is well characterized in the differ-
entiation, maintenance, and activation of the healthy in-
nate and adaptive immune system. JAK-STAT signaling
has also been placed downstream of growth factor recep-
tors, thus mediating cellular processes such as survival,
differentiation, and proliferation in almost all cell types.
In pathogenic states, constitutive or aberrant activation of

JAK-STAT signaling may result in oncogenesis or dys-
function of the immune and hematopoietic system. As
such, a new class of small-molecule drugs known as
JAK inhibitors (JAKinibs) has been designed and devel-
oped to target these pathways. Ruxolitinib, a JAK1/JAK2
inhibitor, was the first JAKinib to be FDA approved,
showing efficacy in the treatment of high-risk primary
myelofibrosis [4]. Tofacitinib, a pan-JAK inhibitor, was
later approved for the treatment of rheumatoid arthritis
(RA) and has shown efficacy in the treatment of other
immune-mediated diseases such as psoriasis, psoriatic ar-
thritis (PsA), inflammatory bowel disease, and transplant
rejection [5–7].

Use of JAK Inhibitors in Dermatology

Compared to corticosteroids, JAKinibs provide a greater spec-
ificity to inhibit aberrant immune responses, while avoiding
non-specific adverse effects associated with corticosteroids
that may or may not be immune mediated (e.g., dermal atro-
phy, telangiectasia). Thus, as a class of drugs, JAKinibs have
the potential to be applied to many dermatological conditions,
due to their ability to inhibit many of the relevant signaling
pathways.

Psoriasis

Because RA and PsAwere hypothesized to share similar path-
ogenic Th1 cytokines with psoriasis, in particular those that
signal via the common γ-chain (IL-2, IL-7, IL-9, IL-15, IL-21
and IFN-γ), JAKinibs were rationalized to be effective in
psoriasis. Subsequent clinical trials have shown tofacitinib
(as an oral medication) to be safe and effective in psoriasis
and PsA [5, 8]. In a Phase 3 randomized non-inferiority trial of
tofacitinib against etanercept and placebo for psoriasis,
tofacitinib at a dose of 10 mg twice daily was as effective as
etanercept twice weekly [9]. In contrast to biologics, small-
molecule inhibitors like the JAKinibs can be orally adminis-
tered, making them far more convenient and acceptable for the
patient. Tofacitinib and ruxolitinib have also been topically
formulated for psoriasis and have been shown to be effective
in Phase 1–2 trials [8, 10, 11]. Topical JAKinibs will further
improve on convenience and adherence to treatment, while
reducing the risks of systemic exposure of the drug.

Atopic Dermatitis

Tofacitinib has been shown to have significant anti-pruritic
effects on a mouse model of allergic contact dermatitis when
given systemically, but had additional significant antagonistic
effects on local pro-inflammatory cytokines and ear thickness
when used topically [12]. Oclacitinib, a JAK-1/3 inhibitor,

Fig. 1 Schematic of JAK-STAT signaling pathway. Specific cellular
context will determine the combination of JAKs and STATs activated
upon ligand binding. Recruitment of JAKs to the cytoplasmic portion
of the receptor leads to auto-phosphorylation and activation, which in
turn recruits and phosphorylates STAT proteins. Phosphorylated STATs
translocate into the nucleus and bind to promoter sequences to enhance or
repress gene expression. JAKinibs commonly used (tofacitinib,
ruxolitinib) inhibit the kinase domain of the JAKs, preventing STAT
protein phosphorylation and activation
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also effective in this model, was recently approved by the
FDA for veterinary in canine atopic dermatitis [13]. JTE-
052, a novel pan-JAK inhibitor developed for treatment of
inflammatory arthritis [14], has also been used topically to
ameliorate the inflammation in a mouse model of atopic der-
matitis [15] and allergic contact dermatitis (without a similar
effect on croton oil-induced irritant contact dermatitis). A pilot
study with six patients with moderate to severe AD showed
oral tofacitinib to be effective in reducing disease severity
where other treatments had failed [16]. Future studies will
delineate the efficacy of JAKinibs in human AD, informing
the potential therapeutic application and scope of the
JAKinibs.

Pathogenesis of Alopecia Areata and Vitiligo

One of the prevailing theories surrounding the pathogenesis of
AA involves the breakdown of immune privilege of the hair
follicle, whereby “danger signals” in the form ofMHC Class I
or ULBP3 molecules are erroneously upregulated on the hair
follicle [17••]. ULBP3 was identified by extensive genome-
wide association studies to be a significant factor in AA path-
ogenesis [18••, 19], and its aberrant expression results in an
attack by pathogenic CD8+ cytotoxic effector T cells that also
express NKG2D, the binding ligand of ULBP3 [17••]. This
leads to destruction of the hair follicle, and a non-scarring hair
loss that is initially noted to start in hairless patches, and may
proceed to multifocal or universal involvement of the patient’s
hair-bearing skin.

Vitiligo, on the other hand, is due to a direct autoimmune
attack as a result of sensitization of T cells to melanocyte
autoantigens [20]. Abnormal cellular stress in melanocytes
precipitated by genetic and environmental factors is believed
to be a leading cause of melanocyte dysfunction [21–23]. This
dysfunction activates innate immune inflammation and den-
dritic cell presentation of melanocyte autoantigens such as
MART-1, gp100, tyrosinase, and tyrosinase-related proteins
(TRP1 and 2) to T cells, hence sensitizing the T cells to target
melanocytes for destruction, leading to depigmentation
(reviewed in [24]).

While the triggering events in AA and vitiligo are likely to
be distinct, both processes result in the activation of the Th1
adaptive immune response, and the recruitment of CD8+ ef-
fector T cells into the skin [25]. In AA, IFN-γ induces the
production of CXCL10, which is a central chemokine in the
recruitment of the effector T cells to the skin to drive alopecia.
IFN-γ has been shown to be significantly upregulated in cir-
culating PBMCs and lesional skin of AA patients [26, 27].
Likewise, IFN-γ is also a critical component of vitiligo path-
ogenesis [28, 29], inducing CXCL10 in lesional vitiligo skin
to promote autoreactive T cell recruitment and effector func-
tion [30••]. Serum CXCL10 has been shown to correlate with

disease activity in vitiligo and may be useful as a clinical
biomarker in this disease [31••, 32, 33]. In the case of AA,
interleukin 15 (IL-15) has also been shown to be a supporting
cytokine for the CD8+ NKG2D+ T cells [17••]. Both IFN-γ
and IL-15 bind to cytokine receptors that employ the common
γ-chain, which in turn signals via the JAK-STAT pathway.

Current Therapies for AA and Vitiligo

Despite their considerable clinical burden, both AA and viti-
ligo have no FDA-approved therapies that reverse or target the
disease process. Randomized controlled trials (RCTs) are rare,
and those that are published are often poorly designed (usually
underpowered or insufficient follow-up), and rank low on the
American College of Physicians (ACP) grading system for
clinical trials [34].

Topical corticosteroids, a mainstay of dermatological ther-
apies, are normally first-line treatment for vitiligo.
Intralesional injections of corticosteroids are generally pre-
ferred in AA, where the pathogenic immune infiltrate is
deeper in the dermis [25]. Corticosteroids have a global sup-
pressive effect on all immune cells, causing reduced cellular
proliferation and attenuation of cytokine production and che-
motaxis. Corticosteroids also have effects on other cell types
in the skin, such as fibroblasts and keratinocytes, and their
suppressive effects in these cell types lead to adverse side
effects such as atrophy and skin fragility [35]. Other topical
immunosuppressants include the calcineurin inhibitors (e.g.,
cyclosporin, tacrolimus, pimecrolimus), which disrupt the
NFAT-calcineurin signaling pathway and interfere with the
activation of T cells, decreasing production of IL-2. While
adverse effects are less severe compared with corticosteroids,
calcineurin inhibitors come with a US FDA Black Box warn-
ing for potential malignancies resulting from immunosuppres-
sion [36]. Thus, it is imperative that safer and more specific
therapies are developed for dermatological conditions such as
AA and vitiligo.

The era of directed therapies began with biologics, which
revolutionized the treatment of immune-mediated diseases by
targeting specific cytokine-receptor interactions. The most
successful example is the treatment of psoriasis [37] with
TNF-α (Tumor Necrosis Factor-α) inhibitors, and more re-
cently with IL-12/23 inhibitors that target common or unique
subunits (p40, and soon p19 [38]) of the cytokines produced
by Th17 skewed T cells, and the upcoming biologic therapies
to IL-17, the driving force for Th17 differentiation [39].
However, biologics, which are essentially proteins (either an-
tibodies or modified receptor subunits), require parenteral ad-
ministration and are potentially immunogenic with repeated
exposure. While there was some genetic evidence that TNF-α
might play a role in the pathogenesis of AA and vitiligo [40,
41], subsequent case reports and case studies revealed that
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TNF-α inhibitors were not effective in the treatment of either
disease [42, 43] and, in many cases, they have been shown to
precipitate disease [44–46]. The development of small-
molecule inhibitors of multiple signaling pathways relevant
to dermatological disease has undergone significant growth
in the pharmaceutical industry.

Success Stories: Treatment of AA and Vitiligo
with JAK Inhibitors

Recent studies on the immunopathogenesis of AA and vitiligo
also uncovered a potential role for targeting the JAK-STAT
pathway in these diseases. Following the work that identified
the pathogenic CD8+ NKG2D+ T cells in AA, oral ruxolitinib
given at a dose of 20 mg twice daily for 3 to 5 months resulted
in full regrowth of hair in three patients who were previously
treatment-resistant [17••]. Other JAKinibs, tofacitinib and
baricitnib, were subsequently also found to be highly effective
in patients with treatment-resistant AA [47, 48].
Serendipitously, one patient in a pilot study of ruxolitinib for
the treatment of AA had concomitant vitiligo that also
responded to treatment [31••]. This was supported by an ad-
ditional case report describing the efficacy of systemic
tofacitinib in the treatment of vitiligo [49•]. These findings
have been confirmed in recent open-label trial of 12 patients
with moderate-to-severe AA, where 75% of patients experi-
enced at least 50% regrowth (compared to the expected rate of
12% spontaneous remission in a matched population) [50].

As a further corroboration on these findings, AA patients
who had received systemic ruxolitinib for the treatment of
o the r d i seases l ike p l aque pso r i a s i s , e s sen t i a l
thrombocythemia [51] and chronic mucocutaneous candidia-
sis [52] also were reported to have concomitant resolution of
their alopecia. Further case reports confirming the efficacy of
tofacitinib in the treatment of alopecia universalis also ap-
peared in the literature [53, 54].

In a recent single-arm pilot study of tofacitinib for AA, it
was noted that the starting dose of 5 mg BIDwas sufficient for
effective hair regrowth in as soon as 4 weeks [55].While there
were no adverse events reported with the higher dose regimen
in AA, topical formulations have been considered for delivery
of higher concentrations of JAKinibs to the hair follicle mi-
croenvironment, so as to spare patients the potential side ef-
fects of prolonged systemic exposure, which may include
immunosuppression.

The Future for Topical JAK Inhibitors in AA
and Vitiligo

Targeting the JAK-STAT pathway with small-molecule inhib-
itors has many advantages over systemic biologic therapy. For

skin diseases, higher local concentrations can be achieved
with a topical formulation compared with systemic dosing
so as to modulate local immune dysfunction. One of the ear-
liest proof-of-concept studies used an intranasal topical inhib-
itory peptide to STAT6 to prevent Th2 differentiation in the
airways in an experimental model of asthma, preventing de-
velopment of allergic airway disease [56]. By avoiding sys-
temic administration, the use of JAKinibs topically might
avoid reported adverse effects such as increased risk of infec-
tions, hyperlipidemia, myelosuppression, and potential sys-
temic malignancy.

Preclinical studies of topical ruxolitinib have shown it to be
an effective modulator of the local immune response in an
animal model of contact hypersensitivity [57] and have been
shown to be effective for psoriasis in a small pilot study [11].
Topical 0.6% ruxolitinib cream was also recently shown to be
effective in treating a case of alopecia universalis (complete
loss of hair including scalp, eyebrows), and even though a
larger surface of application was used in this case, there were
no adverse effects on complete blood count, renal, or liver
biomarkers [58]. This success has spurred several pharmaceu-
tical companies to develop topical JAK inhibitors for AA,
which are currently in Phase 1 and 2 clinical studies (please
refer to www.clinicaltrials.gov for updates).

The safety profile of topical JAK inhibitors have thus been
proven during these trials or other conditions. Topical
tofacitinib has been shown to be efficacious and safe in both
psoriasis and atopic dermatitis in Phase 2 clinical trials [10,
59]. Although there have not been any published data on the
topical bioavailability of FDA-approved JAKinibs, preclinical
studies on mouse skin have suggested that increased local
concentrations have a more robust effect on hair regrowth in
the mouse model of AA than systemic treatment [17••].
Further exploration into this effect has raised the possibility
of a direct effect on hair follicle stem cells, promoting hair
growth in normal mice [60]. Notably, in these studies in both
AA and normal mice, topical treatment with JAKinibs only
induced hair growth at the site of application, arguing against
systemic absorption. In human patients using topical
ruxolitinib for psoriasis, systemic JAK inhibition was ruled
out by showing negligible inhibition of pSTAT3 in peripheral
blood cells [61].

A recent study reported that chemokine production in the
skin of a mouse model of vitiligo during disease progression
predominantly originated from the keratinocytes [62•].
Selectively eliminating IFN-γ signaling only in keratinocytes
abrogated disease, suggesting that specifically targeting this
pathway only in the epidermis could be a highly effective
treatment strategy. Thus, topical JAK inhibitors hold at least
theoretical promise in the treatment of vitiligo as well. While
AA and vitiligo may share certain pathogenic traits, the culprit
inflammatory infiltrate is much deeper in the dermis for AA
[25]. Thus, bioavailability and drug penetration may be a
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legitimate concern for AA to target the anatomical site of
inflammation and will be addressed in preclinical and Phase
1 clinical trials.

Conclusion

Future studies of topical JAKinibs for AA and vitiligo will
interrogate and open new avenues of treatment for these dis-
eases. New formulations and subsequent generations of the
JAKinibs for topical use will expand their use beyond these
diseases and may also find their place in the treatment of other
dermatological diseases like psoriasis, allergic and atopic skin
diseases, and possibly some forms of cutaneous malignancies.
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