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Abstract
Purpose of Review  The approval of nintedanib and pirfenidone has changed the treatment landscape of idiopathic pulmonary 
fibrosis (IPF); however, both drugs only slow disease progression and are burdened by tolerability issues. We summarize the 
most advanced developmental drugs in IPF, but also mention selected compounds in earlier phases.
Recent Findings  Several compounds are currently being tested in IPF; the number of trials has increased exponentially in 
the last 3 years. Four compounds have reached phase 3: BI101550, an oral PDE4B preferential inhibitor; Pamrevlumab, an 
anticonnective tissue growth factor intravenous monoclonal antibody; Pentraxin-2, a recombinant human form of serum 
amyloid protein; Treprostinil, a synthetic prostanoid, with an inhaled formulation, currently used for pulmonary hypertension.
Summary  New drugs are likely to reach the clinic in the near future. This will provide more opportunities for treatment of 
IPF but will also pose unprecedented challenges regarding drug selection and administration(i.e., sequential vs. combination).

Keywords  Idiopathic pulmonary fibrosis · Treatment · BI1015550 · Pamrevlumab · Pentraxin-2 · Treprostinil

Introduction

Idiopathic pulmonary fibrosis (IPF), the most common of 
the idiopathic interstitial pneumonias, is a chronic, progres-
sive, and ultimately fatal disease characterized radiologically 
and histologically by the usual interstitial pneumonia (UIP) 
pattern of fibrosis [1–3]. Although disease pathogenesis 
remains incompletely understood, IPF is believed to result 
from and exuberant and dysregulated reparative response 
following recurrent alveolar epithelial cell (AEC) injury [4]. 
Aberrantly activated AECs secrete a multitude of cytokines 

and chemokines, which induce fibroblast recruitment, acti-
vation, proliferation, and differentiation to myofibroblasts 
[5]. Several factors have been associated with the devel-
opment and progression of IPF, including, among others, 
smoking, chronic microaspiration of gastric content, occu-
pational/environmental exposure, pollution, and subclinical 
viral infection [6–9]. These triggers are likely to interact 
with host genetic factors, including, among others, rare 
variants within telomerase-related genes [10] or MUC5B 
rs35705950 promoter polymorphism [11], to determine 
the disease. Innate and acquired immunity [12], epigenetic 
changes [13], telomere attrition [14], mitochondrial dysfunc-
tion [15], and cellular senescence [16] are additional likely 
contributors to disease pathogenesis.

Historically, IPF has been treated with a combina-
tion of corticosteroids and immunosuppressants (with or 
without N-acetylcysteine), the rationale being that chronic 
inflammation was considered a prerequisite for the dis-
ease to develop [17]. However, this treatment strategy has 
been proven not only inefficacious but also harmful [18]. 
Therefore, a multitude of potential treatments has been 
tested in randomized controlled trials (RCTs) in an effort 
to find a real cure for IPF; yet, most of these trials have 
yielded negative results (Table 1). Currently, two drugs are 
approved worldwide for the treatment of IPF: pirfenidone 
and nintedanib [19]. Pirfenidone acts by downregulating 
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transforming growth factor (TGF)-β, one of the most 
potent profibrotic cytokines, and tumor necrosis factor 
(TNF)-α, both in vitro and in vivo [20–22], although its 
mechanism of action is known only partially. Nintedanib is 
an intracellular tyrosine kinase inhibitor, which, by acting 
on fibroblast growth factor (FGF), platelet-derived growth 
factor (PDGF), and vascular endothelial growth factor 
(VEGF), interferes with the signaling needed for the pro-
liferation and migration of fibroblasts and their differentia-
tion to myofibroblasts [23–25]. Apart from the respective 
pivotal studies [26, 27], the efficacy of both nintedanib 
and pirfenidone in reducing functional decline, as assessed 
by annual change in forced vital capacity (FVC) and dis-
ease progression, has been confirmed by real word and 
registry data [28–34]. However, both drugs have tolerabil-
ity issues, mainly skin rash and gastrointestinal discom-
fort with pirfenidone and diarrhea with nintedanib [25, 
35], which lead to drug discontinuation in a significant 
minority of patients [36–38]. Thus, the unmet IPF need 
remains high, and more efficacious and better tolerated 
drugs are urgently needed. In this review, we summarize 

and critically discuss the most advanced developmental 
drugs in IPF, with the aim to provide the reader with a 
glimpse of what the landscape of IPF treatment looks like. 
However, selected compounds in earlier phases of devel-
opment are also mentioned (Table 2).

BI1015550

BI1015550 is an oral phosphodiesterase (PDE) 4B prefer-
ential inhibitor [39•]. PDEs are a superfamily of enzymes 
composed of more than 100 isoforms. They act by hydro-
lyzing cyclic nucleotides, in particular cyclic adenosine 
monophosphate (cAMP) and cyclic guanine monophos-
phate (cGMP), thus regulating their intracellular concen-
tration [40]. The PDE4 A-D family displays high specificity 
for cAMP but no activity on cGMP [41]. Therefore, PDE4 
exerts proinflammatory activities by blocking the cAMP 
pathways mediated by both protein kinase A (PKA) and 
exchange factors activated by cAMP (Epac1/2) [42]. PKA 
reduces the production of proinflammatory cytokines via 
phosphorylation of cAMP-responsive element-binding 

Table 1   Phase III clinical trials conducted in IPF

6MWT six-minute walking test, DLco diffusing capacity of the lungs for carbon monoxide, FVC forced vital capacity, IPF idiopathic pulmonary 
fibrosis, SGRQ Saint George Respiratory Questionnaire

Compound Primary outcome Patients 
enrolled (n)

Outcome NCT numbers

ACE-IPF Warfarin Time to death, hospitalization, 
or FVC decline ≥ 10%

145 Prematurely discontinued NCT00957242

ARTEMIS-IPF Ambrisentan Time to IPF progression 
(death, respiratory 
hospitalization, or FVC 
and DLco decrease)

494 Prematurely discontinued NCT00768300

ASCEND Pirfenidone Change in FVC% 555 Primary endpoint met NCT01366209
BUILD 1-3 Bosentan Exercise capacity, time 

to IPF progression 
(decrease in FVC ≥ 10%, 
DLco ≥ 15%, or acute 
exacerbation) or death

158 + 616 Primary endpoint not met NCT00391443
NCT00071461

CAPACITY 1-2 Pirfenidone Change in FVC 344 + 435 Primary endpoint met NCT00287716
NCT00287729

CleanUp-IPF Co-trimoxazole or 
doxycycline

Time to first nonelective 
respiratory hospitalization 
or death

513 Prematurely discontinued NCT02759120

INPULSIS 1-2 Nintedanib Change in FVC 515 + 551 Primary endpoint met NCT01335464
NCT01335477

INSPIRE Interferon gamma Overall survival time 826 Prematurely discontinued NCT00075998
INSTAGE Sildenafil + nintedanib Change in SGRQ 274 Prematurely discontinued NCT02802345
ISABELA 1-2 Ziritaxestat Rate of decline of FVC 525 + 781 Prematurely discontinued NCT03711162 

NCT03733444
PANTHER Prednisone, azathioprine, 

N-acetylcysteine
Change in FVC 264 Prematurely discontinued NCT00650091

STEP-IPF Sildenafil Improvement of at least 20% 
in the 6MWT distance

180 Prematurely discontinued NCT00517933
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protein (CREB), through the modulation of the transcrip-
tional activity of nuclear factor kappa-light-chain-enhancer 
of activated B cells (NFkB) and by interfering with B cell 
lymphoma 6 protein (Bcl-6) [43–46]. Epac1/2, on the other 
hand, shows anti-inflammatory activities through epigenetic 
modulation of NFkB targets [47]. Owing to their well- 
established anti-inflammatory properties, PDE4 inhibitors 
are approved for the treatment of inflammatory airway dis-
ease, psoriatic arthritis, and atopic dermatitis [41].

PDE4 inhibition has also antifibrotic effects. In bleomycin- 
treated mice and rats, roflumilast reduced the transcription 
and bronchoalveolar lavage (BAL) levels of several profi-
brotic genes, including TNFα and TGF-β, and improved 
fibrotic changes in the lung [48]. The antifibrotic effect of 
PDE4 inhibitors has also been shown in other animal models 
of fibrosis, such as type II AEC injury [49] and graft-vs-host 
disease [50], and with other compounds, such as cilomi-
last [51]. In vitro, human lung fibroblasts exposed to PDE4 
inhibitors show lower expression of profibrotic proteins 
(or their mRNA), such as connective tissue growth factor 
(CTGF), collagen-α1, fibronectin, or α-smooth muscle actin, 
which are markers of fibrosis, fibroblast proliferation, or 
fibroblast-to-myofibroblast differentiation [52–55].

Preclinical studies have confirmed the anti-inflammatory 
properties of BI1015550 through reduction of TNF-α and 
interleukin 2 (IL-2) production by mononuclear blood cells 
and inhibition of monocyte and neutrophil influx in the lung. 
The compound was also efficacious in two different ani-
mal models of fibrosis, with improvement of FVC values in 
the bleomycin model and reduced BALF inflammation in 
the silica model in mice. Furthermore, BI1015550 reduced 
TGF-β-induced collagen production in human fibroblasts, 
alone or synergistically with nintedanib [39•].

The safety and efficacy of BI1015550 have been evalu-
ated in a phase 2 trial in IPF; 147 patients were randomized 
to either BI1015550 or placebo with a 2:1 ratio and stratified 
based on background treatment (nintedanib or pirfenidone) 
[56••]. Inclusion criteria included a high-resolution CT 
pattern of definite or probable UIP, as assessed centrally, 
FVC ≥ 45%, and DLco between 25 and 80% of the predicted 
value. BI1015550 was administered orally at a dose of 18 mg 
twice a day for 12 weeks. Notably, the authors used a Bayes-
ian approach to reduce the number of patients randomized 
to placebo, including historical data from patients included 
in the placebo arms of previous nintedanib trials [57]. The 
study met its primary endpoint irrespective of background 
antifibrotic therapy. Indeed, the median change in FVC was 
5.7 ml in the BI1015550 group and − 81.7 ml in the placebo 
group among patients without background antifibrotic ther-
apy and 2.7 ml in the BI1015550 group and − 59.2 ml in the 
placebo group among patients with background antifibrotic 
use. No differences in the secondary endpoints of change in 
diffusing capacity of the lung for carbon monoxide (DLco) 

or change in quality of life were found. The most frequently 
reported adverse events were gastrointestinal, in particu-
lar diarrhea, but the proportion of patients with serious or 
severe adverse events was similar in the two trial groups.

A phase 3 RCT (NCT05321069), FIBRONEER-IPF, 
is ongoing. This study will enroll 963 patients with 
IPF. Inclusion criteria include an FVC ≥ 45% and DLco 
between 25 and 90% of the predicted value. Patients will 
be randomized to two doses of BI1015550 or placebo for 
52 weeks. Estimated study completion date is November 
2024. The primary endpoint is the change in absolute FVC; 
secondary endpoints include time to functional worsening 
(decline in FVC ≥ 10% or DLco ≥ 15%), time to the first 
occurrence of the composite outcome comprehending hos-
pitalization for respiratory cause, death or acute exacerba-
tion, time to acute exacerbation, time to hospitalization for 
respiratory cause or death, absolute change in FVC% and 
DLco% predicted, and change in Living with Pulmonary 
Fibrosis Questionnaire score.

Pamrevlumab

Pamrevlumab, formerly known by its developmental name 
FG-3019, is a fully human recombinant antibody that binds 
to CTGF, inhibiting it from binding to its receptors [58•].

CTGF is a secreted glycoprotein that interacts with a 
plethora of cytokines involved in connective tissue regen-
eration and wound healing [59, 60]. CTGF has a key role in 
fibroblast proliferation and differentiation to myofibroblasts. 
Treatment of fibroblasts with recombinant CTGF and TGF-β 
increases profibrotic markers in fibroblasts, thus suggest-
ing a synergistic effect of CTGF and TGF-β in inducing 
pulmonary fibrosis [61]. A similar positive feedback loop 
has been observed between CTGF and other fibrogenic mol-
ecules such as VEGF and integrins [62]. Moreover, CTGF 
appears to act as TGF-β cofactor: in fact, in CTGF knockout 
mice, TGF-β cannot exert its profibrotic activity [63, 64]. 
In IPF lung, CTGF is increased both transcriptionally and 
translationally in AECs and fibroblasts [65, 66].

In vivo, Pamrevlumab reduces collagen deposition and 
fibrosis in different animal models, including bleomycin- 
and radiotherapy-induced lung fibrosis [64, 67]. Pamrev-
lumab is able to induce fibroblast apoptosis in a model of 
mesothelioma [68], and a similar effect is also plausible on 
IPF myofibroblasts [69].

Pamrevlumab has been evaluated in two phase 2 studies 
in IPF. The first was an open-label study that assessed the 
safety and efficacy of two different doses of the drug (15 
or 30 mg/kg) [70]. Patients received Pamrevlumab intra-
venously every 3 weeks for 45 weeks. FG-3019 displayed 
a good safety and tolerability profile. Notably, changes in 
fibrosis correlated with changes in pulmonary function, 
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and FG-3019 was associated with an increase in FVC and 
reduction in the extent of fibrosis in about one-third of 
patients. The PRAISE trial randomized 103 IPF patients to 
Pamrevlumab 30 mg/kg or placebo over 48 weeks [71••]. 
Inclusion criteria included a definite UIP pattern on chest 
CT or a probable UIP and lung biopsy, an FVC ≥ 55%, and 
a DLco ≥ 30%; background antifibrotic treatment was not 
allowed. The study met its primary endpoint. Indeed, Pam-
revlumab reduced the decline in FVC% predicted by 60% at 
week 48 (mean change from baseline − 2.9% with Pamrev-
lumab vs − 7.2% with placebo; p = 0.033). The secondary 
endpoints of absolute decline in FVC, number of patients 
with an FVC decline ≥ 10%, and extent of lung fibrosis on 
HRCT were also met. Conversely, no differences in quality 
of life as assessed by the Saint George Respiratory Question-
naire were observed. The safety and tolerability profile of 
Pamrevlumab were similar to those of placebo.

The phase 3 Zephyrus I and II trials (NCT03955146-
NCT04419558) are currently ongoing. Each study will enroll 
340 IPF patients. Inclusion criteria include age between 40 
and 80 years, FVC percentage of predict between 45 and 90%, 
DLco between 25 and 90%, and fibrotic changes at HRCT 
between 10 and 50%. Background antifibrotic therapy is not 
allowed. Patients will be randomized to Pamrevlumab 30 mg/
kg or placebo administered intravenously every 3 weeks for 
48 weeks. Estimated completion date is June 2024 for Zeph-
yrus I and May 2023 for Zephyrus II. For both studies, the 
primary endpoint is the change in FVC from baseline; second-
ary endpoints include time to disease progression (decline in 
FVC ≥ 10% or death), time to respiratory hospitalization, death 
and acute exacerbation, as single occurrence or as composite 
outcome, and changes in the quantitative lung fibrosis score.

Pentraxin‑2

Pentraxin-2, also known as serum amyloid protein (SAP), is 
a pleiotropic pentameric protein secreted by the liver. SAP is 
a highly conserved protein, and neither genetic deficiencies 
nor polymorphisms have been reported to date [72]. It exerts 
antifibrotic activities through different mechanisms. Specifi-
cally, SAP inhibits monocyte-to-fibroblast differentiation and 
activation of profibrotic macrophages by inducing IL-10 pro-
duction. SAP also interferes with numerous profibrotic signals 
such as thrombin, tryptase, IL-4, and IL-13 [73]. Conversely, 
inhibition of SAP induces persistent inflammation and fibro-
sis following bleomycin challenge in mice [74]. Reduced 
serum levels of SAP, or increased levels with reduced activ-
ity through desialylation, have been found in patients with 
IPF and other fibrotic diseases [75–78]. This effect is likely 
to be secondary to the accumulation of SAP in fibrotic and 
injury sites [79].

In a mouse model of kidney fibrosis, SAP reduced 
inflammation as well as fibroblast and myofibroblast acti-
vation [79]. In a mouse model of bleomycin-induced lung 
fibrosis, the administration of human SAP reduced inflam-
mation and fibrosis through inhibition of TGF-β-induced 
macrophage activity [76, 80, 81].

Owing to its antifibrotic properties, a recombinant form of 
human Pentraxin-2, also known as PRM-151, has been eval-
uated in IPF [82]. In a phase 2 study (PRM-151–202), 116 
IPF patients were randomized in a 2:1 ratio to Pentraxin-2 
or placebo over 24 weeks [83]. The drug was administered 
intravenously at a dose of 10 mg/kg every 4 weeks with 
a loading regimen of three doses at the start of treatment 
(day 1, 3, and 5). Inclusion criteria were a definite/probable 
UIP pattern on chest CT, an FVC between 50 and 90%, and 
DLco between 25 and 90% of the predicted values; concur-
rent therapy with pirfenidone or nintedanib was permitted if 
the dosage was stable for at least 3 months. The study met its 
primary endpoint of mean change in FVC% predicted from 
baseline to week 28, which was − 2.5% in patients treated 
with recombinant human Pentraxin-2 and − 4.8% in those 
in the placebo group. In addition, the change in 6-min walk 
distance was − 0.5 m for patients treated with Pentraxin-2 
vs. − 31.8 m for those in the placebo group (p < 0.001). Con-
versely, no difference was found in quantitative parenchymal 
features on HRCT or changes in DLco. The drug was safe 
and well tolerated with the most common adverse events in 
the Pentraxin-2 vs. placebo group being cough (18% vs. 5%, 
respectively) and fatigue (17% vs. 10%, respectively).

Patients who completed the 28-week double-blind period 
of the PRM-151–202 trial were eligible to participate in the 
open-label extension study (at 76 and 128 weeks) [84, 85]. 
Specifically, patients previously enrolled in the Pentraxin-2 
arm continued this treatment while those previously rand-
omized to placebo crossed over to Pentraxin-2. Both analy-
ses confirmed that long-term treatment with Pentraxin-2 was 
well tolerated and that the positive effects on FVC and 6-min 
walking distance were persistent on continuation and posi-
tive in patients who crossed over from placebo.

A phase 3 trial (NCT04594707), STARSCAPE, was 
conducted to confirm the efficacy and safety of recombi-
nant human Pentraxin-2 in patients with IPF. The study has 
recently been terminated for futility with the results yet to be 
released. This study enrolled 665 patients. Inclusion criteria 
were an FVC ≥ 45% and DLco between 30 and 90% of the 
predicted values. The primary endpoint was the change in 
absolute FVC while secondary endpoints included changes 
in 6MWT, FVC% and DLco, time to respiratory-related 
hospitalization, acute exacerbation, or all-cause mortality 
over 48 weeks. Quality of life, as assessed by SGRQ and 
University of California, San Diego-Shortness of Breath 
Questionnaire, was also evaluated.
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Treprostinil

Treprostinil is a chemically stable prostacyclin analog, devel-
oped and approved for the treatment of pulmonary hyperten-
sion (PH) [86]. This compound acts through a complex net-
work of prostanoid receptors on different cellular types [87]. 
In particular, prostaglandin I2 receptor (IP), prostaglandin 
D2 receptor 1 (DP1), and prostaglandin E2 receptor 2 (EP2), 
all Gs protein-coupled receptors, increase cellular concentra-
tions of cAMP [88]. In turn, the increase in cAMP inhibits 
the extracellular regulated kinase (Erk1/2) signaling, thus 
blocking several profibrotic pathways [89]. Potential antifi-
brotic effects of Treprostinil include reduction of TGF-β- and 
PDGF-induced collagen deposition [90], inhibition of fibro-
blast proliferation through nuclear accumulation of cAMP 
[91], and modulation of inflammatory cell accumulation via 
inhibition of NFkB, as shown in bleomycin-induced pulmo-
nary fibrosis in mice [92]. Another signaling pathway inhib-
ited by increased cAMP levels is the Yes-associated protein 
(YAP)/transcriptional coactivator with PDZ-binding motif 
(TAZ). These nuclear factors have a role in the transcrip-
tion of TGF-β-activated genes [93]. Additional antifibrotic 
activities may be due to the immunomodulatory effects of 
prostanoid receptors [94–96].

Treprostinil was initially evaluated as a continuous subcu-
taneous infusion to treat group 1 PH [97]. To avoid infusion-
related side effects, an inhaled formulation has been devel-
oped, and this has led to the approval of Treprostinil for the 
treatment of PH in USA, Israel, and Argentina [98]. Further 
studies have suggested the efficacy of inhaled Treprostinil in 
group 3 PH, including PH secondary to IPF [99, 100]. The 

INCREASE trial, a phase 3 RCT, assessed the safety and 
efficacy of inhaled Treprostinil in patients with PH second-
ary to ILD [101]. In this trial, patients had PH confirmed by 
right heart catheter and ILD confirmed by centrally reviewed 
CT scans and were allowed to remain on a stable dose of 
antifibrotic therapy. The drug was administered by an ultra-
sonic, pulsed-delivery nebulizer at a dose of 6 μg per breath, 
starting with 3 breaths 4 times a day, with the dose increased 
by 1 breath every 3 days until reaching the target dose of 9 
breaths per session, up to a maximum of 12 per session. The 
study met its primary endpoint of change in peak 6-MWD 
from baseline through week 16. Change in NTproBNP levels 
and time to clinical worsening were also significantly differ-
ent favoring Treprostinil. The study drug was well tolerated, 
and the most frequently reported adverse events were cough, 
headache, dyspnea, dizziness, nausea, fatigue, and diarrhea. 
Notably, 22% of patients in the Treprostinil arm and 39% 
of patients in the placebo arm experienced exacerbation of 
their underlying disease, a percentage substantially higher 
than in other clinical trials of IPF/fibrotic ILD [27, 102•]. 
A post hoc analysis of this study looked at patients with IPF 
and found that Treprostinil treatment was associated with 
preserved lung function, as assessed by FVC, and reduced 
risk of acute exacerbation [102•].

Based on these results, two parallel RCTs (TETON) will 
evaluate the efficacy of inhaled Treprostinil, either alone 
or on background antifibrotic therapy, in patients with IPF 
(NCT05255991; NCT04708782) [103••]. Each study will 
enroll 396 patients. Inclusion criteria include an FVC ≥ 45% 
predicted. Pirfenidone and nintedanib are allowed provided 
patients are on a stable and optimized dose for ≥ 30 days 

Fig. 1   Number of clinical trials in idiopathic pulmonary fibrosis since the approval of pirfenidone and nintedanib, stratified by clinical phase
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prior to baseline. Treprostinil will be administered as in 
the INCREASE study [101], and the study is expected to 
be concluded in June 2025. The primary endpoint is the 
change in absolute FVC from baseline to week 52; second-
ary endpoints include time to clinical worsening and acute 
exacerbation, overall survival, FVC% decline, and change in 
King’s Brief Interstitial Lung Disease Questionnaire score.

Future Perspectives

One decade after the approval of pirfenidone and nintedanib, 
the unmet need in IPF remains high. A large number of trials 
have been conducted, particularly in the last 3 years (Fig. 1; 
Table 2). Intravenous or endobronchial delivery of mesen-
chymal stem cells has proven safe and potentially effica-
cious, but the available data does not allow drawing firm 
conclusions; a number of phase 1 and phase 2 studies are 
ongoing [104••]. TRK-250 is an inhaled small interfering 
RNA with the potential to suppress TGF-β expression. A 
phase 1 study has recently been completed, but the results 
have not been released yet [105]. C21, an oral angiotensin II 
type 2 receptor agonist, has been associated with improve-
ment of FVC in an interim analysis of an ongoing Phase 2 
trial in IPF [106]. Dasatinib + quercetin are oral senolytics 
that act through inhibition of antiapoptotic pathways. In a 
recently completed phase 1 study, these drugs were safe and 
well tolerated [107].

Finally, two studies [108, 109] have shown that the com-
bination of nintedanib and pirfenidone is safe and well tol-
erated; a phase 4 study is currently evaluating the safety 
and efficacy of the combination pirfenidone and nintedanib 
compared to a “switch monotherapy” (i.e., switching from 
the current to the other of the two drugs prescribed as mon-
otherapy) in patients with IPF experiencing progression 
despite antifibrotic therapy (NCT03939520).

Conclusions

The approval of nintedanib and pirfenidone has changed 
the landscape of IPF treatment, and more drugs are likely 
to reach the clinic in the next few years. This represents 
an unprecedented opportunity; yet, it also poses new chal-
lenges regarding the choice of the drug and the possibility 
to combine them or to use them sequentially. However, 
the development of truly efficacious drugs able to halt or 
even reverse fibrosis requires a better understanding of 
the mechanisms involved in disease pathogenesis with the 
final aim to provide the right patient with the right drug 
at the right time.
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