
European Journal for Philosophy of Science (2019) 9: 26
https://doi.org/10.1007/s13194-019-0249-5

PAPER IN FORMALMETHODS AND EXACT SCIENCES

Theory-choice, transient diversity and the efficiency
of scientific inquiry

AnneMarie Borg1 ·Daniel Frey2 ·Dunja Šešelja3 ·Christian Straßer1
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Abstract
Recent studies of scientific interaction based on agent-based models (ABMs) suggest
that a crucial factor conducive to efficient inquiry is what Zollman (2010) has dubbed
‘transient diversity’. It signifies a process in which a community engages in parallel
exploration of rivaling theories lasting sufficiently long for the community to identify
the best theory and to converge on it. But what exactly generates transient diver-
sity? And is transient diversity a decisive factor when it comes to the efficiency of
inquiry? In this paper we examine the impact of different conditions on the efficiency
of inquiry, as well as the relation between diversity and efficiency. This includes cer-
tain diversity-generating mechanisms previously proposed in the literature (such as
different social networks and cautious decision-making), as well as some factors that
have so far been neglected (such as evaluations underlying theory-choice performed
by scientists). This study is obtained via an argumentation-based ABM (Borg et al.
2017, 2018). Our results suggest that cautious decision-making does not always have
a significant impact on the efficiency of inquiry while different evaluations underly-
ing theory-choice and different social networks do. Moreover, we find a correlation
between diversity and a successful performance of agents only under specific con-
ditions, which indicates that transient diversity is sometimes not the primary factor
responsible for efficiency. Altogether, when comparing our results to those obtained
by structurally different ABMs based on Zollman’s work, the impact of specific fac-
tors on efficiency of inquiry, as well as the role of transient diversity in achieving
efficiency, appear to be highly dependent on the underlying model.
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1 Introduction

Recent studies on epistemic effects of scientific interaction, conducted via agent-
based models (ABMs), have largely focused on the context of theoretical diversity,
where a scientific community pursues different rivaling theories within a given sci-
entific domain (Borg et al. 2017, 2018; Frey and Šešelja 2018a; Grim 2009; Grim
et al. 2013; Kummerfeld and Zollman 2016; Zollman 2007, 2010). Since one of the
rivaling theories is assumed to be the best, agents are successful if they manage to
converge on it. A take-home message from a number of these studies has been the
following: in order for an inquiry to be successful it needs a property of ‘transient
diversity’ (Zollman 2010). Transient diversity refers to a process in which a commu-
nity engages in a parallel exploration of different theories, which lasts sufficiently
long to prevent a premature abandonment of the best of the available theories, but
which eventually gets replaced by a consensus on the best theory. Or as Pöyhönen
and Kuorikoski (2016) specify it, transient diversity represents “a proper balance
between the diversity of beliefs and consensus”.

But what does exactly generate this kind of balance? Zollman has suggested that
transient diversity can be obtained either by limiting information flow among sci-
entists or by equipping them with extreme prior values for their initial hypotheses
(though not by both of these mechanisms at the same time). Kummerfeld and Zoll-
man (2016) suggest that institutional encouragement of unpopular, risky paths of
inquiry may be necessary to obtain such a diversity. Finally, Frey and Šešelja (2018a)
suggest that cautious decision-making may be yet another mechanism that increases
the chance of the community achieving the optimal degree of diversity. In all of these
models mechanisms that generate transient diversity function by preventing fully
connected communities from prematurely converging on a possibly wrong theory.1

Since all of the above ABMs are inspired by Zollman’s models,2 which represent
the situation of theoretical diversity in terms of ‘bandit problems’, this raises the
question whether the same kind of mechanisms still played a role (in the sense of
generating transient diversity) if we represented scientific inquiry in a structurally
different way (as e.g. Grim et al. (2013) or Borg et al. (2018) do). Moreover, whether

1Alexander (2013) presents a slightly different scenario, where the number of rivaling theories grows over
time. His results suggest that some learning strategies (namely, the combination of reinforcement and
social learning via preferential attachment) can lead to the optimal level of diversity, under the condition
that agents discount the knowledge of past theories.
2We have omitted a class of models employing epistemic landscapes (such as Weisberg and Muldoon
2009; Alexander et al. 2015; Thoma 2015; Pöyhönen 2017) since they tend to represent a different kind of
diversity than the one we are focusing on in this paper: they rather examine what would better be labeled
as ‘cognitive diversity’ (Pöyhönen and Kuorikoski 2016), which concerns different research heuristics
employed by individual agents across the given community. Moreover, efficiency of inquiry in these mod-
els is usually measured in terms of success of the community in discovering certain patches of the given
landscape, rather than in terms of agents converging on a single theory.
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transient diversity is a robust property in the sense that a certain degree of a diversity
is a ‘difference-making’ factor when it comes to successful inquiry, is another open
question.

Addressing this issue is important not only for the examination of the robustness
of previous results, but also for a more precise understanding of the phenomenon of
transient diversity and its relation to the efficiency of inquiry (where efficiency is a
function of the rate of successful convergence and the required time).

In this paper we will examine this question by means of an argumentation-based
ABM (ArgABM) of scientific interaction, which we previously presented in Borg
et al. (2017).3 We will focus on two kinds of interrelated mechanisms:

1. On the one hand, we will examine mechanisms that represent cautious decision-
making (previously discussed by Frey and Šešelja (2018a) with respect to a
Zollman-inspired model). The first such mechanism is ‘rational inertia’ that an
agent has towards her pursued theory, which assures she abandons the theory
only after having repeatedly gathered evidence in favor of its rival for a signifi-
cant period of time. The second mechanism is a relative threshold value which a
rivaling theory has to surpass in order to count as superior to one’s current theory.

2. On the other hand, we will examine different evaluative procedures, in view
of which scientists decide which theory to pursue and on top of which cau-
tious decision-making is employed. For instance, agents in the model may prefer
theories that have a wider scope than their rivals, or they may avoid theories
that exhibit more anomalies than their rivals. These measures may come down
to different preference orders on the given theories. While ABMs of scien-
tific interaction have usually employed a specific kind of assessment, which of
these assessments is either descriptively adequate or normatively desirable has
largely remained open. To this end, it is helpful to understand their impact on the
efficiency of inquiry.

What makes ArgABM especially suitable for this research question is that, on the
one hand, it employs both of the above mechanisms representing cautious decision-
making as parameters of the model. On the other hand, the model allows for a
straightforward approach to studying different assessment procedures underlying the
theory choice of scientists. In addition, the model employs a specific approach to
knowledge representation, which is structurally different from Zollman’s or Grim &
Singer’s models. For instance, both defensible and anomalous parts of knowledge
can be located as specific parts of the given theories. This makes the model apt for
the above mentioned robustness analysis.

Our results suggest that, a certain degree of diversity can be clearly identified as
correlated with efficient inquiry only when agents employ a specific theory-choice
assessment—namely, when they prefer theories that are based on a comparatively larger
body of solidified research, relative to their rivals. In that case cautious decision-
making has a positive impact on the efficiency of fully connected communities. When

3The model is programmed in NetLogo (Wilensky 1999). The code of the model employed in this paper
can be found at: https://github.com/g4v4g4i/ArgABM.

https://github.com/g4v4g4i/ArgABM
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it comes to other evaluations, as well as to less connected communities, cautious
decision-making either has no impact on the efficiency or it is harmful for it. Hence,
this study indicates that determining factors conducive to the efficiency of inquiry
is highly dependent on the specific model and its idealizations. This points to an
important task for future research: specifying which types of inquiry (for example,
related to specific scientific domains) are more adequately represented by some of
these conditions and certain ABMs of science, rather than others.

Here is how we will proceed. In Section 2 we will present the central features of
ArgABM. In Section 3 we will introduce four different types of evaluation underlying
scientists’ decision as for which theory to pursue. In Section 4 we will explicate how
we model cautious decision-making. In Section 5 we will present our results: we will
show how different social networks perform in each of the four evaluations, with and
without the mechanisms of cautious decision-making. Moreover, we will analyze the
impact of diversity on successful inquiry. In Section 6 we will conclude the paper
suggesting some questions for future research.

2 ArgABM: an overview

In this section we introduce ArgABM, an argumentation-based ABM of scientific
inquiry, which has previously been used for the examination of epistemic effects of
scientific interaction under different types of social networks (Borg et al. 2017, 2018).
The model is designed to measure the efficiency of groups of agents in their knowl-
edge acquisition. Knowledge acquisition is represented in terms of agents exploring
a number of rivaling scientific theories, where they have to determine which theory
is the best one. Efficiency of their inquiry is represented in terms of their success in
converging on the best of the available theories, and in terms of time they need to
achieve this convergence.4

A specific feature of this model is that it aims to represent argumentative dynamics
among scientists who explore rivaling theories or research programs5 and exchange
arguments pro and con these theories along the way. To this end, the model repre-
sents the argumentative context underlying theories, within which scientists gather
evidence for the hypotheses constituting the given theory and against the rivaling
ones. Such an argumentative context is represented in terms of an argumentative
landscape, explored by agents.

4In Borg et al. (2017, 2018) the efficiency in terms of time is measured in a slightly different way. More-
over, in Borg et al. (2017) we present an alternative, ‘pluralist’ measure of success, according to which
agents are successful if at the end of the run the best theory isn’t less populated than any of its rivals. In
the current section we will try to keep technical details at the minimum. An interested reader can take a
closer look at the above mentioned publications on this model.
5For the sake of simplicity, we use the terms ‘theory’ and ‘research program’ interchangeably in this paper.
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2.1 The argumentative landscape

As mentioned above, the model represents scientific inquiry in which scientists
explore their research programs, gradually fleshing them out. They do so by exploring
the argumentative landscape, which represents the argumentative context underlying
the rivaling research programs. Each theory is represented as consisting of a num-
ber of arguments. These arguments are represented abstractly, as nodes in a directed
graph, connected via a discovery relation. An argument can be understood as a
hypothesis supported by evidence gained by means of a certain study (e.g. an exper-
iment).6 The discovery relation represents paths that agents take when moving on
the landscape, from one argument to another. Its role is to track the temporal aspect
of research where new research steps build on the previous ones. Moreover, argu-
ments belonging to one research program can attack arguments of one of the rivaling
programs. Such an attack represents, for instance, a discovery of a methodological
problem in a certain study of the rivaling research program, or results of a novel study
which provides a better explanation of a certain phenomenon than a study offered
within the rivaling program.7 The landscape then consists of different argumentative
rooted trees, with nodes as arguments and edges as discovery relation, where an argu-
ment in one tree may attack an argument in another tree (see Fig. 1).8 The extent to
which each research program is attacked is a parameter of the model. We represent all
theories as trees of the same size, i.e. consisting of the same number of arguments.

While at the beginning of the run, agents only see the root argument of each the-
ory, over the course of the run they gradually discover the rest of the landscape.
Each argument can be understood as a hypothesis investigated by scientists. Through-
out their exploration of the landscape, our scientists will occasionally encounter

6For a concrete example of a scientific controversy—namely, the continental drift debate—represented by
means of a similar framework (based on abstract argumentation) see Šešelja and Straßer (2013).
7While we can imagine a situation in which a single argument serves as an objection attacking the rivaling
theory in whole (for example, showing the theory cannot explain a certain set of phenomena) in the current
model we abstract away from such cases by employing the idealization that attacks always target a specific
part of a theory (e.g. an attack on a study in a rivaling research program pointing to a methodological
problem doesn’t necessarily attack results of other studies within the same program—i.e. other arguments).
Note that this is already a step further in the direction of representational adequacy in comparison to
Zollman-inspired ABMs. It remains a task for future research to examine whether our results remain
robust if we implemented a more detailed representation of argumentative attacks, e.g. by introducing an
explanatory relation between arguments and a set of explananda (as it is done by Šešelja and Straßer 2013)
and more refined evaluation procedures (as compared to the ones to be introduced in Section 3).
8The representation of our landscape is inspired by abstract argumentation frameworks (Dung 1995).
Formally, the landscape is given by a triple 〈A,�, ↪→〉 where ↪→ is the discovery relation, � is the attack
relation, and A = 〈A1, . . . ,Am〉 is partitioned in m many theories Ti = 〈Ai , ai , ↪→〉 which are trees with
ai ∈ Ai as a root and

� ⊆
⋃

1≤i,j≤m

i �=j

(Ai × Aj ) and ↪→ ⊆
⋃

1≤i≤m

(Ai × Ai ).

Specifying � like this ensures that the theories are conflict-free, i.e. that there are no attacks between
the arguments of the same theory.
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Fig. 1 An example of an argumentative landscape consisting of 2 theories (or research programs). Darker
shaded nodes represent arguments that have been investigated by agents and are thus visible to them;
brighter shaded nodes stand for arguments that aren’t visible to agents. The biggest node in each theory
is the root argument, from which agents start their exploration via the discovery relation, which connects
arguments within one theory. Arrows stand for attacks from an argument in one theory to an argument in
another theory

defeating evidence, represented as attacks coming from arguments in a rivaling the-
ory. Moreover, they may encounter arguments that defend their attacked hypotheses,
where—informally speaking—an argument a is defended in the theory if it is not
attacked or if each attacker b from another theory is itself attacked by some defended
argument c in the current theory.9

Let’s look at the example illustrated in Fig. 2. In graph (a) we have argument a1
from theory T1, which is attacked by argument b1 from theory T2. In this case, a2
defends a1 since it attacks b1, the attacker of a1. If in the further course of exploration
agents encounter b2, which attacks a2 (graph (b)), then the previous defense becomes
unsuccessful and both a1 and a2 will now be undefended (for a formally precise
definition of defended arguments see below Section 3.1).

The idea behind such argumentative dynamics stems from the defeasible character
of scientific reasoning, where throughout inquiry scientists may encounter defeat-
ing evidence for their previously accepted hypotheses, and evidence in support of
hypotheses that they have earlier rejected. This feature allows for the representation
of errors that commonly appear in scientific research: false positives (accepting a

9Agents discover attacks to and from their current arguments, as well as the child arguments of their
current arguments gradually, depending on the degree of exploration assigned to the current argument at a
given time point of a run: for each agent ag and each argument where 0
indicates that the argument is unknown to ag and 6 indicates that the argument is fully explored and cannot
be further explored. Since the model is round-based, each round may be interpreted as one research day.
Each of the 6 levels of an argument takes a researcher 5 rounds/days of exploration. Thus, each argument
represents a hypothesis that needs altogether 30 research days to be fully investigated.
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Fig. 2 Argumentation graph with arguments a1 and a2 belonging to theory T1, and arguments b1 and b2
belonging to theory T2. Discovery relations are omitted

hypothesis that is actually false) and false negatives (rejecting a hypothesis that is
actually true). This is important in a model that aims to examine the efficiency of sci-
entific inquiry, since these errors have a direct impact on it. Cases in which scientists
accepted a false hypothesis (sometimes simulateously with rejecting a true one) are
well known from the history of science.10 This is precisely why Zollman-inspired
models examine the efficiency of inquiry by focusing on the mechanisms that are
conducive to minimizing the risk of false positives and false negatives.

The argumentative dynamics in our model allows for a straightforward represen-
tation of false positives and false negatives: the former are arguments that initially
appear defensible, though further inquiry would reveal that they are not; the latter are
arguments that are attacked and undefended, but for which a defense can eventually
be found.

Now, an important feature of the model is that one of the rivaling research pro-
grams is designed as the ‘best one’. In this way we can measure the efficiency of
scientists by assessing their success and time needed to converge on this particular
theory. The best theory is simply the one which is designed as fully defended from
all the attacks, in the fully explored landscape.11 This is, of course, an idealization,
but it helps to represent the above mentioned appearance of false positives and false
negatives: while at early stages of inquiry, the best theory may appear to have many
anomalies (undefended arguments), if scientists keep on exploring it, they will find
solutions for these anomalies (namely, defenses of the attacked arguments).

2.2 Behavior of agents

The model is round-based and each round agents perform one of the following actions:

A1 exploring a single argument, thereby gradually discovering possible attacks (on
it, and from it to arguments that belong to other theories) as well as discovery
relations to neighboring arguments;

10For instance, the continental drift debate or the research on peptic ulcer disease are some of the cases in
point (see Šešelja and Weber 2012; Šešelja and Straßer 2014b).
11The other theories are modeled as having a certain percentage of their arguments attacked and
undefended.
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A2 moving to a neighboring argument along the discovery relation within the same
theory;

A3 moving to an argument of a rivaling theory.

As mentioned above, agents start the run of the simulation at the root of a given
theory and gradually discover more and more of the argumentative landscape. In this
way each turn an agent operates on the basis of her own (subjective) fragment of the
landscape, which consists of arguments that she has explored to a specific degree,
and (attack and discovery) relations that she has found between the arguments.

To decide whether to keep on pursuing their current theory (actions A1 and A2
above), or whether to better start working on an alternative theory (A3) agents are
equipped with the ability to evaluate theories.12 Every few rounds they apply an
evaluative procedure, with respect to the set of arguments and attacks they currently
know (i.e. their subjective memory). We will introduce four such procedures in the
next section. For now, it will suffice to say that all such evaluations are based on the
question, how many defended or undefended arguments the theory has.

2.3 Social networks

Just like other models of scientific interaction, ArgABM employs social networks. In
particular, agents form their subjective knowledge of the landscape not only in view
of information they gather on their own, but also in view of information they receive
from other agents, with whom they are linked in a network. There are two types of
such networks:

1. Collaborative groups, which consist of five individuals who start from the same
theory. While each agent gathers information about the landscape on her own,
every five time steps this information is shared with all other agents forming the
same collaborative network.

2. Community-networks, between collaborative groups, which are formed out of
representative agents from each of the linked collaborative networks (one repre-
sentative agent per collaborative network). Within community-networks agents
share information (arguments and attack relations) that they have recently gath-
ered via their exploration. This could be interpreted as having a scientist report
on her recent (positive and negative) findings concerning her current theory, by
writing a paper or giving a conference talk.13 Community-networks can have one
of the following structures: a cycle, in which each collaborative group is con-
nected to exactly two other groups, a wheel which is similar to the cycle, except

12In addition, agents are equipped with a certain heuristic behavior, which allows them to search for the
defense of their current argument in case it is attacked. See Borg et al. (2017), Section 2.2.
13In the current model we assume that agents reliably share information, i.e. that they share both positive
and negative findings about their current theory. Borg et al. (2018) examine in addition deceptive infor-
mation sharing, i.e. agents who share only positive findings about their theory (arguments and attacks to
other theories), while withholding the information about attacks on their own theory. Whether the results
presented in this paper also hold for deceptive agents remains a question for future research.
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Fig. 3 A cycle, a wheel and a complete graph. Each node is a collaborative group, while the edges
represent communication channels

that a unique group is connected to every other group, and a complete graph
where each group is connected to all other groups (see Fig. 3).

3 Evaluations underlying theory-choice

As mentioned in the previous section, agents in ArgABM assess their theory in order
to decide whether to stick with it, or to switch to one of the rivaling theories. In this
section we will present four evaluative procedures, in view of which scientists can
make such a theory-choice.

In order to explore the space of possibilities, we start with two simple measures,
and then proceed by adjusting them towards two additional, more complex measures.
Of course, which of these measures (or yet some other ones) is actually employed by
scientists is an empirical question, which cannot be answered from a philosophical
armchair.

We will motivate four suggestions for implementing such evaluative procedures in
the context of ArgABM (see Section 6 for some additional proposals).

3.1 The degree of defensibility (assessment D)

Our first measure is the assessment of theories in terms of their degree of defensibil-
ity.14 We will call it for short: assessment D. The degree of defensibility of a theory
is the number of defended arguments in this theory. T1 is preferred to T2 iff T1 has
more defended arguments than T2.

This strategy represents scientists who are easily impressed by the size of a theory,
that is, by the size of its defensible parts.15 In other words, they keep on pursuing their
current theory unless one of the rivaling theories turns out to have more defended
arguments.

14This measure is employed in previous versions of ArgABM (Borg et al. 2017, 2018).
15An alternative way to interpret this assessment is in terms of an explanatory scope of a theory, where we
are assuming that the arguments constituting the given theory are explanatory in nature (see Šešelja and
Straßer 2013). A less idealized measure of explanatory power could be implemented by introducing a set
of explananda E and an explanatory relation from some of the arguments in the theory to a subset of E.
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Fig. 4 Argumentation Framework 1

Let’s give a more precise formal definition. First, we call a subset of arguments A

of a given theory T admissible iff for each attacker b of some a in A there is an a′
in A that attacks b. Since every theory is conflict-free, it can easily be shown that for
each theory T there is a unique maximally admissible subset of T (with respect to set
inclusion). An argument a in T is said to be defended in T iff it is a member of this
maximally admissible subset of T .16 The degree of defensibility of T is equal to the
number of defended arguments in T .

Figure 4 depicts a situation with three theories as it might occur from the perspec-
tive of a given agent: T1 consisting of arguments e and f (white nodes), T2 consisting
of arguments a, b and g (gray nodes), and T3 consisting of arguments c and d (dark
gray nodes). The arrows represent attacks, we omit discovery relations. We are now
interested in the degrees of defensibility our agent would ascribe to the given theories.
The table shows which arguments are defended in each theory and their correspond-
ing degree of defensibility. The only defended argument in this situation is f in
theory T1. Note for instance that in T3 the argument d is not defended since no argu-
ment in T3 is able to defend it from the attack by b. Although the argument f in
T1 attacks b, it doesn’t count as a defender of d for theory T3 when determining the
defended arguments in T3 since in our account a theory is supposed to defend itself.

Figure 5 depicts the situation after an attack from a to f has been discovered.
Consider theory T2. In this situation a defends b from the attack by f , b defends a

from the attack by d, a defends g from the attack by e and g defends a from the attack
by c. Hence, all arguments are defended resulting in a degree of defensibility of 3.

3.2 The degree of anomaly (assessment A)

According to this measure, T1 is preferred to T2 iff T2 has more undefended argu-
ments than T1. We call it for short: assessment A. If we interpret the number of
undefended arguments as the degree of anomaly of the given research program, this
strategy can be taken as representing scientists who abandon theories that become
more anomalous than their rivals. This approach could be seen as corresponding to a

16Given that theories in the model are conflict-free, the notion of admissibility is here the same as the one
introduced in Dung (1995). In Dung’s terminology, our sets of defended arguments correspond to preferred
extension (which are exactly the maximally admissible sets), except that we determine these sets relative
to given theories.
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Fig. 5 Argumentation Framework 2

Kuhnian scientist who resists converting to a new paradigm until her theory is clearly
more anomalous than its rival (see Kuhn 1962).

Taking a look at the scenario in Fig. 4, T1 has a degree of anomaly 1, while T2 has
a degree of anomaly 3 and T3 has a degree of anomaly 2. Hence, agents will prefer
T1. In Fig. 5 T1 and T3 have a degree of anomaly 2, while T2 has a degree of 0. Here
they will thus prefer T2.

3.3 Multiplication (assessment M)

We now turn to more sophisticated assessments. According to the measure which we
call ‘multiplication’, T1 is preferred to T2 iff |Undef(T1)| · |Disc(T1)| < |Undef(T2)| ·
|Disc(T2)|, where Undef(Ti) stands for undefended arguments of theory Ti , and
Disc(Ti) stands for all discovered arguments of Ti (i.e. arguments that belong to the
knowledge base of the agent). We call this procedure for short: assessment M.

This strategy represents scientists who are less forgiving toward anomalies in
their research program the more advanced it is (i.e. the more arguments it has).
This approach could be seen as corresponding to the Lakatosian idea that in their
early stages research programs are infested with anomalies, which are expected to be
resolved as time passes by (see Lakatos 1978).

Taking a look at the example in Fig. 4, if we assume all the arguments in the
framework are actually discovered, then T1 has a multiplication score of 1 × 2 = 2,
T2 has a score of 3 × 3 = 9 and T3 has 2 × 2 = 4. Agents will thus prefer T1.

3.4 Normalization (assessment N)

Our final measure is labeled ‘normalization’ since according to it, T1 is preferred
to T2 iff |Undef(T1)|/|Disc(T1)| < |Undef(T2)|/|Disc(T2)|, where again Undef(Ti)

stands for undefended arguments of theory Ti , and Disc(Ti) stands for all discovered
arguments of Ti .17 We call this evaluation for short: assessment N.

This strategy represents scientists who evaluate the defended (or anomalous) scope
of their research program relative to how advanced it is. The idea behind this assess-
ment is similar to Bayesian updating via beta-distributions (employed by Lakatos

17It is easy to show that the following measure results in an equivalent preference order: T1 is preferred to
T2 iff |Def(T1)|/|Disc(T1)| > |Def(T2)|/|Disc(T2)|, where Def(Ti) stands for defended arguments.
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Fig. 6 Argumentation framework illustrating different evaluations underlying theory-choice. D: degree of
defensibility, A: degree of anomaly, M: multiplication, N: normalization

2010), the mean of which is given by the ratio of the number of successful draws
from the distribution through the number of all draws.

Considering the example in Fig. 4 and assuming all the arguments are discovered,
the normalization score for T1 is 1/2 = 0.5, for T2 it is 3/3 = 1, and for T3 it is
2/2 = 1. Thus, agents prefer T1.

While applying our four evaluations to the example in Fig. 4 has led to the
same preference order (with T1 being selected in each case), the following example
illustrates that our four assessments may not always lead to the same theory-choice.

The example in Fig. 6 consists of two theories, a blue one, T1, with arguments a1-
a3, and a green one, T2, with arguments b1-b6. We have that Disc(T1) = 3, Def(T1) =
1, Undef(T1) = 2, Disc(T2) = 6, Def(T2) = 3 and Undef(T2) = 3. Hence, T1 has a
multiplication score of 6 and a normalization score of 2

3 and T2 has a multiplication
score of 18 and a normalization score of 3

6 . Therefore, T1 is preferred over T2 if
theories are compared by means of assessments A or M, and T2 is preferred over T1
when evaluation is done by means of assessments D or N.

4 Modeling cautious reasoning

We will now explicate two types of diversity-preserving mechanisms, each of which
can be understood in terms of cautious reasoning, that functions in combination with
evaluations presented in the previous section.

4.1 Rational inertia: temporal threshold

The first mechanism has the aim to prevent agents from being hastily swayed by new
evidence. It functions in the following way: an agent abandons her current theory and
switches to a rivaling one only after she has received consistent evidence showing
that the latter is better for X number of evaluations (where X is a parameter of the
model). We will refer to X as temporal threshold. This corresponds to the situation in
which scientists don’t easily abandon their theory, even after discovering problems
with it. Instead, they stick with it until and unless they are convinced that it can no
longer be saved from the defeating evidence and that its rival is superior to it.
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We call such an inertia rational for it wouldn’t make much sense for a scientist to
prematurely abandon her theory, before she is sure the current anomalies cannot be
resolved and the theory improved. In this sense, it is rational for a scientist to stick
to her theory for a while longer (see Kelp and Douven 201218). Moreover, such an
inertia is rational also in view of the fact that changing one’s inquiry usually comes
with various costs (such as acquiring additional knowledge, new equipment, etc.).

4.2 Similarly successful theories count as equally good: epistemic threshold

While a rational inertia keeps agents ‘sticky’ on their theories for a certain period of
time, our second mechanism keeps them ‘sticky’ for as long as the rivaling theory
isn’t significantly better than their current one. To this end, agents stay on their cur-
rent theory unless it has been surpassed by a rival beyond a given threshold value,
relative to the employed evaluation procedure. We call such a threshold – epistemic
threshold.

More precisely, an agent abandons her current theory only if it fails to be one of
the best theories, where the set of ‘best theories’ is calculated by means of the four
evaluative procedures together with the epistemic threshold in the following way:

• For the evaluation in terms of assessment D: if Ti stands for a theory that has
the highest degree of defensibility, then the set of best theories consists of those
theories that have at least the following assessment D:

|Def(Ti)| · [epistemic threshold]

where epistemic threshold is a value from the interval (0, 1].
• For the evaluation in terms of assessments A, M and N: if Ti stands for a theory

that has the lowest Evaluation Score(Ti) for each of the three measures, then the set of
best theories consists of those theories that have maximally the following score:

Evaluation Score(Ti)

[epistemic threshold]

where epistemic threshold is a value from the interval (0,1].

For instance, let Ti be a theory with Disc(Ti) = 20, Undef(Ti) = 10 and
Def(Ti) = 10 and assume Ti is the theory with the most defended arguments and the
lowest evaluative score according to the A, M and N procedures. We choose the epis-
temic threshold of 0.9. For each of the evaluation procedures we get the following
scores:

• D: all theories that have at least 10 · 0.9 = 9 defended arguments will fall among
the set of best theories,

18Rational inertia shouldn’t be confused though with the ‘Steadfast Norm’ discussed by Kelp and Douven
in the same paper, and well-known in the literature on peer disagreement. Unlike in their account, in our
model we may interpret a scientist as having a rational inertia towards her theory, while having lowered
her confidence that the theory is actually true.
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Table 1 Set of best theories for the example in Fig. 6, for different epistemic threshold values

Epistemic threshold 1
4

1
3

1
2

2
3

3
4

D {T1, T2} {T1, T2} {T2} {T2} {T2}
A {T1, T2} {T1, T2} {T1, T2} {T1, T2} {T1}
M {T1, T2} {T1, T2} {T1} {T1} {T1}
N {T1, T2} {T1, T2} {T1, T2} {T1, T2} {T1, T2}

• A: all theories whose degree of anomaly is smaller than 10/0.9 = 11.11 count
among the best ones,

• M: all theories whose multiplication score is less that (10 · 20)/0.9 = 222.22
count among the best ones,

• N: all theories whose normalization score is less than (10/20)/0.9 = 0.55 count
among the best ones.

The primary idea behind this mechanism is that a rivaling theory has to pass a
sufficiently wide margin to be considered superior to one’s current theory. This corre-
sponds to the reasoning of a scientist who uses a dose of caution in such evaluations,
knowing that future inquiry might reveal new evidence. As a result, she will abandon
her current theory not merely after she has seen it perform worse a multiple num-
ber of times (as in the case of rational inertia), but only after its rival has become
sufficiently superior to it.

In Table 1, we show the sets of best theories for the example in Fig. 6, for different
values of epistemic thresholds.

5 Our findings

In this section we present the results of our simulations, focusing on two measures:
how successful agents are in converging on the best theory, and how much time they
need to converge on it.19 Each of the plots shows a mean of 10,000 simulations for
each data point (unless otherwise indicated). All the simulations were run with a
landscape consisting of 3 theories, each having 85 arguments. While the best the-
ory is fully defended, the other two theories have a certain portion of undefended
arguments.

Concerning the last point, we employ two types of landscapes:

1. an ‘easy’ landscape, in which the two suboptimal theories have around 35% of
undefended arguments,20

19Due to space restructions, many of the plots are omitted from the paper and can be found in the
Online Appendix of this paper.
20For the exact procedure of how the attacks are generated, and the degree of defensibility of the two
suboptimal theories such a procedure results in, see Borg et al. (2018).
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2. a ‘difficult’ landscape, in which the two suboptimal theories have around 85%
of undefended arguments.

That a landscape is easy/difficult means that theories are more or less similar in
terms of their degree of defensibility, which makes it easier or harder to determine
which one is the best.

A simulation stops when one of the theories is fully explored. At this point we
examine whether the agents have converged on the best theory, and if so, at which
step of the simulation they have done so.21

As for our two mechanisms explicated in the previous section—which we call
for short ‘threshold mechanisms’ or ‘thresholds’—we have employed the temporal
threshold of 10. This means that in order for an agent to switch to a rivaling theory,
she has to consistently evaluate that theory as one of the best ones (and better than
her current theory) for 10 (not necessarily consecutive) rounds.22 For the epistemic
threshold, we have opted for a relatively small value of 0.9. We have tested our results
with higher thresholds (e.g. temporal threshold of 50, and the epistemic threshold of
0.7) and they have remained robust under these changes, except for the time agents
need to achieve convergence, which, as expected, increases with higher thresholds.

5.1 Results

We will now focus on four interesting points revealed by the simulations. In the next
subsection we will discuss these findings.

Impact of threshold-mechanisms First, the impact of the threshold mechanisms
varies across different evaluative procedures. The only case where we observe a pos-
itive effect of thresholds on the success of agents is the complete graph employing
procedure D. The impact of thresholds on different networks employing assessment
D can nicely be observed in case of a larger population (of 70 agents), represented in
Fig. 7. In case of all other evaluations and network structures, thresholds either have
no effect or they have a negative effect, across both easy and difficult landscapes (see
Table 2).

Efficiency of different evaluative procedures Second, different evaluative procedures
result in drastically different degrees of efficiency, across all three networks. While
D assessment results in the worst performance for all three networks in case of both
types of landscapes, N procedure makes all three networks very efficient on the easy

21The reason why we stop the simulation at this point is that otherwise some agents would become ‘idle’:
since they have explored their preferred theory fully, the only way they would change their preference is by
waiting for other agents to send them new information. Borg et al. (2019) propose an alternative model in
which the simulation continues after this point, eventually bringing all agents on the best theory, so that the
efficiency is measured in terms of time only (similarly to the ABM proposed by Frey and Šešelja 2018a).
22In view of an interpretation suggested by Borg et al. (2017), according to which a round stands for a
working day, this threshold means that scientists have to wait 10 weeks before being able to change their
theory. Of course, different interpretations of the time in the model are possible.
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Fig. 7 Success of agents employing procedure D (70 agents)

landscape. Nevertheless, a complete graph employing the M procedure overtakes the
N one on the difficult landscape (see Figs. 8 and 9).

Efficiency of different social networks Third, the relative efficiency of different social
networks remains pretty robust across all explored scenarios, with the complete graph
outperforming less connected networks in terms of both – the success of agents in
converging on the best theory, and the amount of time they need to achieve such
convergence. In the case of A, M and N evaluations the complete graph is extremely
successful on the easy landscape, while being a bit less successful on the difficult
one.

Transient diversity As mentioned in Section 1, the literature on ABMs of science has
advanced the idea that in order to optimize efficiency of scientific inquiry we seek a
diversifying mechanism that creates a tension among agents such that it is (a) strong
enough to prevent agents from an early convergence on the wrong theory and (b)
sufficiently soft to enable them to eventually converge on the right theory. The wanted
type of diversity has been labeled transient. One ingredient of such diversity was

Table 2 The impact of threshold-mechanisms on different social networks with respect to the four evalua-
tive procedures on the easy landscape (on the left) and on the difficult landscape (on the right with shaded
background). Complete: complete graph; Sub-Complete: cycle and wheel networks; +: positive impact;
−: negative impact; ±: neither positive nor negative impact. Note that the effect is the strongest for larger
populations
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Fig. 8 Easy landscape: success of agents connected in the complete graph for different evaluation
procedures (aggregated over both runs with thresholds and without thresholds)

identified in the social network structure, another one in epistemic biases (Zollman
2010). In this paper we have studied other parameters, such as evaluative standards of
agents and (temporal and epistemic) thresholds used by agents when deciding when
to choose another theory.

Our first expectation is that higher thresholds have a diversifying effect similar to
loser network structures. And indeed this is what we see for instance in Fig. 10 for the
D and N procedure. We measure diversity of a run in terms of the number of rounds
in which agents have no consensus on any theory divided by the number of rounds
it took to terminate the run. We can see that the center of mass is moved to the right
(more diversity) when introducing thresholds.
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Fig. 9 Difficult landscape: success of agents connected in the complete graph for different evaluation
procedures (aggregated over both runs with thresholds and without thresholds)
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Fig. 10 The effect of thresholds on the degree of diversity (70 agents, difficult landscape, complete graph)

When considering the relation between the degree of diversity and efficiency we
may naively expect a bell-shaped curve at whose peak we find runs with most effi-
ciency while moving to more or less diversity the situation worsens. Things are more
complicated, though. We find, for instance, a camel-like curve for the D-procedure
and difficult landscapes (see Fig. 11) with one peak for runs with diversity degrees
between 0 and 0.1, and another peak for runs with diversity degrees between 0.7 and
0.8. Furthermore, the difficulty of the landscape influences the shape of the curve:
for easy landscapes more diversity is highly beneficial as we can see for the interval
from 0.5 to 0.8, but less so for low diversity degrees (unlike in the difficult land-
scape). Also the evaluation criterion matters, as we can observe when considering the
N procedure where we see a continuous (for a long time slow) decline of efficiency
with higher degrees of diversity.

In sum, the efficiency-diversity relation does not in general exhibit a simple bell-
like curve. Moreover, the shape of the curve is highly dependent on factors such as
the underlying evaluative procedure and the difficulty of the problem. Furthermore,
in some cases (like the N procedure) diversity has not much of an influence on effi-
ciency (except for extreme degrees). This also highlights the importance of studying

Fig. 11 The effect of diversity on efficiency (70 agents, complete graph)
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other factors which influence the efficiency of scientific inquiry, such as evaluation
procedures, as done in this paper.

5.2 Discussion

We will now comment on a few most important aspects of our findings.

Highly successful communities The first striking point that deems an explanation is
the extremely high success rate of fully connected communities in case of A, M and
N evaluations. Why do these populations perform so well?

To answer this question, we will first explain (i) why fully connected networks
tend to be at least as successful as the less connected ones, and in most cases much more
successful, and then turn to (ii) the success of A, M and N evaluations in particular.

As for (i), the reason for their success lies in the way information is represented
in our model. How accurate one’s assessment about the given theories is, directly
depends on how much knowledge of the landscape the agent has. Larger gaps in such
knowledge can easily lead to errors in theory assessments. Now, since our agents
share only recently acquired information (rather than their entire knowledge of the
landscape), in less connected communities some of this information may easily be
missed, and hence their knowledge of the landscape will be ‘patchier’. As a result,
they may fail to accurately determine the best theory.23 Note that this is also why
larger communities linked in sub-complete graphs have a low success rate: since
in our community-networks not every agent communicates with every other agent
(instead collaborative groups appoint representative agents who then share informa-
tion in community-networks), the degree of connectedness gets smaller the larger the
overall population is, and as a result, subjective knowledge can in larger populations
be rather different across different collaborative groups. Moreover, since agents share
recently gathered information, there may be a permanent information loss in such
groups. This is in contrast to, e.g., Zollman’s model, where any shared information is
representative of the entire theory, which makes information losses much less harm-
ful. We take ArgABM, however, to be representative of a situation in which scientists
who don’t share all their results may fail to have an encompassing understanding of
each of the rivaling theories (e.g. they might lack an insight into an important study
in one of the theories). This means that larger populations of scientists will have a
harder time converging on the same theory due to the fact that they assess theories
in view of different evidence. This is, however, not unrealistic: larger scientific com-
munities that are not tightly connected indeed tend to have a harder time achieving
consensus on one theory.

As for (ii), the reason why A, N and M evaluations perform better than D becomes
clear when we observe that agents in the case of the former assessments tend to

23Though we haven’t examined the situation in which agents share a random subset of their knowledge
of the landscape (rather than only recently acquired information), the fully connected community would
most likely still outperform the less connected networks since, on the one hand, it would still have a less
patchier knowledge of the landscape than the other two networks, while on the other hand, such a change
is not likely to increase the chance that the community prematurely abandons the best theory.
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Fig. 12 The number of times agents switch from one theory to another with no threshold-mechanisms,
averaged over all population sizes for the easy landscape

switch more often from one theory to another (see Figs. 12 and 13). In other words,
these assessments generate diversity by allowing agents to change their theories and
gain enough information about them to accurately decide which one is the best.

Cautious decision-making What do our results tell us about cautious decision-
making and its conduciveness to efficient inquiry? The impact of our threshold
mechanisms seems to be highly dependent on (i) the degree of connectedness of
the given community, and (ii) the evaluation underlying theory choice employed by
agents (as visible from Table 2). Altogether, the thresholds increase the efficiency
only of fully connected communities that employ D assessment, while sometimes
having the opposite effect on the less connected ones. Moreover, for A, N and M
assessments the addition of thresholds just slows them down.

In view of these considerations it might seem like our mechanisms of cautious
decision-making play no beneficial epistemic role at all unless scientists apply the
assessment in terms of D procedure. Nevertheless, a closer look at the simulations
reveals that thresholds do play an important role, which is not immediately clear
when analyzing the results for success and time. Looking at the exploratory behavior
of agents—how many times they switch from one theory to another—we observe that
without the presence of thresholds, agents frequently switch between theories (see
Figs. 12 and 13). While our model doesn’t take into account that changing theories
can be costly (in terms of time one needs to learn the necessary background knowl-
edge or in terms of costs of acquiring the right equipment), in many domains this can
be an important issue.24

24For example, different hypothesis in medicine concerning the main causes behind a given disease may
require knowledge in different medical disciplines. For a further discussion on the importance of including
costs of this kind into ABMs of science see Muldoon (2017).
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Fig. 13 The number of times agents switch from one theory to another with temporal threshold of 10 and
epistemic threshold of 0.9, averaged over all population sizes for the easy landscape

This brings us to the following conclusion: while in view of previous ABMs (such
as Frey and Šešelja 2018a), it seemed that threshold mechanisms played an impor-
tant role in generating transient diversity in fully connected communities, our results
indicate that this is the case only under certain conditions. More precisely, thresh-
old mechanisms will have a beneficial impact only if the costs of changing theories,
occurring in the absence of cautious decision-making, are high enough to make
incautious communities slower than the cautious ones. This points to the importance
of including this factor in ABMs of scientific inquiry. Note, however, that a proper
study of such costs would require empirical calibration of the given model. First, the
time in the model would have to be mapped to the real time of inquiry, and second,
the costs associated with changing one’s theory would have to be based on empirical
data concerning the given domain of science.

The role of diversity Let’s take now a closer look at the D procedure to get a bet-
ter understanding of the role diversity plays in our simulations. As we can observe
in Fig. 10a, without thresholds the majority of the runs is roughly located between
diversity degrees 0 and 0.5 while with thresholds it is roughly between 0.5 and 1.
When introducing thresholds we only get a slight increase in successful runs for the
difficult landscape despite the vast difference in diversity (see Fig. 7). How to explain
this? The answer is given in Fig. 11a. Given the information from Fig. 10a, we notice
that without thresholds many successful runs will be located around the steep peak
at 0.1 and not many around the peak at 0.7 to 0.8. When introducing thresholds the
situation is exactly vice versa. Since overall the area between 0.5 and 0.8 is more ele-
vated as compared to the area from 0 to 0.5 we get a slight boost in efficiency, but
not too much.

This analysis demonstrates that when analyzing the given dynamics in our runs,
diversity has explanatory value: only by combining the data given in Figs. 10a and
11a we were able to explain the only slight performance boost in Fig. 7. Never-
theless, we consider the investigations into diversity in this section preliminary for
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several reasons. For instance, our way of measuring diversity is still very rough. A
more refined approach may provide measures that distinguish between synchronic
and diachronic diversity: the former concerns the distribution of agents among dif-
ferent theories at a given time point, the latter concerns the number of times agents
change theories over the course of a run. Our current measure can be considered as a
rough way of measuring the former. We postpone a more in-depth analysis for future
work.

More general take-homemessage More generally, our results show that determining
the impact of a specific factor on the efficiency of scientific inquiry is highly depen-
dent on the specific model and its idealizations. While in Zollman-inspired ABMs
threshold mechanisms had a big impact, in ArgABM they do so only under very spe-
cific conditions. In the former, their main role is in preventing the community from
prematurely converging on the wrong hypothesis by allowing for more data to be
gathered before the decision is made. This is also the case in ArgABM when agents
employ D assessment on the easy landscape.

However, a much more efficient approach to increasing the efficiency seems to
lie in the type of assessment underlying scientists’ decisions as for which theory to
pursue. Altogether, our analysis provides further support to the argument that ABMs
of science are in need of detailed robustness analysis before we can draw from them
any conclusions about actual scientific practice.25

It is also worth noticing that differences between our procedures for theory-choice
could be understood as representing specific epistemic and methodological values
preferred by scientists. While such preferences are still highly idealized across ABMs
of science, our results suggest that methodological values may play an important
role in the efficiency of inquiry and that they deserve further attention. Beside Weis-
berg and Muldoon’s (2009) ‘mavericks’ and ‘followers’, or Currie and Avin’s (2018)
‘obligates’ and ‘omnivores’26, other types of methodological preferences could be
considered: for instance, a method based on the search for defeaters vs. a method that
prioritizes corroborating evidence for one’s current hypothesis, etc.

Another important take-home message is that some relevant factors may very well
remain hidden unless we take an in-depth analysis of the given simulations. For
instance, while the impact of the threshold-mechanisms seemed rather neutral or even
harmful for three of our evaluations, only once we have examined how often scien-
tists change theories, it has become obvious that they did play an important role—by
reducing possibly high costs that may be involved in a scientist’s frequent change of
a pursued theory.

25For the importance of robustness analysis for models in general see e.g. Weisberg (2006) and for ABMs
of science in particular see Frey and Šešelja (2018a), Frey and Šešelja (2018b), and Šešelja (2019).
26While maverics and followers stand for more or less epistemically risk-averse agents, omnivorse are
agents that prioritize independent evidence for their hypotheses, i.e. evidence that is supported by back-
ground theories that overlap as little as possible. Obligates, on the other hand, seek sharp evidence that
“speaks clearly and firmly” (p.5): the sharper the evidence the more it allows us to increase our credence
in a given hypothesis.
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6 Outlook and conclusion

In this paper we have investigated the impact of different factors on the efficiency of
scientific inquiry by means of ArgABM. To this end, we have examined the impact
of cautious decision-making, different assessments underlying theory-choice, and
different network structures on the efficiency of inquiry. In addition, we have exam-
ined the phenomenon of transient diversity by studying the relationship between a
diverse, non-consensual spread of scientists across different theories and their perfor-
mance under varying conditions. Our results suggest that, on the one hand, cautious
decision-making has a significant impact on the efficiency of inquiry only under spe-
cific conditions. On the other hand, different assessments underlying theory-choice
and different network structures result in varying degrees of efficiency. Moreover,
diversity is not always correlated with a successful performance of scientists, but only
under some conditions. Such a correlation occurs when scientists prefer theories that
have a relatively larger scope of solidified results, in comparison to their rivals.

It is important to add though that the nature of this model and our results are pri-
marily exploratory (rather than having normative consequences for actual scientific
inquiry). The next step in this investigation includes, for instance, examining the per-
formance of other evaluation procedures, which include the measure of the growth
of the given research program.27 Next, it would be valuable to relate these evalua-
tions with philosophical and historical accounts of decision-making in the context of
pursuit (such as Whitt 1992; Nickles 2006; Šešelja and Straßer 2014a), as well as to
empirically calibrate different aspects of the model (such as the time of inquiry, the
degree of anomaly of given theories, etc.). Furthermore, it remains a task for future
research to determine which types of inquiry (e.g. more related to some scientific
domains rather than others) are more adequately captured by Zollman-inspired mod-
els, which by Grim & Singer’s ones, and which by ArgABM. Finally, our results
point to the importance of further studies of the phenomenon of transient diversity
and its relation to efficient inquiry.
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