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Abstract

+ Key message Xylem hydraulic traits of native Quercus robur are more sensitive to previous-summer drought than those
of alien Robinia pseudoacacia. The latter modulates vessel traits and ring porosity to cope with inter-annual climate
variability, and is less affected by extreme events. This suggests that R. pseudoacacia might be more competitive under
future drier conditions.

+ Context Forest management strategies require knowledge on how co-occurring native and alien species respond to unprece-
dented climate conditions, which can severely affect xylem conductivity and tree performance.

« Aims We aimed at quantitatively comparing xylem anatomical traits of co-occurring native Quercus robur and alien Robinia
pseudoacacia and assessing similarities and differences in their response to climate variability.

« Methods We analyzed tree-ring anatomy and built chronologies of several parameters related to vessel number, size, and
theoretical conductivity. Mean chronologies for each parameter were correlated to monthly temperature and precipitation data
for the period 1954-2005 and within 30-year moving windows. We also assessed responses to extreme conditions in 2003.

* Results Quercus robur showed typical ring-porous vessel distribution, while R. pseudoacacia modulated vessel size and
number year by year, frequently showing semi-ring porous appearance. Previous rainy summers increased size of large vessels
in Q. robur, and number of large vessels in R. pseudoacacia. In winter, R. pseudoacacia was sensitive to water excess. High
temperature in March increased vessel size in Q. robur, but reduced it in R. pseudoacacia. The 2003 summer heatwave strongly
reduced vessel size and number in the following year in Q. robur, but had much less effect on R. pseudoacacia.

« Conclusion Quercus robur xylem traits are more influenced by both inter-annual climate variability and extreme events than
those of R. pseudoacacia. Lower performance under dry conditions might reduce competitiveness of Q. robur in the future,
slowing down the natural replacement of the invasive pioneer R. pseudoacacia by later-stage Q. robur.
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(Dyderski et al. 2018). For example, Northern-American
Pseudotsuga menziesii Mirb. is less vulnerable to soil water
deficits than the co-occurring European Picea abies (L.)
Karst. (Lévesque et al. 2013), and Chinese Ailanthus altissima
(Mill.) Swingle shows a higher drought resistance than the co-
occurring Castanea sativa Mill. (Kniisel et al. 2015).
Therefore, in some European regions, we might expect that
alien species well-adapted to future conditions will partially
replace native ones (Dyderski et al. 2018). At sites where
native and alien species coexist, this perspective calls for com-
parative studies on their responses to climate, which can be
performed in many ways.

One of the most widely used approaches is to investigate
tree-ring series to retrospectively assess how inter-annual cli-
mate variability, or extreme climate events, affected past
growth patterns and to infer a species’ or population’s capacity
to cope with future conditions (Fritts 1976). Besides ring
width, xylem anatomical features in tree rings can provide
additional information on climate influence on functional
traits related to efficiency and safety of water transport (De
Micco et al. 2019; Fonti et al. 2010). Xylem hydraulic con-
ductivity depends on conduit lumen size and number, in ad-
dition to other microscopic features such as inter-vessel pitting
(Cruiziat et al. 2002). Wide xylem conduits are more efficient
than narrower ones, but more prone to freeze-thaw induced,
and, arguably, to drought-induced cavitation (Hacke et al.
2017). In addition, a higher number of conduits obviously
improves water transport capacity (Hacke and Sperry 2001).
Favorable climate conditions during xylem formation (Fonti
et al. 2007; Garcia-Gonzalez and Eckstein 2003), or in the
previous season, especially in ring-porous species (Gea-
Izquierdo et al. 2012; Martinez-Sancho et al. 2017), allow
trees to form a higher number of and/or larger conduits than
in unfavorable years. However, responses are very variable
from species to species, due to different growth strategies
and xylem anatomy (Castagneri et al. 2017; Gonzélez-
Gonzalez et al. 2014). Species able to form a relatively more
efficient xylem structure under future climate conditions
would be more competitive. Furthermore, trees with large
vessels, highly vulnerable to expected drier conditions, might
have lower chances of surviving during severe drought events
(Olson et al. 2018). Knowing how coexisting alien and native
species respond to climate conditions, especially in terms of
safety and efficiency of their xylem structure, may be crucial
in assessing the future spread of alien tree species in Europe,
and their ability to outcompete native species (Cavalieri and
Sack 2010). Surprisingly, while many studies have been per-
formed on the xylem responses to climate of European native
broadleaf species, studies on alien species are scant.

In this study, we investigated native pedunculated oak
(Quercus robur L.), one of the main species in temperate de-
ciduous mixed forests in central Europe, and the alien black
locust (Robinia pseudoacacia L.), naturalized and invasive in
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most European countries (Cierjacks et al. 2013), to compare
their growth response to climate by quantitative xylem analy-
sis. The study site, along the Ticino river, hosts one of the few
and best-conserved relicts of the original alluvial forests in
Northern Italy (Sartori 1984). This forest has gone unmanaged
for many decades (Motta et al. 2009), allowing the study of
interrelationships between climate and tree growth without the
strong human disturbances typical of European lowlands.

However, in mesic sites, radial growth is not controlled by
a single limiting factor, and it may be difficult to identify
climatic signals within tree-ring series (Fonti and Garcia-
Gonzalez 2008; Tessier et al. 1994). In such circumstances,
xylem anatomical traits, being directly related to physiological
processes, might be more effective in comparing the responses
of the two species to climate.

We designed this study in order to: (1) quantify the main
differences in xylem anatomical traits between the two species
and their inter-correlation; (2) assess the main climatic factors
influencing xylem traits and tree growth, and any temporal
trend in the responses linked to climate change; and (3) eval-
uate the effects of the summer 2003 climate extreme on the
species xylem traits.

2 Methods
2.1 Study area and target species

The study site is located in the “Siro Negri” State Natural
Forest Reserve, established in 1970 within the Ticino
Regional Park, Northern Italy (45°12'N, 9°03’E, 63 m a.s.l.)
and covering 11 ha. The Reserve protects a mixed
broadleaved forest attributed to Habitat 91FO0 (riparian mixed
forests of hardwood trees on the banks of large rivers, liable to
flooding), in accordance with Directive 92/43/EEC and it is
included in an EU Site of Community Interest. Previous stud-
ies have shown that the forest is dense, structurally complex,
and rich in biomass, as expected for stands unmanaged for
decades. The stand is dominated by Quercus robur; other tree
species are Robinia pseudoacacia, Ulmus minor Mill.
Carpinus betulus L., Populus alba L., and Acer campestre
L. (see Motta et al. 2009 for detailed characteristics of the
stand, such as other co-occurring species, density and tree-
age). Mean annual precipitation is about 800 mm and mean
annual temperature is 13.6 °C (Pavia weather station, 10 km
from the study site, for a climatic diagram see Annex Fig. 8).
Floods occur in spring or autumn every 5-10 years
(Castagneri et al. 2013). Except during such events, ground-
water level is around —4.50 m in winter, while it reaches —
3.50 m during summer, due to irrigation of corn and rice fields
in the surroundings (Sartori unpublished).

Within the study site, we focused on tree-ring anatomy of
Quercus robur and Robinia pseudoacacia. Q. robur is ring-
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porous, with very large vessels in the earlywood, while late-
wood presents much smaller vessels in radially oriented ag-
gregates (Schweingruber 1990). Robinia pseudoacacia is con-
sidered ring-porous too, but shows more gradual transition of
vessel size from earlywood to latewood (Schweingruber
1990).

2.2 Sample collection and wood preparation

Increment cores were taken with Pressler’s borers at 1.3 m
above ground from adult dominant or co-dominant Q. robur

and R. pseudoacacia trees between 2005 and 2013. Of the
collected samples, a total of 10 Q. robur and 15
R. pseudoacacia cores were analyzed for anatomical traits in
the present study. Given the higher variability of ring structure
in R. pseudoacacia (Fig. 1) a larger number of samples was
analyzed for this species. The samples were mounted on fixed
supports and cut with a razor blade to obtain a flat surface. To
enhance the contrast between conduit lumen and wood matrix,
Q. robur vessel lumina were filled with white chalk powder
(Gértner and Schweingruber 2013). Giving the natural dark
color of the wood matrix (due to the abundance of tannins),

Fig. 1 Wood and vessel
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the contrast with white chalk in vessel lumina was strong,
therefore no further processing was required before image
acquisition with a scanner. On the other hand,
R. pseudoacacia samples needed additional preparation due
to the brighter color of the wood matrix and abundance of
light parenchyma bands: heartwood was colored with
phloroglucinol, while sapwood was colored with
phloroglucinol and potassium iodide—iodine (Kutscha and
Sachs 1962). After drying, vessels were filled with white
chalk powder. The cores were then scanned using an Epson
V700 Photo Scanner (Seiko Epson Corporation, Suwa,
Nagano, Japan) at 2400 dpi resolution and 48-bit color depth.

2.3 Tree-ring data, vessel parameters, and chronology
building

Tree-ring width was measured on all the cores to the nearest
0.01 mm using a CCTRMD device (Aniol 1987), and cross-
dated using the mean chronologies derived for the two species
from previous studies (Motta et al. 2009; Nola 1996; Tessier
et al. 1994). Statistics commonly used in dendrochronology
were computed to describe key properties of ring-width chro-
nologies (Fritts 1976): mean sensitivity (MS) and standard
deviation (SD) were used to assess high-frequency variation
of the series; first-order serial autocorrelation (AC) to detect
persistence within the series; and mean correlation between
trees (rbar) to measure the common variance between individ-
ual series.

Within dated tree rings in the common period 1954-2005,
vessels in a 3-mm wide radial strip were measured on digital
images using ROXAS software (von Arx and Carrer 2014),
which provided the lumen size and centroid position for each
vessel within dated annual rings. The lower threshold for ves-
sel detection was set to 5000 um? (Garcia-Gonzalez et al.
2016), a limit compatible with the image resolution and suit-
able for detecting vessels in both species. This threshold was
lower than that commonly used for ring-porous species, fre-
quently set to 10,000 umz (Garcia-Gonzalez and Fonti 2008),
ignoring only the smallest vessels while retaining the larger
vessels that contain the strongest environmental signal (Fonti
et al. 2009; Garcia-Gonzélez et al. 2016). The following pa-
rameters were assessed for each ring: mean ring width (RW);
number of vessels (VN); total vessel lumen arca (TVA); net
wood area (NWA) as the difference between total ring area
and TVA, representing the part of the ring not devoted to water
transport; mean hydraulically-weighted diameter (Dh), calcu-
lated according to Tyree and Zimmermann (2002); and theo-
retical hydraulic conductivity (Kr), i.e., the sum of theoretical
hydraulic conductivity (as approximated by Poiseuille’s law
and adjusted to elliptical tubes) of all the vessels in a ring
(Castagneri et al. 2015; Gonzalez-Gonzalez et al. 2015).

Since environmental responses can be maximized by filter-
ing vessels according to their size (Garcia-Gonzalez et al.
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2016), we also calculated the Dh for vessels larger than the
first (Q1Dh) and smaller than the last (Q4Dh) quartiles of size
distribution, the total area of the three largest vessels (Max3)
and the area corresponding to the 10th (A10), 50th (A50), and
90th (A90) percentile. Finally, we calculated the number of
vessels larger than the mean vessel size (NL).

As individual series of ring width and anatomical traits may
be affected by age/size trend (Carrer et al. 2015), they were
detrended by cubic smoothing spline function with a 50%
frequency cutoff response at 100 years, using the ARSTAN
program (Cook and Krusic 2005). Successively, spline func-
tion with a 50% frequency cutoff response at 20 years was
applied to keep the high-to-medium series frequency, usually
related to inter-annual climatic variability (Cook and Peters
1981). An autoregressive function was then used to eliminate
autocorrelation (Tessier et al. 1994). The obtained residual
series were then averaged by a bi-weight robust mean into a
chronology for each species and variable. The same method
was applied to all the variables to avoid differences associated
with detrending procedures (Gonzalez-Gonzalez et al. 2014).

2.4 Statistical analyses

To explore the relationships between the ring and vessel chro-
nologies in each species (Gonzalez-Gonzalez et al. 2015), we
applied principal component analysis (PCA) computed on the
chronologies correlation matrix for the common period 1954—
2005.

To evaluate the influence of the previous year’s growth (t-
1) on the anatomical traits in the current one (t), we calculated
Pearson’s correlation for each vessel variable (t) with RW and
NWA (t-1). Then the correlation between TVA and NWA was
studied at decreasing lags starting from the current year. The
analysis was conducted on residual series to assure that any
possible significant correlation did not reflect residual auto-
correlation within the series.

Further, to evaluate whether inter-annual variability of an-
atomical traits was related in Q. robur and R. pseudoacacia,
we calculated paired correlations between all the ring and
vessel chronologies for the two species.

The influence of climate on xylem traits was investigated
using monthly temperature and precipitation data from CRU
TS 3.22 climate grids (0.5 x 0.5 degree) (Harris et al. 2014).
Relationships between the 13 chronologies for each species
and climate from June of the year preceding ring formation to
July of the current ring formation year were investigated by
means of Pearson’s correlation function.

We also assessed temporal variations of climate influence
on anatomical traits, by means of 30-year moving correlation
functions between the climatic variables and the 13 chronol-
ogies (Biondi and Waikul 2004; Carrer et al. 2010;
Lebourgeois et al. 2012).
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Finally, we investigated the effects of summer 2003—the
warmest and driest one in the study period—on ring and ves-
sel parameters in the 2003 and 2004 rings for the two species.
Specifically, we calculated the ratio between each parameter
for the target years (2003 and 2004), and its mean value in the
3 years prior to the event (2000-2002), considered as refer-
ence (Castagneri et al. 2017; Lloret et al. 2011). After testing
for normal distribution and equal variance, differences be-
tween the parameters in the target years and in the reference
period were assessed by paired Student’s 7 test.

3 Results
3.1 Tree ring and vessel parameters

Quercus robur individuals were larger and older and showed
higher growth rates (mean ring width), mean sensitivity (MS),
and autocorrelation (AC) than R. pseudoacacia individuals
(Table 1). Rbar was similar for the two species. Xylem ana-
tomical features of the species were quite different (Fig. 1a). In
0. robur, large vessels were confined to the proximity of the
early ring border and their size decreased abruptly (Fig. 1b), so
that few vessels above the selected threshold were detectable
moving away from the border. In R. pseudoacacia, vessel size
was highly variable. In some rings, small vessels occurred
even in the early part of the ring, mixed with or preceding
the large ones. Porosity was highly variable, too. While some
rings showed ring porosity typical of the species, some others
were semi-ring porous, with conduits above the selected
threshold occurring along the entire ring. The frequency dis-
tribution of vessel size also showed different patterns (Fig.
Ic). In Q. robur, vessel frequency was quite uniform in the
first-size classes and it gradually decreased for vessels over
60,000 um?. In R. pseudoacacia, the size distribution approx-
imated a reverse J-shape, with a peak around 15,000 pm? and
more than 50% of the vessels smaller than 25,000 umz.
Vessels > 75,000 umz were rare.

The Kolmogorov-Smirnov test detected significant differ-
ences between the two species for all the investigated param-
eters (p <0.01, Table 2). RW, NWA, and all parameters related
to vessel number (VN, NL, TVA) were higher in
R. pseudoacacia. Quercus robur had higher values for
vessel-size parameters. Kr, linked to both vessel size and num-
ber, was higher in R. pseudoacacia.

3.2 Interrelationships between parameters
and species

The PCA ordination (Fig. 2) showed similarities and differ-
ences between the two species. For both species, the two first
PCs together explained about 69% of total variance. The third
PC accounted for about 13%, but added significant informa-
tion only for R. pseudoacacia (Broken-Stick Model, Jackson
1993, see the scree plot in Annex Fig. 9).

For both the species, PC1 was positively related with most
parameters (see also the correlation of PC axes with each
parameter in Annex Fig. 10). PC2, more important for
R. pseudoacacia than for Q. robur, showed that parameters
that depend on vessel size were more separated from those
linked to vessel number (and ring width) in R. pseudoacacia
than in Q. robur. This difference was underlined by the neg-
ative correlation between AS0 and VN in R. pseudoacacia,
not detectable in Q. robur (Annex Fig. 11). Finally, PC3 sep-
arated small (A10, Q4Dh) from large vessels.

For Q. robur, previous years’ RW and NWA correlated
with some vessel parameters for the current year (correlation
positive with VN, NL, TVA, Kr, and negative with Q4Dh),
while no correlation was found for R. pseudoacacia (Fig. 3).
In particular, TVA correlated with the NWA of both the pre-
vious (lag — 1) and the current (lag 0) year in Q. robur, but
only with the current NWA in R. pseudoacacia (Fig. 4).

A positive association was found between the two species’
RW, NWA, and A50 chronologies. None of the other param-
eters showed significant correlation, evidencing different
inter-annual variability in the two species (Annex Fig. 12).

Table 1 Tree characteristics and
descriptive statistics for raw tree-

Quercus robur Robinia pseudoacacia

ring width chronologies
Number of trees

Mean diameter (range) [cm]
Mean age (range)
Chronology time span [years]
Mean ring width [mm]
Standard deviation [mm]
Mean sensitivity (MS)
First-order correlation (AC1)

Mean series inter-correlation (Rbar)

10 15
62 (50-77) 38 (27-54)

104 (83-148) 63 (57-73)
18762012 (137) 19462012 (67)
2292 2.079

1.158 0.797

0234 0.187

0.827 0.739

0.386 0.394
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Table2  Tree-ring and vessel parameters of the investigated species in the period 1954-2005: acronym, definition, unit, mean and standard error (SE).
All parameters are statistically different between the two species (Kolmogorov-Smirnov test, p <0.01)

Acronym Tree-ring or vessel parameter Quercus robur Robinia pseudoacacia
Mean + SE Mean = SE

RW Tree-ring width [mm] 1.88 £0.05 2.02 £ 0.04
NWA Net wood area [mm?] 487 +£0.14 5.19 £ 0.09
VN Vessel number 16 £0.2 32+0.6
NL Number of vessels larger than the mean 9+0.1 14+0.2
TVA Total vessel area [mm?] 0.78 £ 0.01 0.86 + 0.02
Kr Theoretical hydraulic conductivity [kg m MPa ™" s™'] 1.65 £ 0.03 1.38 £0.03
Dh Mean hydraulic diameter [pm] 262 + 14 201 +0.7
Max3 Mean lumen area of the three largest vessels [um?] 83,252 + 852 55,631 £419
A90 Vessel lumen area corresponding to 90th percentile [um?] 79,021 + 827 47,384 + 350
QIDh Hydraulic diameter for vessels over 75th percentile [pum] 319 £ 1.6 249 £ 0.9
A50 Vessel lumen area corresponding to 50th percentile [1m?] 44,635 + 641 25,348 + 227
Q4Dh Hydraulic diameter for vessels under 25th percentile [pm] 158 + 1.5 123 +£ 0.6
Al10 Vessel lumen area corresponding to 10th percentile [im?] 15,398 + 360 9940 + 125

3.3 Influence of climate on radial growth and xylem

anatomy

Differences between species were also evident in their re-
sponse to climate (Fig. 5). In Q. robur, many parameters

-
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Fig.3 Pearson s correlations of the residual chronology of each vessel parameter with ring width (RW) and with ring net wood area (NWA) chronologies
for the previous year. Dotted lines indicate the level of significant correlation. Acronyms are explained in Table 2

Regarding temperature, negative correlations were found for
previous summer (June—July for large vessels, August for Kr)
and for September (RW, NWA and VN). Correlations were
positive for October (TVA, Kr, Max3, NL) and November
(A50, A10), negative again for winter (December to
February for TVA and VN), and returned to positive in the
growing season (from March to June, for several vessel size
parameters).

In R. pseudoacacia, significant correlations were more
scattered. Precipitation in the previous summer correlated both
negatively (Kr in June) and positively (RW, Kr, NL in July—
August). Negative associations were found for the October
(A90, Q4Dh) and December—February (TVA, Kr, Max3). In
spring, precipitation correlated positively again, specifically
during March (RW, NL) and May (TVA, NL, A10, Q4Dh).
A few significant correlations with temperature were detected:
positive for the previous October (A90, A50, Q4Dh) and cur-
rent April (Q1Dh), and negative for December—February
(Max3), March (Dh, Max3, Q1Dh, A90) and May (A10).

Moving correlation analysis showed that the relationships
between climate and vessel parameters had stable, declining,
or increasing trends during the study period (temporal varia-
tions for the parameters with the highest correlation in the
entire period are shown in Fig. 6, complete results in Annex

Fig. 4 Pearson’s correlations
between total vessel area (TVA)
and ring net wood area (NWA) at

decreasing lags starting from the <
current year (lag 0). Dotted lines %
indicate the level of significant <
correlation and solid bars refer to c
significant values =
.02 -
Rl E—
G-04
&}
-0.6 -

Quercus robur

Fig. 13). For Q. robur, positive correlations with previous
June—July precipitations, previous October temperature, and
April temperature remained stable over the study period, while
the influence of December—February and March temperature
were not significant in the recent decades. For
R. pseudoacacia, the influence on vessel parameters of pre-
cipitation in the previous July—August and current May,
remained stable over the period; while the effects of both
precipitation and temperature in the previous October became
significant only in the recent years. Chronology correlation
with winter temperature and precipitation showed opposite
trends, with a declining influence of temperature and increas-
ing one of precipitation. In March, the trends reversed.

The two species responded differently to the 2003
heatwave, when May to August temperature in the region
was 3.0 °C higher than, and precipitation less than 50% of
the 1954-2005 average. The parameters of the ring formed
in 2003 did not present any significant difference from the
reference period in both species. However, most Q. robur pa-
rameters were noticeably lower in 2004 (Fig. 7), except for
RW, NWA, A10, and Q4Dh. Anatomical parameters were
much less affected in R. pseudoacacia, although a small but
significant reduction was observed in large vessels (Dh,
Max3, Q1Dh, and A90).
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Fig. 5 Correlations between tree-
ring width and vessel parameters
with monthly precipitation and
temperature. Months of the pre-
vious year are in lowercase letters.
Significance is coded according
to the key at the bottom.
Acronyms are explained in

Table 2
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4 Discussion
4.1 Tree-ring structure and xylem traits

Both Q. robur and R. pseudoacacia wood are classified as
ring-porous (Schweingruber 1990). However, our quantitative
analysis showed marked differences in vessel size and fre-
quency distribution within the rings, which might mediate
their response to environmental constraints in the study area.
The first vessels in Q. robur rings were much larger than in
R. pseudoacacia. Very large vessels produced at the beginning
of the growing season are highly efficient during a normally
rainy spring (Garcia-Gonzalez and Fonti 2008; Garcia-
Gonzalez et al. 2016). However, their functionality may be
affected even in early summer by drought-induced embolism
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(Pérez-de-Lis et al. 2018) or during winter by freeze-induced
embolism (Hacke and Sperry 2001; Kitin and Funada 2016).
By contrast, R. pseudoacacia produced a higher number of
vessels that were significantly smaller and more scattered
within the ring (Fig. 1, Table 2). Their spatial pattern differs
year by year, sometimes showing a semi-ring porous appear-
ance. This suggests that R. pseudoacacia has a more conser-
vative strategy, prioritizing safety over efficiency, and settling
for lower hydraulic conductivity (higher vessel number did
not fully compensate for their smaller size, Table 2). Smaller
earlywood vessels in R. pseudoacacia were likely functional
for a longer time than those of Q. robur. Indeed, large vessels
in Q. robur were filled with tyloses, both in the sapwood and
in the hardwood. Differently, sapwood conduits in
R. pseudoacacia (from three to seven rings) were empty,
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despite many tyloses occurring in hardwood vessels. Safer
design may be achieved not only by means of gradually de-
creasing vessel size within the ring (Fig. 1), but also by having
small vessels in the first part of the ring, mixed with or even
preceding the largest ones. They might guarantee water con-
duction if the largest vessels cavitate (Pérez-de-Lis et al.
2018).

In R. pseudoacacia, unlike in Q. robur, we observed clear
differentiation in the variability of vessel number and size; and
there was a negative correlation between median area (A50)
and vessel number (VN) (Fig. 2, Annex Fig. 4). This suggests
that R. pseudoacacia may respond to environmental variabil-
ity in two different ways: either by producing a large number
of small vessels, or by producing a small number of large ones
(Hacke et al. 2017).

Our results also showed different dependency of vessel
traits on the previous year’s ring. The amount of wood formed
in the previous year influenced both number and size of ves-
sels in Q. robur (Fig. 3), while no effect was detectable in
R. pseudoacacia. Several studies on different ring-porous

Quercus robur

parameters and the climate variables are reported at the bottom left and
right of the graphs, respectively. Shaded areas highlight non-significant
values (p>0.05). Acronyms are explained in Table 2

species have shown that the formation of the current year’s
earlywood vessels starts before bud burst (Bréda and Granier
1996; Schmitt et al. 2000), and their maturation is completed
only when small leaves are visible (Guada et al. 2019; Kitin
and Funada 2016; Pérez-de-Lis et al. 2016b). As earlywood is
formed before photosynthesis begins, its formation depends
on available reserves, and on the ability of trees to mobilize
them (Pérez-de-Lis et al. 2016a; Pérez-de-Lis et al. 2017;
Kitin and Funada 2016). These processes explain our results,
which are coherent with the relationships found in other stud-
ies between the previous year’s ring-width (or latewood
width) and vessel size (or earlywood width) (Garcia-
Gonzalez and Eckstein 2003; Nola 1996; Souto-Herrero
et al. 2017). On the contrary, no effect of the previous year’s
ring was observed in R. pseudoacacia Xylem traits. Although
no data are available on wood formation and phenology of
R. pseudoacacia in our region, our results suggest that the
carly stages of vessel development for this species are less
dependent on the previous year’s reserves, as reported for
diffuse-porous species (Zweifel et al. 2006).

Robinia pseudoacacia

Fig. 7 Percentage reduction in
anatomical parameters in 2004 in +20 .
Quercus robur and Robinia —_ I
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significant difference (p <0.05) 5 1 11 E il
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4.2 Influence of climate on tree ring and vessel traits

Our results showed that vessel traits of Q. robur and
R. pseudoacacia were influenced by climatic conditions in
physiologically distinct periods (Fig. 5): in the previous sum-
mer, during winter dormancy, and in the current growing
season.

A previous rainy summer increased size of large vessels in
Q. robur and the number of large vessels in R. pseudoacacia
in the following growing season. Probably, rainfall during the
previous summer improved the filling of carbon storage pools,
facilitating the formation of either larger vessels or a higher
number of large vessels at the beginning of the following
season (Gonzalez-Gonzalez et al. 2014; Michelot et al.
2012). High temperature in the previous October positively
influenced vessel parameters in both species. As cambial cell
divisions originating the first vessel elements may occur at the
end of the previous growing season, warm condition at that
time may promote cell division, and the resulting cells over-
winter with little or no further differentiation (Kitin and
Funada 2016).

Warm conditions during dormancy negatively affected ves-
sel development, mainly in Q. robur, as previously reported
for several ring-porous species (Alla and Camarero 2012;
Castagneri et al. 2017). High winter temperature is assumed
to increase cell sensitivity to auxin, resulting in earlier and
faster process of vessel differentiation, which leads to the for-
mation of smaller vessels (Aloni and Zimmermann 1983;
Akhmetzyanov et al. 2019). In addition, high winter temper-
ature increases respiration rate, leading to consumption of the
stored reserves on which early vessel formation relies (Gea-
Izquierdo et al. 2012; Gonzalez-Gonzalez et al. 2014; Pérez-
de-Lis et al. 2018).

In R. pseudoacacia, vessel size was also limited by abun-
dant previous winter precipitation. Similar results were found
in mesic forests and were attributed to soil hypoxia, which
limits carbohydrate allocation to earlywood formation through
enhanced consumption in roots (Gonzalez-Gonzalez et al.
2015). In this regard, a recent study hints that low sugar con-
tent in sapwood at the onset of dormancy may limit vessel
formation and delay budburst (Pérez-De-Lis et al. 2016a). At
our study site, this effect was detected only in
R. pseudoacacia, a species sensitive to soil hypoxia
(Vitkova et al. 2017), while Q. robur seems to be better
adapted to this condition.

Differences between the species were also detected in the
months following winter. In Q. robur, temperature influenced
vessel size throughout springtime, with a positive correlation
in March for the largest vessels, in April for vessels of medium
and small size, and in May only for small vessels. An earlier
cambial reactivation due to warm springs (Pérez-de-Lis et al.
2018) is expected to induce formation of larger and more
efficient vessels, whereas cold conditions delay growth

INRA
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resumption, resulting in smaller vessels and thus restricting
hydraulic efficiency. High temperature in early spring may
control vessel differentiation rates, too (Souto-Herrero et al.
2017). As noted by Guada et al. (2019), in Q. robur spring
temperature determines the duration of vessel expansion,
which in turn determines the final vessel size.

The response to spring temperature of R. pseudoacacia
seemed delayed by 1 month compared to Q. robur. High
temperature in March had a negative effect on vessel size
(as occurs for winter temperature), while warm April fa-
vored the formation of larger vessels. Although we have
no data about the timing of cambium resumption, we may
suppose that delayed onset of growth processes might be
a strategy of the species to guarantee vessel safety, and
that this strategy has a double effect: (i) to minimize the
risk of freeze-induced embolism due to late frost in early
spring; and (ii) to produce smaller vessels (Guada et al.
2019), decreasing the risk of drought-induced cavitation
during the following months.

As a consequence of recent climate changes we ex-
pected that some responses might not be stable in time
(Carrer et al. 2010). While the responses of both species
to previous summer and autumn were quite constant
(Fig. 6), remarkable variability occurred during the dor-
mancy period and at its end (from December to March).
In Q. robur, the decrease in sensitivity to temperature
might reflect a modification in the timing of wood for-
mation, while R. pseudoacacia seems to modulate the
response by varying number and size of vessels.

The responses to the 2003 May-to-September heatwave
further evidenced different species behavior. This excep-
tional climate event did not affect the 2003 ring vessels in
either species, probably because earlywood formation had
occurred earlier (see observations for Q. robur in similar
climate conditions in Pérez-de-Lis et al. 2016b). However,
the harsh conditions certainly reduced transpiration, water
uptake, and carbon assimilation due to stomatal closure
(Granier et al. 2007) in both species, affecting growth in
the following year. In ring-porous oak species, the early-
season growth phases rely on carbon reserves (Zweifel
et al. 2006), which are usually refilled during the growing
season, but this hardly occurred in 2003 (Breda et al.
2006). Accordingly, the earlywood large vessels of the
2004 ring were strongly reduced in Q. robur (Fig. 7).
Xylem traits of R. pseudoacacia were less affected, al-
though the size of large vessels was slightly reduced,
too. The higher resistance of the latter species to the
2003 heatwave is consistent with the other results of our
analysis, showing that xylem formation is less dependent
on previous-year reserves (as for diffuse-porous species,
Zweifel et al. 2006) than in Q. robur (Fig. 3, Fig. 4).
Moreover, R. pseudoacacia shows greater ability to cope
with environmental drought also through its leaves and
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roots, which have high ecophysiological and morpholog-
ical plasticity, allowing the species to perform well in
drought-affected European regions (Mantovani et al.
2014; Mantovani et al. 2015). Our results confirm that
this alien species is less sensitive to water shortage, and
can be considered more adapted to warm and dry condi-
tions than most Central European broadleaves trees, in-
cluding Q. robur (Vitkova et al. 2017).

We cannot exclude that some of the differences detected be-
tween the two species might partly be due to the diverse size and
age of the sampled trees. Indeed, Q. robur trees were bigger and
olderthan R. pseudoacaciatrees (Tab. 1). In any case, the size and
age of the investigated trees are representative of the current state
of the Reserve, where Q. robur has dominated the forest canopy
for over a century and R. pseudoacacia established around 1940
(Mottaetal.2009). This situation s, indeed, characteristic of most
plain forests in Northern Italy. The species climate responses
identified here might be relevant for understanding future forest
dynamics in the whole area. In a previous study, Motta et al.
(2009) suggested that the best strategy for controlling black locust
spread is to avoid disturbances that favorits colonization. Longer-
lived and more shade-tolerant species should naturally replace it.
In addition to this consideration, they raised questions about the
effects of climate change and spreading oak decline on such nat-
ural dynamics. Our results suggest that the expected increase in
drought events might negatively affect oak. This would result in
an additional benefit for black locust, which not only is less af-
fected by climate change but also could take advantage of gaps
deriving from oak decline and mortality. Our interpretation is
consistent with those of other studies, indicating that climate
change might enhance R. pseudoacacia competitiveness, in-
creasing its distribution in Europe and delaying natural replace-
ment by native species (Dyderski et al. 2018; Kleinbauer et al.
2010; Nadal-Sala et al. 2017).

5 Conclusion

Our findings show diverse influences of climate on the
hydraulic-related xylem traits of co-occurring R. pseudoacacia
and Q. robur, likely related to their species-specific ecological
requirements. Quercus robur showed typical ring-porous behav-
ior: vessel size and number were mostly related to previous sum-
mer precipitation and autumn-winter temperatures, which likely
affect the accumulation of reserves used for xylem formation.
Indeed, events such as the 2003 summer heatwave had a strong
impact on vessels formed the following year. In contrast,
R. pseudoacacia produced smaller, less efficient, but safer ves-
sels. The species modulated its responses to climate by producing
either a higher number of small vessels or a lower number of
large ones, sometimes modulating ring porosity, too. Different
responses to winter precipitation suggest that R. pseudoacacia is
more sensitive to water excess and soil hypoxia.

The xylem plasticity of R. pseudoacacia enables it to cope
better with both inter-annual climate variations and drought
extreme events than Q. robur does. Considering foreseen in-
tensification of extreme events (drought spells and
heatwaves), these differences could favor this alien species
over the native coexisting one, even in a mesic site. This might
slow down the natural succession which should lead to the
regression of the pioneer and invasive black locust by later
stage species such as the oak. Comparative investigation of
xylem response to climate of native and alien species, associ-
ated with other physiological and ecological aspects, will help
better understand climate influence on their growth, and assess
the future spread of alien tree species in Europe.
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Fig. 9 Scree plot from PCA of tree-ring width and vessel parameters. The Y-axis represents the percentage of variance explained by each component
(solid line). The dashed line represents the superimposed Broken-Stick Model
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Fig. 11 Pearson’s correlations
between ring width and vessel
chronologies for each species.
Correlation values are coded
according to the key at the
bottom. Acronyms are explained
in Table 2

Fig. 12 Inter-species correlations
for each tree-ring width and ves-
sel chronology. Dotted lines indi-
cate the level of significant corre-
lation and solid bars refer to sig-
nificant values. Acronyms are
explained in Table 2
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