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Abstract
& Key message Image-based 3D information can provide metrics for forest attribute modelling that are robust
within the study region. This enables transferability of predictive models to other data sets of the same region
without loss of accuracy. As a result, aerial images can potentially provide auxiliary data for supporting
different large-scale forest inventories within a geographic region.
& Context Due to their high spatial coverage and acquisition frequencies, aerial imagery can provide auxiliary data to support
large-scale forest inventories. If the methods are applicable to different data sets and forest inventory protocols, they will also
facilitate harmonisation of forest inventory data.
& Aims This study aims to investigate the level of transferability of such image-based methods. This is crucial for
their applicability across different large-scale forest inventories. The investigation focusses on one geographic region.
& Methods Three blocks of aerial images were used to generate models of forest canopies and extract 3D metrics. These were
utilised for building timber volume models separately for each image block. The models were applied to the respective other
blocks and the achieved accuracy of timber volume prediction was assessed. Additionally, 3D metric changes between blocks
were also assessed.
& Results Some metrics were found more robust than others. Transferring models based on robust metrics achieved RMSE%
between 38 and 45%, which is similar to the model accuracy.
& Conclusion This indicates transferability of models within the study region without loss of accuracy, and there is
potential for further improvement of model accuracy. Therefore, forest attribute models based on remote sensing
have potential to support harmonisation of large-scale forest inventories within the study region.

Handling Editor: Tuula Packalen and Klemens Schadauer

This article is part of the Topical collection on Forest information for
bioeconomy outlooks at European level

Contributions of the co-authors Conceptualization: Melanie
Kirchhoefer, Petra Adler
Methodology: Melanie Kirchhoefer, Johannes Schumacher, Petra Adler
Software: Melanie Kirchhoefer; Validation: Melanie Kirchhoefer,
Johannes Schumacher
Formal analysis: Melanie Kirchhoefer, Joahnnes Schumacher
Investigation: Melanie Kirchhoefer, Johannes Schumacher
Resources: Petra Adler
Data curation: Melanie Kirchhoefer, Johannes Schumacher

Writing—original draft: Melanie Kirchhoefer
Writing—review and editing: Melanie Kirchhoefer, Johannes Schumacher
Visualisation: Melanie Kirchhoefer, Johannes Schumacher
Supervision: Petra Adler
Project administration: Petra Adler
Funding acquisition: Petra Adler

* Melanie Kirchhoefer
melanie.kirchhoefer@forst.bwl.de

1 Department of Biometry and Informatics, Forest Research Institute
(FVA) Baden-Württemberg, Freiburg i. Br, Germany

Annals of Forest Science (2019) 76: 33
https://doi.org/10.1007/s13595-019-0804-4

Potential of remote sensing-based forest attribute models
for harmonising large-scale forest inventories on regional level: a case
study in Southwest Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13595-019-0804-4&domain=pdf
http://orcid.org/0000-0002-7338-0775
mailto:melanie.kirchhoefer@forst.bwl.de


Keywords Aerial images . Canopy height model . Forest inventory . Timber volume .Model transferability

1 Introduction

Large-scale forest inventories are an important source of infor-
mation for forest management and policy making. However,
comparison and/or combination of forest inventory results that
are based on different protocols requires suitable estimation pro-
cedures that account for inventories specificities and support
harmonisation of target attributes at plot level (McRoberts et al.
2012). In recent years, increased efforts were made to develop
approaches to forest inventory harmonisation (McRoberts et al.
2010). Within the European program BCooperation in Science
and Technology^ (COST), actions E43 (COSTAction E43 n.d.,
McRoberts et al. 2009; Tomppo and Schadauer 2012) and
FP1001 (COST Action FP1001 2014) were concerned with
harmonisation of National Forest Inventories (NFIs) on
European level. Action FP1001 also considered the role of re-
mote sensing in NFIs, including improving estimates of forest
attributes. The work conducted within these COST Actions is
continued in the EU Horizon 2020 project DIABOLO
(Distributed, Integrated and Harmonised Forest Information for
Bioeconomy Outlooks) (DIABOLO n.d.), which includes re-
search towards the derivation of auxiliary data from aerial images
for supporting NFI harmonisation across Europe.

The main benefit of utilising remote sensing methods in
forest inventories is their ability to enable acquisition of de-
tailed data over large areas in short-time intervals. This area is
a widely researched field and there are several remote sensing
technologies that have been the focus of projects concerned
with supporting or enhancing forest inventories (White et al.
2016). In the majority of relevant literature, airborne laser
scanning is utilised (e.g. McRoberts and Tomppo 2007;
Fekety et al. 2015; McRoberts et al. 2015, Moser et al.
2016, Véga et al. 2016). Despite advantageous characteristics
(White et al. 2016), laser scanning can currently not be con-
sidered suitable for harmonisation efforts at all scales, due to
limited data availability. Digital aerial photogrammetry data
on the other hand is commonly available with high spatial
coverage and acquisition frequencies, aiding development of
a universal approach for remote sensing data integration in
large-scale forest inventory workflows.

Advances in dense image matching allow derivation of pho-
togrammetric 3D point clouds from aerial imagery and, subse-
quently, provision of canopy height models (CHM) at very high
spatial resolution (generally < 1 m), when a high-quality digital
terrain model (DTM) is available. Much research has been con-
ducted into the usability of aerial imagery for forest inventories
and wall-to-wall forest attribute mapping (e.g. Ginzler and Hobi
2015; Rahlf 2017; Stepper et al. 2015; Straub and Stepper 2016).
These approaches generally build relationships between forest
inventory data and image-based data by fitting statistical models

that are subsequently used for estimating forest attributes for
areas where no inventory data is available. A majority of forest
inventory attributes is depending on canopy height. When
image-based data can represent the heights to a reasonable de-
gree, as indicated by Leberl et al. (2010), comparable results
between laser scanning and aerial imagery can be expected
(White et al. 2016). In comparative research studies (e.g. Straub
et al. 2013; Ullah et al. 2017; White et al. 2015), image-based
data achieved accuracy levels slightly below laser scanning, but
was considered practicable for forest management and planning
to a certain degree.

Studies in this area of research are usually focussed on one
study site where an image-based forest attribute model is fitted
and validated on the same image data set (e.g. Rahlf et al. 2015;
Stepper et al. 2015; Ullah et al. 2017). Aerial image data acqui-
sition conditions (i.e. camera specifics, image overlap, illumi-
nation and geographical context) are known to influence image
data quality and subsequently the quality of derived canopy
height models (Haala 2014; Leberl et al. 2010; Remondino
et al. 2014). Despite this, there are no standards or best practice
guidelines concerning aerial image quality for 3D point cloud
generation, especially for forestry applications (White et al.
2015). Image quality can vary between countries and even be-
tween aerial image data acquisition blocks within one country
and in some instances only imagery of suboptimal quality
might be available. This leads to questions concerning the ro-
bustness of extracted metrics and the transferability of predic-
tive models, ultimately influencing the practicability of remote
sensing data integration in forest inventory workflows. There
are few research studies in the literature concerning the trans-
ferability of models, which was also noted in Stepper et al.
(2017). Most of these studies used airborne laser scanning
(e.g. Fekety et al. 2015; Zald et al. 2016). Stepper et al.
(2017) used image-based canopy height models and investigat-
ed the transferability of predictive models to nearby forest areas
aiming at forest attribute prediction for areas where no forest
inventory data for reference is available. They tested three dif-
ferent Random Forest models (predicting the quadratic mean
diameter of the 100 largest trees, the basal area-weighted mean
height of the 100 trees per hectare with the largest diameters and
the timber volume) and found that they could be transferred to
nearby stands of similar structure without loss of accuracy as
long as a sufficient amount of training data is used. Their test
sites were covered by several blocks of aerial images that were
all acquired using the same aerial camera (UltraCam-Xp), re-
ducing the variation in aerial image data acquisition conditions.

The presented study is based on a data set from Southwest
Germany and was conducted within the framework of the
Horizon 2020 DIABOLO project. It focussed on investigating
the level of transferability of timber volume models utilising
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image-based canopy height model data. Here, transferability
means applying predictive models that were fitted on one
canopy height model data set to other canopy height model
data sets for timber volume estimation. These canopy height
model data sets are spatially different (i.e. not in the same
location and not of the same extent) and are based on imagery
acquired under different conditions. Within this scope, this
study aims to answer the following research questions:

1. Are image-based 3D metrics robust with regard to data
acquisition conditions?

2. What is the magnitude of difference when models are
based on differing aerial image data?

3. Can image-based timber volume models be transferred
without loss of accuracy?

Answering these questions will provide important informa-
tion towards devising imagery-supported methods for large-
scale forest inventory harmonisation.

2 Material and methods

2.1 Study site

The study site is located in the south-western part of the fed-
eral state of Baden-Württemberg, Germany, including the
southern parts of the Upper Rhine Plain and the Black
Forest (Fig. 1). It comprises an area of about 3860 km2 with
elevation ranging from 190 m in the Rhine plain to 1493 m
(Feldberg) in the Black Forest. The terrain conditions range
from flat to slopes of up to 61°. The forested areas within the
study site—covering approximately 1860 km2—vary greatly
in terms of species composition and structure. The main tree
species are Picea abies (L.) H. Karst. (48%), Fagus sylvatica
L. (18%), Abies alba Mill. (12%), Pseudotsuga menziesii
(Mirb.), Franco (5%), Quercus spec. (3%), Fraxinus excelsior
L. (3%), Acer spec. (3%) and Pinus sylvestris L. (3%)). There
are pure as well as mixed stands with regard to tree species and
age class.

2.2 Remote sensing data

Aerial image data was acquired in several flight blocks as part
of the regular aerial surveys of the Baden-Württemberg land
surveying authority (LGL—Landesamt für Geoinformation
und Landentwicklung) using large-sized digital aerial frame
cameras. Every year, one third of the state area is covered in
this way. According to LGL, the orientation accuracy of the
image block is 0.04 m horizontally and 0.14 m vertically.
Aerial image data with acquisition dates closest to the date
of the latest German NFI (2011–2012) were acquired in three
aerial surveys conducted in June 2012 (block A), June 2013

(block B) and July 2013 (block C) (Fig. 1). Image data was
acquired using two different cameras, Vexcel’s UltraCam-Xp
and UltraCam Eagle (Vexcel n.d.). Data acquisition and cam-
era specifications can be found in Table 1. The flight blocks of
these aerial surveys overlap and some areas are covered by
two or even three aerial surveys.

A 3D point cloud was derived from each aerial image block
in an image matching process using the software SURE
(nFrames 2018). These point clouds were further processed,
and three canopy height models of a 1-m geometric resolution
were produced applying the process described in Kirchhoefer
et al. (2017).

A high-quality laser scanning-based terrain model with a 1-
m resolution covering the study area was also available and
was provided by LGL. The nominal height accuracy of the
terrain model reported by LGL is 0.5 m or better (LGL n.d.).
This terrain model was used to filter the image matching point
clouds and to derive canopy height models.

2.3 Field inventory data

In this study, field data of the latest German NFI (2011–2012)
(Bundesministerium für Ernährung, Landwirtschaft und
Verbraucherschutz n.d.) was used as reference data. The
German NFI is conducted in a 10-year circle on permanent
plots. The plots are organised in square 150 × 150m inventory
tracts with one plot at each tract corner. The tracts are located
in the cross sections of a 4 × 4 km grid, which in Baden-
Württemberg is densified to 2 × 2 km. The plots were located
by the field crews using the MxBox Global Navigation
Satellite System (GNSS) device of GEOSat GmbH (GEOsat
n.d.-a). There is no data on the positional accuracy of the NFI
plots, as this was not recorded when the plots were
established. According to the specifications of the MxBox
GNSS device, the nominal horizontal accuracy is 1.5 m or
better (GEOSat n.d.-b). The height accuracy of the device is
not specified, but it can be expected to be below the horizontal
accuracy (Sass 2011). However, environmental and operating
conditions (e.g. canopy cover, number and geometry of satel-
lites, distance to reference stations) influence the effective
positioning accuracy (GEOSat n.d.-b).

At each plot, sample trees are selected using angle-count
sampling (ACS) with a basal area factor (BAF) of 4 m2/ha and
a minimum diameter at breast height (DBH) of 7 cm. For each
sample, tree attributes such as the DBH, azimuth and distance
to the plot centre and the tree species are recorded. Heights are
measured for a subset of sample trees. The heights of the
remaining trees are estimated using height-diameter curves
based on Sloboda et al. (1993) (Riedel et al. 2017). For each
tree, its representative volume per hectare was calculated. The
aggregated volumes at each plot were used as reference data
for timber volume modelling in this study.
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A more detailed description of the German NFI can be
found in Tomppo et al. (2010) and Riedel et al. (2017).

2.4 Metric extraction

In this study, only NFI plots located within a forested area
were utilised, i.e. plots where observations as described in
Section 2.3 are available. For extracting metrics from the
canopy height model, a circular shape around each plot
centre location was used. Determining a suitable radius
for this circle is not straight forward, when the reference
data is based on ACS. Different approaches (e.g. Deo
et al. 2016; Immitzer et al. 2016; Kirchhoefer et al.
2017; Maack et al. 2015; Scrinzi et al. 2015) have been
tested in order to find an optimal geometry. In this study,
the median of the maximum measured distance between
each NFI plot centre and corresponding sample trees was

used as plot radius, resulting in canopy height model plot
radii of 11.31 m (block A), 11.70 m (block B) and
10.75 m (block C), respectively. This approach achieved
acceptable results in Kirchhoefer et al. (2017).

On these circular plots, only pixels with an elevation of
6 m and more were extracted from the canopy height
model (Kirchhoefer et al. 2017) and used for 3D metrics
calculation, including the following height statistics: min-
imum, maximum, mean, standard deviation, variance, co-
efficient of variation of height, percentiles (5, 10, 15, 20,
25, 50, 75, 80, 85, 90, 95, 99) as well as metrics related to
canopy volume (inner volume, outer volume, Fig. 2) and
the number of pixels used for metrics calculation (npix).
These metrics are frequently found in publications con-
cerned with predicting volume or biomass using inventory
and remote sensing data (e.g. Stepper et al. 2015; Straub
and Stepper 2016; Véga et al. 2016).

C

B

A

Basel

Freiburg

Mulhouse

0 5025 km

Table 1 Data acquisition and
camera specifications Block A Block B Block C

Acquisition date June 2012 June 2013 July 2013

GSD (cm) 20 20 20

Nominal overlap 60%/30% 60%/30% 60%/30%

Spectral resolution R, G, B, NIR R, G, B, NIR R, G, B, NIR

Camera UltraCam-Xp UltraCam Eagle UltraCam-Xp

Focal length (mm) 100.5 79.8 100.5

Sensor size (mm) 67.860 × 103.860 68.016 × 104.052 67.860 × 103.860

Pixel size (μm) 6.0 × 6.0 5.2 × 5.2 6.0 × 6.0
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The inner volume (Volin) describes the 3D space that is
probably occupied by trees, i.e. the space between the canopy
height model and the height threshold of 6 m. It is calculated
by Eq. (1):

Volin ¼ ∑CHMep � res2; ð1Þ

where CHMep is the height of the extracted pixels and res is
the spatial resolution of the canopy height model.

The outer volume (Volout) corresponds to the comple-
ment of the inner volume with respect to the bounding
volume of the canopy height model. Along with the inner
volume, it provides information about the complexity of
the outer canopy structure. It is calculated by Eqs. (2) and
(3):

maxVolCHM ¼ max Hep
� �� res2 � count epð Þ ð2Þ

Volout ¼ maxVolCHM−Volin; ð3Þ
where maxVolCHM is the volume defined by the maximum
height of the canopy height model on the plot, Hep are the
heights of the extracted pixels, res is the spatial resolution
and count(ep) the number of pixels extracted at the plot.

The terrain in the study site varied considerably
(Section 2.1) and elevation influences forest structure as well
as growth dynamics of trees. So, the mean elevation was in-
cluded as a site-related metric. It was extracted from the digital
terrain model described in Section 2.2 using a 30-m fixed
radius circular plot.

2.5 Outlier removal

When combining terrestrial measurements with aerial image
data, several factors influence data quality and combination
possibilities. These include spatial co-registration, configura-
tion of the sample plots (Deo et al. 2016), border effects and
time lags between terrestrial measurements and remote sens-
ing data (i.e. effect of thinning or harvesting activities). All

these effects could be considered outliers and they have to be
identified and removed from the data set before establishing
statistical models for forest parameter estimation (Webster and
Oliver 2007).

In this study, outlier plots were defined as plots with the
maximum canopy height model elevation deviating by more
than 25% from the maximum measured NFI tree height at the
respective plot (Eq. (4)).

devHmax ¼ 100−
100

max HNFIð Þ �max HCHMð Þ
����

����; ð4Þ

where devHmax is the percentage of difference, max(HNFI) is
the maximum measured height on the NFI plot and
max(HCHM) is the maximum canopy height model height on
this plot. The threshold of 25% was chosen based on results in
a project conducted at the Forest Research Institute Baden-
Württemberg that was concerned with supporting forest man-
agement inventories (not published).

In the outlier removal workflow, an individual radius was
calculated for each plot. This was due to sample trees being
selected using ACS, resulting in plots of undefined size and
shape. The individual plot radius was calculated by the max-
imum measured distance between any tree of a plot and the
plot centre plus a 2-m buffer, allowing for slightly inaccurate
positioning of plot centres as well as for non-verticality of
trees.

2.6 Volume model fitting

Finding the best suited model is not the focus of this study, but
modelling timber volume provided means to investigate the
robustness of metrics and transferability of models. For sim-
plicity reasons, only linear models are considered in this
investigation.

The metrics extracted are highly correlated. In order to
reduce the number of metrics for modelling and to avoid
co-linearity of the metrics, a correlation analysis was

Fig. 2 Schematic description of
Volin and Volout (from
Kirchhoefer et al. 2017). The grey
area, which represents space over
vegetation of less than 6 m height,
is excluded from any volume
calculation
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conducted. Metrics with a correlation coefficient
(Pearson) of minimum 80% were examined and the metric
with the highest correlation with timber volume was kept.
The correlation analysis was conducted separately for
each aerial image block, and the results were combined
in one initial set of metrics. This was used for fitting one
timber volume model for each aerial image block sepa-
rately. Model fitting started with an initial maximum mod-
el that was stepwise reduced using Akaike information
criterion (AIC). Besides the initial set of metrics, interac-
tions between metrics, squares of metrics, and weights
were also considered in this process. Selection of the best
suited model was based on R2 and root mean square error
percentage (RMSE%) (Eq. (5)) calculated in a 10-fold
cross-validation.

RMSE% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
obsi−predið Þ2

r

1

n
∑
n

i¼1
obsi

� 100; ð5Þ

where n is the number of plots with observations (i.e. NFI
plots within forests), obsi is the observation at plot i and
predi is the prediction for plot i.

2.7 Assessment of metric robustness and model
transferability

The assessment of metric robustness utilises the overlap
of image blocks. In the overlap areas AB, AC and BC
(Fig. 3) more than one set of extracted metrics is available
for each NFI plot. Assessing robustness by investigating
metrics differences is only feasible in overlap area BC, as
the time span between image acquisition dates in the other
overlap areas are considered too long (≥ 1 year, cf.
Table 1).The effect of tree growth will significantly im-
pact on the metrics and does not allow a direct compari-
son. In order to exclude this effect on the results of this
study, metric comparisons were conducted in overlap area
BC only.

In this investigation, the focus was on a subset of can-
opy height model metrics: the mean height of the canopy
height model (meanCHM), npix, Volin, Volout, the 25th
(p25) and the 95th (p95) height percentile. Differences in
other metrics are expected to be of similar magnitude. The
metric differences between blocks were calculated for
each overlap area plot by subtracting the metrics derived
in block B from metrics derived in block C. The investi-
gation was conducted using scatterplots of metric differ-
ences as well as the normalised median absolute deviation
(NMAD) (Höhle and Höhle 2009). The NMAD is

proportional to the median of the absolute differences be-
tween single deviations and the median deviation and is
calculated by Eq. (6):

NMAD ¼ 1:4826�median Δmetric j−mΔmetric
�� ��� �

; ð6Þ

where 1.4826 is a constant scale factor for normally dis-
tributed data, Δmetricj is the individual metric difference
at plot j = 1… n, n is the number of (non-outlier, forested)
plots within the overlap area and mΔmetric is the median
of the metric differences.

During the assessment of metric robustness, it was discov-
ered that some plots were identified as outliers in block B but
not in block C, and vice versa. That let to further investiga-
tions into the cause for this by visually assessing canopy
height model differences at these plots.

Assessment of model transferability was conducted by
applying the models fitted in Section 2.6 to the canopy
height model data of the respective other image blocks
and predicting timber volume for each plot. The time span
between data acquisition dates is not considered an obsta-
cle when transferring predictive models from one image
block to another. From the predicted and observed values,
the RMSE% was calculated using Eq. (5).

The timber volume predictions for the NFI plots within
overlap area BC were additionally subjected to a more in-
depth investigation. The timber volumes predicted using fitted
as well as transferred models were compared to each other by
creating scatterplots and calculating the NMAD based on Eq.
(6).

3 Results

3.1 Comparison of metrics in overlap areas

Figure 4 displays the metric differences in the BC overlap
plots for meanCHM, npix, Volin, Volout, p25 and p95
while the NMADs are listed in Table 2. The medians of
the metrics extracted from each image block within over-
lap area BC are also included in Table 2, supporting eval-
uation of the NMADs. The meanCHM differed up to 3 m
with most plots differing by a value between 0 and − 1 m,
which is reflected in the NMAD of 0.4 m. Similar results
were achieved for p25 and p95. The medians of these
metrics are of comparable magnitude and ranged from 19
to 28 m.

Volin and Volout show medians of larger magnitude with
8667.7 and 7660.1 m3, respectively, for Volin and 3068.1 and
2280.5 m3, respectively, for Volout. The absolute metric dif-
ferences are of larger magnitude, too (up to − 2500–−
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4500 m3, respectively) and vary to a larger extent (NMAD of
600.2 and 474.2 m3, respectively).

For the metric npix, the magnitude of difference is
comparatively large. The value derived in block B (medi-
an = 420) exceeds the value in block C (median = 356) by
around 60 pixels/plot (Fig. 4). However, the NMAD of
7.4 pixels is comparatively small, indicating that the mag-
nitude of differences is rather stable.

3.2 Differences in outlier detection

Within the overlap area BC five plots were identified as outliers
in block B only, while one plot was identified as outlier in block
C only. These plots were visually examined. One outlier plot in
block B was due to an obvious co-registration error (Fig. 5),
where the NFI plot centre and one sample tree fell on a forest
road. This plot was not identified as an outlier in block C due to
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the location of one sample tree actually coincidingwith a tree in
the canopy height model of block C. This was sufficient for

passing the automatic outlier removal. The outlier in block C
that was not identified in block B can also be explained by an
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Fig. 4 Scatterplots of metric
differences in overlap area BC for
meanCHM a, npix (b), Volin (c),
Volout (d), p25 (e) and p95 (f)

Table 2 NMADs of metrics in plots of overlap area BC. The medians of the metrics extracted from image block B and block C, respectively, are also
displayed, supporting evaluation of the NMADs

meanCH (m) npix (pixels) Volin (m3) Volout (m3) p25 (m) p95 (m)

NMAD 0.4 7.4 600.2 474.2 0.7 0.5

Median B 22.7 420 8667.7 3068.1 27.6 19.4

Median C 21.9 356 7660.1 2280.5 27.3 19.6
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error in co-registration. Here, differences in the canopy height
model caused this plot not being identified as outlier in block B.

Errors in the canopy height model could be identified as the
other source for the differences in outlier identification be-
tween block B and block C. Figure 6 exemplifies one plot
where the errors in the canopy height model in block B let
to this plot being identified as an outlier, while the canopy
height model of block C in the same area was without obvious

errors. Similar conditions were found for the two remaining
outlier plots in block B that were non-outliers in block C.

3.3 Transfer of models

Table 3 displays the best fitted models for each of the aerial
image blocks, including the selected metrics, the weights ap-
plied, R2, standard error, RMSE% and the number of NFI

Fig. 5 Example of outlier due to
co-registration error; the plot cen-
tre (triangle) and sample trees
(circles) are superimposed on the
true orthophotos (left) of blocks B
and C as well the canopy height
model (right)

Fig. 6 Example of outlier due to
error in canopy height model; the
plot centre (triangle) and sample
trees (circles) are superimposed
on the true orthophotos (left) of
blocks B and C as well the canopy
height model (right)
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plots used for model building. The models of blocks A and B
are similar. In both cases, the metrics meanCHM, npix, the
interaction between meanCHM and npix (meanCHM*npix)
and meanDTM were selected. The only difference is the se-
lection of meanCHM2 in block B. The principal difference
between the linear model fitted to block C and the other
models is the replacement of meanCHM with Volin.
However, they also have the metrics npix and meanDTM in
common. Themetrics npix and meanDTMwere selected in all
three models, indicating their importance for volume model-
ling. Applying a weight (1/meanCHM) was also beneficial in
all three blocks.

All models achieved a similar R2, ranging between 0.5 and
0.6, a standard error between 32 and 39.59 m3/ha and
RMSE% values between 37 and 43%. The scatterplots in
Fig. 7 all show signs of overestimating lower timber volumes
and underestimating higher timber volumes, but this seems to
be less pronounced with the model fitted in block C.

Figure 8 shows the scatterplots of observed versus predict-
ed volumes when transferring models to the respective other
image blocks.When the models from block A or block Bwere
used for volume prediction, the resulting scatterplots show an
even stronger over- and underestimation effect as the respec-
tive scatterplots in Fig. 7. When transferring the model of
block C, this effect disappears. The values are more evenly

distributed around the 1:1 line, but show larger deviations
from this line. This is also reflected in the RMSE% values in
Table 4. Transferring the models fitted on block A or B results
in RMSE% between 38 and 43%, which is comparable to
model accuracy. The accuracy achieved when transferring
model C is notably lower with an RMSE% of 47.9% in block
A and 51.1% in block B.

3.4 Differences in predictions on plot level

Figure 9 displays the differences in predicted volume at plot
level in overlap area BC for different combinations of predic-
tive model and canopy height model data. The differences are
smallest (− 99–25 m3/ha) when model B is used for both
blocks (Fig. 9c). Using fitted models only (Fig. 9a), the spread
is a bit wider (− 100–110 m3/ha), with most differences being
positive. A similar magnitude of differences (− 135–45 m3/ha)
is achieved when only model C is used (Fig. 9b), but in this
case, most differences are negative. When only transferred
models were used for timber volume prediction (Fig. 9d), the
magnitude of differences increases notably (− 327–10 m3/ha).
The different ranges of volume differences are also reflected in
the NMAD calculated for each combination (Table 5). The
lowest NMAD (30.7 m3/ha) was achieved for the case where
only model B was used for volume prediction (Fig. 9c) while

Table 3 Best fitted linear models
for each aerial image block Block A Block B Block C

Metrics selected (p values in
parentheses)

meanCHM (0.10902)

npix (0.10902)

meanCHM*npix
(0.00188)

meanDTM (1.61e-13)

meanCHM (0.009459)

meanCHM2 (0.0027)

npix (0.000442)

meanCHM*npix
(1.26e-5)

meanDTM (5.01e-6)

Volin (< 2e-16)

npix (< 2e-16)

meanDTM
(4.93e-9)

Weights 1/meanCHM 1/meanCHM 1/meanCHM

R2 0.55 0.50 0.57

Standard error (m3/ha) 32.37 39.56 37.88

RMSE% 38.6 42.1 37.9

Number of plots 464 517 765
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Fig. 7 Scatterplots of best fitted models



the largest NMAD (83.5 m3/ha) was achieved for the case
where only transferred models were used (Fig. 9d).

4 Discussion

4.1 Metric robustness

The results in Section 3.1 show that the metrics related directly
to canopy height are sufficiently robust with comparatively
small absolute differences and a small NMAD. Compared to
these the NMADs of the canopy volume related metrics—
Volin and Volout—seem to indicate notably reduced robust-
ness with respect to changing data acquisition conditions.
However, Volin and Volout are influenced by both, the canopy
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Fig. 8 Scatterplots of observed
vs. predicted timber volume for
all combinations of transferred
models

Table 4 RMSE% results
for the volume
predictions using
transferred models

RMSE% Prediction

A B C

Models A 42.5 42.4

B 38.4 42.5

C 47.9 51.1
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height and npix. Additionally, the metrics values themselves
are of larger magnitude compared to the height-related metrics
and npix. These conditions could explain the greater variation
and comparatively large differences (Table 2). Relating the
NMADs to the respective medians of the extracted metrics
(Table 2) normalises the results. The NMADs of the height-
related metrics range between 1.7 and 2.6% of their respective
medians in blocks B and C. The NMAD of Volin corresponds
to 6.9–7.4% of its respective medians while these values in-
crease for Volout to 15.5–20.8%. This indicates that Volin is
less robust than the height-related metrics but could still be
considered applicable for timber volumemodelling. However,
based on the presented results, Volout cannot be considered
robust with respect to changing data acquisition conditions.

The metric npix showed comparatively large magnitude of
differences (about 60 pixels), but the variation in differences is
rather stable and corresponds to 1.8–2.1% of the npix median
in block B and block C, respectively (Table 2). This indicates
some fixed offset, which is caused by differing plot radii for
canopy height model metrics extraction. In block B a radius of

11.70mwas used and in block C a radius of 10.75m, resulting
in plot areas of 430.05 and 363.05 m2, respectively. The area
difference is 67 m2, which is equivalent to 67 pixels of size
1 m2. Therefore, npix can be considered a robust metric, if plot
sizes do not vary.

Here, the variation of plot size is due to the approach for
determining a plot radius that suits ACS reference data, and
this issue could easily be solved by adjusting plot radii. On
large scales this could prove more difficult. Geometric consis-
tency between field data and metric extraction plots is crucial
for accurate forest attribute modelling (Deo et al. 2016) while
plot sizes usually vary between forest inventories.
Normalising metrics to a fixed plot size (e.g. plot with radius =
12 m) could provide a solution. The effect of this on the
metrics npix, Volin and Volout in overlap are BC can be seen
in Fig. 10 and Table 6. The fixed offset for npix disappears and
the NMAD decreased slightly from 7.4 to 6.8 pixels (corre-
sponding to 1.5% of the medians in both blocks) (Table 6),
showing an increased robustness. The scatter for Volin de-
creased (Fig. 10b), which is also reflected in the NMAD de-
creasing from 600.2 (Table 2) to 290.8 m3 (Table 6). After
relating this to the Volin metric medians (3.2 and 3.0%, re-
spectively; based on values in Table 6), a notable increase in
robustness towards a level comparable to the height-related
metrics and npix is indicated. The NMAD for Volout, on the
other hand, increased from 474.2 (Table 2) to 626.3 m3

(Table 6). Also, in relation to the Volout medians, the
NMAD did increase with values corresponding to 19.4% (be-
fore 15.5%) of the median in block B and 22.0% (before
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Fig. 9 Differences in predicted
volume in overlap area BC for all
combinations of models and
canopy height models

Table 5 NMAD of volume predictions in overlap area BC using
different combinations of predictive models and canopy height models

NMAD (m3) Block B

Model B Model C

Block C Model B 30.7 83.5

Model C 43.1 41.8

33 Page 12 of 17 Annals of Forest Science (2019) 76: 33



20.8%) of the median in block C. Even when normalising
Volout by plot size, the robustness cannot be increased to an
acceptable level. The height-related metrics (meanCHM, p25,
p95) are stable as they already imply a level of normalisation.

The differences between the canopy height models of block
B and block C as well as the issue of inconsistent outlier
removal could be explained by varying image acquisition con-
ditions. Aerial image data in block B was acquired using
UltraCam Eagle digital aerial camera while block C was ac-
quired using UltraCam-Xp (Table 1). The shorter focal length
and slightly larger sensor of the UltraCam Eagle resulted in
wider aperture angles compared to the UltraCam-Xp (see,
Table 1). For the UltraCam Eagle, these are 46.16° along track
and 66.20° across track and for the UltraCam-Xp 37.32° along
track and 54.66° across track. Wider angles cause a less
favourable viewing geometry for image matching, resulting
in more occlusions and mismatched points. The comparative-
ly small image overlap (60% endlap, 30% sidelap) provides
no means for compensation by redundancy. This affects the
accuracy of the canopy height model in general (Leberl et al.
2010), and it is not surprising that all inconsistencies in the
outlier removal due to errors in the canopy height model were
found in block B. These errors can severely affect model
building and forest attribute prediction based on canopy
height model data. It is recommended to utilise aerial image

data acquired with a narrower aperture angle (e.g. focal length
of aerial camera > 100 mm) and to increase the image overlap
(e.g. 80% endlap and 50% sidelap) in order to enhance image
matching quality and subsequently quality of 3D metrics.

The outlier plot due to co-registration problems depicted in
Fig. 5 is an example for the issues concerning plot positioning.
Despite using high-end GNSS-devices (e.g. see, Section 2.3),
site conditions might reduce the achievable positional accura-
cy considerably. This demonstrates the importance of a reli-
able outlier removal process. However, the results of this
study revealed that the currently used method of outlier re-
moval needs to be improved. The obvious outlier due to co-
registration errors in Fig. 5 was missed. The current approach
comparing maximum heights could be improved by including
other indicators, such as a comparison between meanCHM
and the mean of the NFI heights.

4.2 Transferability of predictive models

Three types of metrics appear to be of importance for volume
modelling: (1) one metric related to either canopy height or
volume, (2) one metric related to the canopy structure (e.g.
npix) and (3) one site-relatedmetric (e.g. meanDTM). In some
cases, the interaction of these metrics is significant. Table 3
displays the p values of the selected metrics and their interac-
tions, respectively. The importance of meanDTM is certainly
due to the large elevation changes within the study area. In a
flat area, elevation could be expected to be insignificant, and
other site-related metrics might be more useful.

Despite similar standard errors, R2 and RMSE% values
of the fitted models, models A and B differed from model
C, most notably by the selection of Volin as prediction
variable in block C. The scatterplots in Fig. 7 also show a
mixture of over- and underestimation, which is less pro-
nounced in block C. Also, in block C, the scatter was
greater. When transferring the models, this difference
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Table 6 NMAD of metrics in overlap area plots after normalisation
using a plot radius of 12 m. The medians of the metrics extracted from
image block B and block C, respectively, are also displayed, supporting
evaluation of the NMADs

npix (pixels) Volin (m3) Volout (m3)

NMAD 6.8 290.8 626.3

Median B 441.8 9117.9 3227.5

Median C 443.6 9545.1 2841.7
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Fig. 10 Scatterplots of metric differences for npix a, Volin (b) and Volout (c) after normalisation (using a plot radius of 12 m)



became even more pronounced, with the accuracy
achieved with the transferred model C being notably lower
(Table 4). This could be explained by the lower robustness
of Volin compared to the height-related metrics discussed
in Section 4.1, as the models were fitted using metrics
without normalisation based on plot size. In the model
fitting process, Volin performed only slightly better than
meanCHM. When refitting model C using meanCHM in-
stead of Volin (model C2), RMSE% notably improves to
43.4% in block A and 44.9% in block B. The effect of
using model C2 instead of model C on the plot level is
displayed in Fig. 11 and Table 7. The ranges of differences
in predicted volume in Fig. 11b and d were reduced con-
siderably compared to those displayed in Fig. 9b and d,
respectively. This is also reflected in reduced NMADs for

all variations (Table 7). The differences between the two
blocks are smallest when only model C2 is used.
Alternatively, refitting model C with normalised Volin
and npix (model C3) and transferring this model to the
other blocks further improved the RMSE% to 38.6% in
block A and 42.7% in block B. For that purpose, normal-
isation of Volin and npix was also conducted for these
blocks. On plot level in overlap area BC, the differences
in predictions were reduced compared to those achieved
with model C (Fig. 12), but to a smaller magnitude as
model C2 (Table 7). However, using model C3 for predic-
tion in block C and model B for prediction in block B
resulted in the same NMAD as when using model C.
This demonstrates that the improved robustness of Volin
due to normalisation by plot size has a positive effect on
the transferability of the model in the study region, similar
to the effect of using the robust metric meanCHM.

The RMSE% achieved when transferring models (Table 4)
based on robust metrics (models A, B, C2 and C3) are com-
parable to the RMSE% of the fitted models themselves
(Table 3), i.e. models for volume prediction could be trans-
ferred between sites within the study region without loss of
accuracy. The accuracy achieved is also comparable to values
reported for other studies (e.g. Straub and Stepper 2016;
Straub et al. 2013). There is potential for further improvement.
Inclusion of tree species is expected to notably improve the
accuracy of volume prediction. This information can theoret-
ically be extracted from remote sensing data. However, so far
no method for reliable tree species classification over large
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Fig. 11 Using refitted model C2:
differences in predicted volume in
overlap area BC for all
combinations of models and
canopy height models

Table 7 NMAD of volume predictions in overlap area BC using the
refitted models C2 and C3. (Results using model C in parentheses)

NMAD (m3) Block B

Model B Refitted model

Block C Model B – C2: 44.6

C3: 51.0

(C: 83.5)

Refitted model C2: 31.6 C2: 15.0

C3: 43.1 C3: 17.7

(C: 43.1) (C: 41.8)
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areas is available. The recently broad availability of high res-
olution, multispectral satellite data by the Copernicus pro-
gramme and related research efforts might soon provide a
solution.

This study did not seek finding the best suited model for
predicting timber volume based on canopy height model data,
but investigating robustness of canopy height model metrics
and general transferability of predictive models in the study
region. That is why less complex linear models were used.
Using a different type of models might be better suited for
timber volume prediction, but this kind of investigation was
not within the scope of this study. This might also help solving
the issue over- and underestimation observed here and in other
studies (Maack et al. 2015; Stepper et al. 2015).

Recent research suggests that timber volume can be
modelled using remote sensing-based metrics independent of
producing a canopy height model first (Giannetti et al. 2018).
However, the mentioned study was conducted on a compara-
tively small site only and applicability to other sites needs to
be proven. Additionally, there still would be the need to iden-
tify robust metrics for predictive models that can be trans-
ferred to different data sets.

5 Conclusion

The purpose of this study was to investigate the robustness
of 3D metrics and the transferability of models between
different canopy height model data sets in Southwest

Germany. Metrics directly related to canopy height (e.g.
meanCHM, height percentiles) were found most robust.
For metrics influenced by the plot size such as the number
of pixels used for metric calculation (npix) and the inner
canopy volume (Volin), normalisation based on plot size is
necessary in order to achieve robust metrics. It was also
shown that the quality of aerial image-based 3D metrics is
highly dependent on the data acquisition conditions.
Different camera specifications were the reason for notable
differences in canopy height model quality.

Predictive models based on robust metrics were transferred
to other data sets in the study region without loss of accuracy.
This shows potential for supporting harmonising of large-
scale forest inventories in this region. Further research should
test the applicability of these findings in different geographic
regions as well as transferability of models between these
regions. At the same time, the effect of using forest inventory
data based on different sampling protocols as reference should
also be investigated in order to find methods for supporting
cross-regional forest inventory harmononisation.

Besides that, further improvements in prediction accuracy
are necessary and could be achieved by including metrics
related to tree type information.
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