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Abstract
Purpose of Review With the unprecedented increase in chest CT studies, especially due to implementation of lung cancer
screening, evaluation of lung nodules by radiologists can be exhausting and time-consuming. Machine learning promises to
be a useful tool for detection and characterization of nodules. The purpose of this review is to evaluate the recent literature
pertaining to machine learning in lung nodule detection and evaluation.
Recent Findings There has been a recent surge of publications pertaining to machine learning and its applications in chest
imaging. Many studies have shown promising results for automatic detection and characterization of lung nodules. Other studies
have shown combined performance of a radiologist and computer-assisted detection (CAD) out performed a single radiologist,
CAD alone, and double readers. Although these recent advances heighten expectations, it is important for developers and users to
be mindful of challenges such as training, validation, independent testing, and proper user training.
Summary Computer-aided technology can help radiologists in evaluating lung nodules especially with the large number of scans
performed. Recent advances in machine learning are replacing traditional methods and could significantly change the way
radiology is practiced.
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Introduction

Lung cancer is the leading cause of cancer-related deaths in
both men and women worldwide with a 5-year survival of
only 10–15% [1]. National Lung Screening Trial (NLST)
demonstrated that early detection of lung cancer leads to a
20% reduction in mortality [2]. Computed tomography (CT)
plays a pivotal role in the detection and characterization of
lung nodules guiding management. However, detection of
nodules can be an arduous task and prone to errors with per-
formance of radiologists in detecting lung nodules variable [3,
4]. Increasing workloads can also lead to treatment delays [5].

New advances in artificial intelligence (AI) have the
potential to serve as an aid to radiologists by improving

workflow and reducing variability in reporting [6•]. These
advances in AI involve a subset of algorithms in machine
learning that use computers to make predictions based on
learning from examples [7]. These computer algorithms
can learn complex relationships from large amounts of
data and apply that to make accurate decisions [8].
Facial recognition on social media websites, voice recog-
nition, and gauging customer preferences based on online
shopping sites are just a few examples of machine learn-
ing in day to day life.

In medicine, recent advances in machine learning algo-
rithms have made it easier to apply them to radiological im-
ages. In particular, deep learning algorithms have shown in-
creased accuracy in image recognition tasks [9, 10]. Deep
learning analyzes the input data for a task incrementally
through its multilayer neurons following a hierarchy of simple
to more complex representations. Each artificial neuron or
groups of neurons in the multilayer architecture represents
certain aspect of the task and together provide a complete
representation of the output. The weight of each neuron is
continuously adjusted as the model learns from the training
examples. A deep neural network contains millions of adjust-
able weights and generally requires thousands of samples to

This article is part of the Topical Collection on Pulmonary Radiology

* M. Sayyouh
msayyouh@med.umich.edu

1 Department of Radiology, Michigan Medicine, University of
Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109,
USA

Current Pulmonology Reports (2019) 8:86–95
https://doi.org/10.1007/s13665-019-00229-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s13665-019-00229-8&domain=pdf
mailto:msayyouh@med.umich.edu


properly learn the representations from an iterative training
process.

Due to increased accuracy from these deep learningmodels
machine learning is becoming an attractive aid to radiologists
and pulmonary physicians, enabling a more objective and
consistent evaluation, and better performance compared with
traditional computer-aided diagnosis (CAD) systems that
were limited by low sensitivity and high number of false
positives.

Machine Learning Systems (Traditional
and Deep Learning Methods)

Traditional CAD systems use a sequence of algorithms for
lung detection, candidate selection, feature extraction, and
false positive reduction with the output showing the likelihood
of each remaining candidate being a nodule [11–15]. False
positive reduction is often based on segmentation of nodule
candidates from which handcrafted features are extracted. The
features are then input to a machine learning algorithm that are
trained to classify false and true positive nodules by super-
vised learning [16]. Most studies of traditional machine learn-
ing report sensitivity of lung nodule detection that ranges from
70 to 85% and false positives of 3 to 5 nodules per scan on
average [17, 18]. A recent study by Firmino et al. reported a
nodule detection sensitivity of 94% but with a higher false
positive rate of 7 nodules per scan [19].

Deep learning algorithms use multiple processing layers
and automatically build a sequence for detection of a pulmo-
nary nodule. The primary benefit of deep learning is that hand-
tuned features previously defined by computer vision experts
are no longer needed [16]. It provides an automatic way to
generalize knowledge learned from training data to future un-
known test data in a more generalizable way [8]. It is currently
the preferred method of machine learning with a very low
number of false positives when compared with traditional
techniques [16].

Convolutional neural networks (CNNs) are a subtype of
deep neural networks used primarily in image analysis. A
CNN is a type of artificial neural networks that has the
capability of discovering useful features from the input
data using convolutions eliminating the need of manually
designed features. CNN was developed in the early 1980s
in computer vision field for pattern recognition such as
handwritten numerals [20, 21]. It was first introduced into
medical imaging for computer-aided detection of lung nod-
ules in 1993 [22]. Early CNNs had very few convolutional
layers and few kernels in each layer due to limited compu-
tational power of computers and small training data sets.
This, besides the high cost, limited the early adoption of
CNN. However, with recent development of low-cost
graphical processing units and memory for large data

collection, more complex CNNs have been developed.
Also, new techniques and training network strategies such
as layer-wise unsupervised pre-training followed by super-
vised fine-tuning reduced the risk of overfitting and also
increased training speed [23]. These advances allow mil-
lions of weights to be adjusted enabling CNNs to have
more layers and potential pathways for feature identifica-
tion. In 2012, Krizhevsky et al. showed that a deep
convo lu t i ona l neu ra l ne twork (DCNN) wi th 5
convolutional layers and 3 fully connected layers
(AlexNet) could outperform other methods in ImageNet
Large Scale Visual Recognition Challenge (ILSVRC)
[24•]. Subsequent studies show that deeper DCNNs lead
to less errors for complex classification tasks.

To develop a good deep learning system, one must first
define the input data and the desired output. High-quality data
must then be collected with enough variability to generally
cover the types of examples you might see. In general, the
more variable the data is for a desired output, the more data
that will be required. The next step is to divide the data into
training, validation, and test set. The training set is much larg-
er that the validation and test set. The training set is then run
through the deep neural network with each example generat-
ing an output. This output is then compared with the desired
output and a cost function comparing the two is used to update
the weights through a process called back propagation. At the
end of each training run, the performance of the training set is
compared with the validation set to evaluate for overfitting of
the model. Once a model that performs well on both the train-
ing and validation set is created, it is finally tested on the
independent test set for evaluation of the final performance
[8].

For robust DCNN system, a large sample of data from the
population of interest is necessary. Many studies have shown
the importance to train, validate, and test DCNNswith internal
and external data as well as to understand what information a
system has learned for a given task in developing a depend-
able system [25]. The collection of a large, well-curated data
set is the main challenge to develop DCNNs for lung cancer
detection in CT scans or any other medical imaging tasks.

Comparing CAD results in different studies is difficult due
to the variety of algorithms used, different evaluation
methods, database sizes, and nodule characteristics [26].
Additionally, both sensitivity and specificity and their robust-
ness against variabilities in CT scan protocols are important
factors in evaluation of algorithm performance as these vari-
abilities are common in clinical settings [26]. In an effort to
evaluate machine learning algorithms in detection and classi-
fication of lung nodules, objective evaluation frameworks,
called “Challenges,” have been developed (such as Data
Science Bowl, LUNGx, and LUNA16) [27–29]. These chal-
lenges are expected to provide a valuable source for medical
imaging research community in the near future.
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Evolution of Machine Learning in Evaluation
of Lung Nodules

Algorithms for analysis of radiographic images first surfaced
in the mid-1960s [30]; however, they did not attract much
interest at that time due to low computational power and lack
of high-quality digitized images. In the mid-1980s to mid-
1990s, CAD algorithms for detection and diagnosis of cancer
in chest radiographs were developed [31] which then expand-
ed to include other modalities such as computed tomography
(CT) [32]. Most of the early CAD technology depended on
traditional machine leaning methods and algorithms [6].

In the early-1990s to 2000, CNNs, a key feature of deep
learning systems, were introduced into the CAD field in med-
ical imaging [22, 33–35]. However, CNNs were difficult to
train and started to lose popularity in favor of traditional ap-
proaches that seemed to be outperforming CNNs at that time
most likely due to limited data sets available for training at that
time. Later in the 2000s, trials continued using traditional
machine learning methods aiming to further increase sensitiv-
ity and reduce false positives which were the major constraints
for these systems [12, 14, 36, 37].

In the last decade, there has been a revival of CNN due to a
combination of factors such as availability of large data sets,
development of low-cost and powerful graphical processing
units, and technical advancements leading to faster training of
network [6, 38]. In 2012, Krizhevsky introduced DCNNs
which was the start of a new age in machine learning [24].

Applications and Performance of Machine
Learning in Evaluation of Lung Nodules

I. Detection of lung nodules:

Detection of lung nodules is one of the major applications
of CAD systems. Several studies have shown that CAD sys-
tems detect lung nodules in a different way compared with
radiologists [39, 40]. Studies have also shown that the ability
of a machine learning system to detect nodules can be affected
by factors such as nodule size, location, composition, and
other lung abnormalities that may be mistakenly detected as
nodules (false positives) as well as technical factors that affect
image quality such as reconstruction filter and section thick-
ness. Features that might cause false positives in CAD sys-
tems include scars, bronchial wall thickening, vessel bifurca-
tions, and sometimes motion artifacts [26].

Sensitivity of CAD decreases with decrease in nodule
size. For example, in a study by Brown et al., detection
sensitivity of CAD for nodules > 3 mm was 100% and
dropped to 70% for nodules < 3 mm [41]. However, an-
other study that compared 6 different CAD algorithms in
detection of lung nodules showed that five out of the six

tested systems had better sensitivity in small lung nodules
compared with the larger ones [42]. This was explained
by smaller nodules being more frequently isolated and
more abundant in training data sets [42]. Hence, apart
from size, nodule location plays a key role. The highest
sensitivity is seen for isolated nodules and decreases for
juxtavascular and juxtapleural nodules [42, 43]. Bae et al.
found the sensitivities for isolated, juxtavascular, and
juxtapleural nodules to be 97.4%, 94.1% and 92.3% re-
spectively [43]. It has been demonstrated that CAD sen-
sitivity in detecting small isolated nodules (< 5 mm) was
higher than that of a radiologist [40], although radiolo-
gists outperform CAD in larger nodules (> 5 mm) and
those that are adjacent to other structures [40]. This ob-
servation makes CAD systems a viable complementary
tool to radiologists. Sahiner et al. studied the effect of
CAD on radiologists’ performance in nodule detection
for nodule sizes greater than 3, 4, 5, and 6 mm, and
showed that CAD could improve the radiologists’ detec-
tion for all four thresholds but the improvement achieved
statistical significance for thresholds of 3 and 4 mm [44].

Most of the CAD systems that have been approved for
clinical use have generally been directed towards solid
nodules which have well-defined spherical shape, uniform
density, and high contrast to the surrounding lung paren-
chyma [45]. Sub-solid lung nodules are difficult to detect
by CAD due to low contrast compared with surrounding
lung parenchyma and poorly defined margins [26]. While
solid nodules are more common, sub-solid nodules are
more likely to be malignant [46]. In a study by Henscke
et al., 63% of part-solid nodules and 18% of ground-glass
nodules were malignant compared with only 7% of the
solid nodules [46]. Relatively small number of studies
have evaluated sensitivity of CAD systems in detection
of sub-solid lung nodules including pure ground glass
and part-solid nodules [45], but have consistently shown
inferior performance compared with solid nodules. It has
been shown that sub-solid nodules are more likely to be
missed [47], with detection rate for part-solid nodules
ranging from 72 to 85% [48, 49] and for pure ground-
glass nodules being approximately 49% [49]. These re-
sults are consistent with the fact that most algorithms
are based on attenuation differences which are larger be-
tween normal lung parenchyma and solid nodules than
ground-glass nodules.

In addition to nodule characteristics, CT parameters (such
as section thickness) also affect CAD performance [45]. Thin-
section CT has been shown to enhance nodule detection com-
pared with larger section thickness. Nodule detection im-
proves with decreasing section thickness and reconstruction
intervals, however, at the cost of the larger volume of data that
can cause significantly longer reading time [50, 51].
Narayanan et al. showed that 2.5 mm is the most effective in
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terms of accuracy, dosage level, computation, and memory
consumption [52]. CAD is not recommended for section
thickness of 4 mm or greater [39, 50].

Studies have shown that radiation dose can be significantly
reduced by lowering tube current without compromising de-
tection rates by CAD systems. Hein et al. compared two CAD
systems for scans done with two different tube currents of
75 mAs and 5 mAs and found no significant difference in
nodule detection rates [53]. In another study, Lee et al. com-
pared sensitivities for detection of lung nodules with 32, 16, 8,
and 4 mAs. They showed that there was no significant differ-
ence in nodule detectability between scans performed at
16 mAs, 8 mAs, and 32 mAs. However, scans done at
4 mAs had significantly lower nodule detection sensitivity
compared with 32 mAs. They concluded that within certain
range, nodule detection accuracy does not deteriorate. This
was explained by the inherent high contrast within the aerated
lungs and the less effect of image noise, produced at lower
does, compared with solid organs [54].

Selected studies for the performance of CAD in detection
of lung nodules are shown in Table 1.

II. Characterization/classification of lung nodules:

Many studies have been conducted to evaluate if ma-
chine learning algorithms using extracted nodule features
such as textural and geometric features, density, shape,
surface curvature, margin, and lung parenchyma sur-
rounding the nodule can help radiologists differentiate be-
tween benign and malignant nodules [58]. In a study by
Song et al., researchers tested 3 deep learning techniques
for classifying benign and malignant nodules using size
and textural features and they concluded that CNN had
the best performance [59]. Ferreira Jr. et al. used nodule
margin sharpness beside nodule texture as descriptors for
classification of lung nodules. They reported statistically
significant improvements on sensitivity of the CAD sys-
tem in classification of benign and malignant nodules
[58]. Tu and colleagues evaluated the use of CNN for

automatic categorization of solid, part-solid, and non-
solid nodules. In their study, no image segmentation pro-
cessing was needed, avoiding potential errors caused by
inaccurate image processing. They concluded that adop-
tion of CNN-based CAD systems can improve the perfor-
mance of CAD, reduce inter-observer variation, and pro-
vide reference for further nodule analysis [60]. More re-
cently, Ciompi et al. presented a deep learning system
based on multistream multiscale convolutional networks
which can automatically classify all nodule types relevant
for nodule work-up. They categorized nodules into 4 main
categories: solid, non-solid, part-solid, and calcified nod-
ules. Two subcategories of solid nodules were peri-
fissural nodules and spiculated nodules. They showed that
the deep learning system exceeds the performance of clas-
sical machine learning approaches and is within the inter-
observer variability of four experienced radiologists [61].
In another study by Nishio et al., they developed a
computer-aided diagnosis method for differentiation of
benign nodules, primary lung cancer, and metastatic can-
cer and compared DCNN with and without transfer learn-
ing with a conventional handcrafted method. They con-
cluded that classification was better using a DCNN com-
pared with the conventional method and transfer learning
improved image recognition [62].

Selected studies for the performance of CAD in character-
ization of lung nodules are shown in Table 2.

Nodule Volumetry Computer-aided volumetry can provide an
accurate and more reproducible measurement for nodules en-
abling accurate assessment of nodule growth rate and also
response to treatment. Growth rate as indicated by “doubling
time” is used as a predictor of malignancy [26]. In the Dutch-
Belgian Lung Cancer Screening Trial (NELSON), nodule
management was based on volumetric nodule measurement.
Nodule growth was defined as increase of volume by at least
25%. In case of part-solid nodules, only the solid part was
used for volumetry [69].

Lung nodule volumetry can also be used in the assessment
of response to treatment. It has been suggested that change in

Table 1 Selected CAD studies in detection of lung nodules (for additional studies before 2009, please see reference [15])

Study Year Database Number of nodules Section thickness (mm) Nodule size (mm) Sensitivity (%) False positive rate

Sahiner et al. [44] 2009 Private 118 1.5–3.0 3.1–19.6 78 5.5/scan

Riccardi et al. [55] 2011 LIDC-IDRI 154 0.5–3 ≥ 3 71 6.5/scan

Guo and Li [13] 2012 LIDC-IDRI 111 1.25–3 ≥ 3 80 2.8/scan

Cascio et al. [11] 2012 LIDC-IDRI 148 1.25–3 ≥ 3 97 2.5/scan

van Ginneken et al. [42] 2015 LIDC-IDRI 1147 ≤ 2.5 ≥ 3 76 1.0/scan

Setio et al. [56] 2016 LIDC-IDRI 1186 ≤ 2.5 ≥ 3 85.4 1.0/scan

Dou et al. [57] 2017 LIDC-IDRI 1186 ≤ 2.5 ≥ 3 90.7 1.0/scan

Curr Pulmonol Rep (2019) 8:86–95 89



tumor volume is more sensitive when compared with conven-
tional unidimensional measurement after targeted therapy for
lung cancer [70].

Volumetric measurement of lung nodules can be affected
by various factors including nodule size, characteristics, tech-
nical parameters of the CT examination, and patient-related
factors [26]. Small lung nodules, due to partial volume effect,
are subject to greater measurement errors [71]. Nodules that
come in contact with surrounding vessels or pleura are more
difficult to segment from the background. Also, changes in
lung volumes during inspiration and expiration can affect lung
nodule volume measurement, leading to 23% difference in
nodule volumemeasurement [72]. Technical scan factors such
as section thickness significantly impacts volumetry. Thin CT
sections reduce partial volume effect and therefore enable
more accurate assessment [71, 73–77]. On the contrary, tube
current (20 mAs versus 100 mAs) was not shown to have a
significant impact [74].

Most studies for lung nodule volumetric measurements
have been done on solid lung nodules. Only few studies re-
garding volumetry of sub-solid lung nodules have been report-
ed [26] with higher error values for ground-glass nodules than
solid nodules [78].

III. Quantitative analysis of image features:

Radiomics, defined as automatic extraction of quantitative
features from medical images, turns image voxels into set of
numbers that characterize the biological property of interest
such as malignancy, tumor grade, or therapy response [79].
Recently, CNNs were used for quantitative analysis using fea-
ture learning, unlike the engineered pre-selected radiomics/
texture analysis approach [80]. Detailed discussion of
radiomics is beyond the scope of this review.

IV. Evaluation of treatment response:

CAD systems can be an important tool in evaluation of
treatment response in lung cancer patients. As discussed
above, volumetric nodule measurements can be valuable in
this setting. Besides the volumetric change, other radiomics
features may also be useful for assessing tumor response to

treatment [81]. An additional benefit of machine learning is
image registration and automatic nodule matching which sig-
nificantly reduces the time involved with manual matching
and measurement of nodules on follow-up studies [26]. Lee
et al. evaluated the performance of automated matching soft-
ware using two serial CT scans (at 5-mm section thickness).
The matching rate was highly influenced by the difference in
the lung configurations between the two scans ranging from as
high as 82% (in patients with relatively unchanged configura-
tion) to 29% (in patients with substantial change in configu-
ration) [82]. In screening studies, however, the interval con-
figuration change is usually less with reported matching rates
of 91–93% [83, 84].

V. Lung nodule biopsy:

A recent study by Sumathipala et al. suggested that ma-
chine learning tools can predict whether a lung nodule is best
biopsied surgically or by a minimally invasive procedure. In
their study, an algorithm incorporating semantic (provided by
4 expert radiologists) and computational imaging features
using the public domain imaging data from the Lung Image
Database Consortium Image Collection (LIDC-IDRI) was de-
veloped. These features included nodule size (3D volume),
shape (sphericity, spiculation, lobulation), accessibility (dis-
tance from trachea to the nodule and distance to outer skin),
and composition (calcification, texture, and internal structure).
They found that the most informative features were nodule
spiculation, volume, and maximum distance to outer skin.
This was suggested to be helpful in deciding between surgical
biopsy and minimally invasive procedure [85].

Machine Learning and Lung Cancer Screening

Implementation of lung cancer screening programs has led to
an unprecedented increase in the number of chest CT scans.
These screening scans are reported based on a standardized
Lung CT Reporting And Data System (Lung-RADS) [86].
The detection of nodules, evaluation, and reporting of man-
agement recommendations can be tedious and time-
consuming [16].

Table 2 Selected CAD studies in
classification of lung nodules (for
additional studies before 2009,
please see reference [15])

Study Year Database Number of nodules Accuracy (%) AUC

Way et al. [63] 2009 Private 256 N/A 0.863

El Baz [64] 2011 LIDC 327 93.6 N/A

Kumar et al. [65] 2015 LIDC-IDRI 4323 75.01 N/A

Song et al. [59] 2017 LIDC-IDRI 5204 84.15 N/A

Wei et al. [66] 2017 LIDC-IDRI 366 91.8 0.986

Zhao et al. [67] 2018 LDIC-IDRI 1018 82.2 0.877

Xie et al. [68] 2019 LDIC-IDRI 1945 91.6 0.957
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If a CAD system is designed and validated properly to be a
concurrent reader, a first reader, or even a pre-screener that can
reliably exclude negative cases from radiologists’ reading, it
can improve workflow and make reading more efficient [61],
although the performance criteria for CAD to do so still needs
to be determined. Applications of CAD systems in lung cancer
screening may include lung nodule detection, risk assessment,
calculation of their 2D dimensions and 3D volume, tracking
size over time to assess growth, and providing appropriate
follow-up recommendations. CAD systems can also provide
a consistent and reliable way to evaluate nodules, avoiding
inter-reader variability by radiologists. Many studies have
shown that the diagnostic image quality does not suffer at
low doses [87–89]. However, the effect of low-dose CT tech-
niques on accuracy of CAD systems is still under
investigation.

Machine Learning and Radiologists

Various factors affect the performance of radiologists in de-
tection of lung nodules such as nodule characteristics (size,
location, attenuation) as well as observer experience. Besides,
these challenges, fatigue, emotional state, distractions during
reading time, satisfaction of search, and environment can have
an important impact [8].

Although double reading by 2 radiologists was shown to
increase sensitivity of lung nodule detection [90, 91], it is
considered time-consuming and comes at a high cost which
might not be practical. Machine learning has the potential to
assist radiologists and reduce reading time at a lower cost.
Observer studies demonstrated that lung nodule detection sen-
sitivity in CT by radiologists improved significantly when
reading with CAD [15]. Also, CAD systems have been proven
to have higher sensitivity in detection of lung nodules than
double reading by radiologists [92, 93]. In a study by Zhao
et al., 22% of nodules (randomly selected from the NELSON
study) were detected only by CAD and missed by 2 radiolo-
gist readers. Three percent of these nodules were diagnosed to
be cancer in the following year [92]. Lee et al. showed that
CAD sensitivity as a standalone tool (81%) is not significantly
different from that of radiologists alone (85%) [40].

Beyer et al. suggested that integration of CAD into clinical
practice can be realized in 3 different ways:

– First reader (where CAD functions as a screener and
only CAD detected imaging slices are presented to
the reader).

– Second reader (where CAD findings are reviewed by the
radiologist as a second step after the initial read).

– Concurrent reader (where CT scan is read by radiologist
and CAD findings are displayed concurrently).

In their study, they evaluated the performance of CAD
as second reader and concurrent reader and found that
sensitivity of CAD as a second reader was higher than
without CAD or with CAD as a concurrent reader.
However, in the same study, the reading time was signif-
icantly shorter with CAD as a concurrent reader compared
with that without CAD or with CAD as a second reader
[94]. So CAD can be envisioned as a tool that can im-
prove sensitivity when used as a second reader (at the cost
of increasing reading time) or as a tool that improves
efficiency when used as a concurrent reader (by reducing
the reading time and without losing sensitivity).

Christe et al. investigated the best pairing of first and
second reader for detecting lung nodules with CT at var-
ious dose levels. They paired 2 radiologists and 3 differ-
ent CAD software to find the highest sensitivity. They
found that the highest sensitivity (between 97 and 99%)
was achieved by combining any radiologist with any
CAD at any dose level. Combining any two CADs, sen-
sitivity was significantly lower (85% and 88%) [95]. The
value of CAD as a second reader has also been shown by
several other observer studies [44].

Most of the data available, however, concerns only
solid nodules [48]. A study by Yanagawa et al. showed
that only 21% of 102 ground-glass nodules were detected
by CAD compared with 60–80% detected by radiologists
[49].

Limitations and Future of Machine Learning
in Evaluation of Lung Nodules

Despite the advantages machine learning has shown, there are
still barriers for widespread application in clinical practice
[96]. One of the major challenges in developing an accurate
CNN for machine learning is the requirement of a large data
set for training and validation. Also, the generalizability of the
developed machine learning model should be evaluated with
independent testing data sets [6]. These data sets should be
representative of the population, imaging equipment, and ac-
quisition protocols in the clinical setting for which it is going
to be used. Collecting such data sets, however, can be very
expensive.

A machine learning algorithm trained on a small data set
may not perform well on a large data set as distribution of
features may differ [8]. Overfitting (overtraining) is a known
problem with small training sets [6, 38]. With overfitting, a
classifier models the small training set very well so that it fails
to generalize on new unseen data. Several ways have been
suggested to reduce overfitting including regularization, early
stopping, and dropout [97].

To alleviate this problem in medical imaging, “transfer
learning” has been used. In transfer learning, a DCNN
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already trained with large data from a different task (pre-
trained model) can be adapted to a new target task by
further fine-tuning it with data from the target domain
[98]. Although this might help to a certain extent, the
performance of a pre-trained DCNN still depends on the
size of the training data set [99]. Another way to reduce
the limited data set problem is “data augmentation.” Data
augmentation generates multiple slightly different varia-
tions of images from the original data set. Although this
has been shown to reduce overfitting [24], it is not as
effective as increasing the real training sample size.
Moreover, if the original training set lacks the representa-
tion of certain imaging features, data augmentation will
not fill the gaps. Digitally generated artificial lesions to
represent certain characteristics have also been explored
[100].

Conclusion

In the current clinical practice, efficiency and costs are
major considerations. Machine learning in detection and
characterization of lung nodules, especially with the re-
cent success of deep learning methods, has sparked the
interest to develop more advanced CAD systems that
can potentially save time and improve accuracy. With
the availability of big data sets, advances in deep learning
algorithms, and processing power machine learning
models, will continue to improve. Furthermore, systems
that can integrate clinical data and molecular biomarkers
in addition to the imaging data can be great tools to sup-
port clinical decision-making in the near future. However,
it is very important for developers and users to understand
the importance of large training data sets, independent
testing, and validation of its generalizability both retro-
spectively and prospectively [101]. It is also important
that pulmonologists become aware of these systems and
if they are being used by the radiologists as this can have
an effect on performance depending on the system used.
Proper quality assurance and monitoring after clinical im-
plementation, user training, and mindfulness of machine
learning limitations are also essential to increase the over-
all performance and efficiency in the clinical practice
[102].
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