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Abstract
The question of the division of cognitive labor (DCL) has given rise to various
models characterizing the way scientists should distribute their efforts. These
models often consider the scientific community as a self-governed sphere consti-
tuted by rational agents making choices on the basis of fixed rules. Such models
have recently been criticized for not taking into account the real mechanisms of
science funding. Hence, the question of the utility of the DCL models in guiding
science policy remains an open one. In this paper, we show that two unconsidered
dimensions would have to be taken into account. First, DCL studies miss the
existence of distinct levels of epistemic objectives organizing the research process.
Indeed, the scientific field is structured as a system of hierarchical, interconnected
practices which are defined both by their inherent purposes and by various
superposed external functions. Second, I criticize the absence of ontological
considerations, since the epistemological significance of pluralism is highly de-
pendent on the nature of the object under study. Because of these missing
dimensions, current DCL models might have a limited usefulness to identify good
practices of research governance.
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1 Introduction

How should we allocate resources to scientific research? This question, although old,1

is of growing interest among scientists and policy makers. A current set of concerns
revolves around the mechanisms of project selection by funding agencies, the role that
peer-reviewing should play in grant allocation, and the institutional conditions promot-
ing the development of innovative ideas (e.g Graves et al. 2011; Haufe 2013; Boudreau
et al. 2016; Fang and Casadevall 2016; Vaesen and Katzav 20172). The recent
proliferation of proposals to rethink the concrete conditions of science funding is
strongly motivated by natural scientists themselves, and by the literature on the
economics of science. But how may philosophy of science and epistemology enter
these debates? Our paper considers this question by proposing a critical assessment of
the benefits and limits of the social epistemology models of Bdivision of cognitive
labor^, when trying to deliver policy advice.

One of the main epistemological questions at stake about the mechanisms of science
funding concerns the consequences of the institutional arrangements which regulate the
allocation of resources to scientific research on the growth of knowledge. Formulated
as such, our first interrogation exhibits its link with what Goldman and Blanchard
(2016) defines as the Bthird branch^ of social epistemology.3 As noted by the authors,
this Bthird branch^ largely focuses, since Kitcher’s (1990) early work, on the question
of the division of cognitive labor (DCL), seeking to describe what might be an optimal
division of tasks between competitive approaches within a given scientific community,
and to assess the institutional conditions promoting the achievement of this optimum.
More precisely, Kitcher’s (1990) initial question is the following: Bwhat is the optimal
division of cognitive labor within a scientific field, and in what ways do personal
epistemic and non-epistemic interests lead us toward or away from it?^ (p.22). This
inquiry was recently renewed by Viola (2015) which asks B(1) which is the optimal
distribution of cognitive efforts among rival methods within a scientific community?
and (2) whether and how can a community achieve such an optimal distribution?^
(p.1). These questions ground an active line of research, mostly dedicated to the
development of mathematical models. Such models propose solutions to Kitcher’s
optimization problem by focusing on rewards or credit schemes (e.g Strevens 2003;
Zollman 2018), on the cognitive structure of the scientific community (e.g Weisberg
and Muldoon 2009), or on the effect of project selection by centralized funding
mechanisms (Avin 2018a). Since recently, some of these agents-based models manifest
an explicit interest in providing concrete policy advice (Viola 2018), notably about the
modalities of the allocation of resources (Kummerfeld and Zollman 2016; Avin 2018a)
and the cognitive structure of scientific communities (Pöyhönen 2016). However, this
ambition is tempered by the existence of inherent limits to modeling activities in social

1 See, for instance, Wilholt and Glimell (2011) for a synthetic historical panorama.
2 Of course, the question of the governance of science is not limited to that of the processes of grant allocation
by funding agencies. Our paper exclusively deals with epistemic considerations, but ethics and political
philosophy also have their say. The so-called Bresponsibility^ of research and innovation (Arip 2016), and the
democratic involvement of citizens in science policy decisions (Kitcher 2001) constitute central perspectives
on this matter.
3 Devoted to the Bassessment of the epistemic consequences of adopting certain institutional arrangements or
systemic relations as opposed to alternatives^.
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epistemology. As with models designed to describe a domain of the real world, it is
possible (and welcome) to question the simplifications, idealizations and background
hypotheses which are susceptible to amend the descriptive and normative value of DCL
models (Ylikoski and Aydinonat 2014; Pöyhönen 2016). Given the well-recognized
difficulties to assess the exact benefits and limits of these works, it is then common to
note that Bthere is much work left to do^ (Muldoon 2013, p. 124) to improve or judge
their epistemological and political value. The injunctions to prudence in interpreting the
results of the DCL models4 raises the question of their exact interest in guiding the
institutional regulation of research, and notably the mechanisms of grant allocations by
funding agencies.

In this paper, we aim at showing that a major threat to the descriptive and normative
value of current DCL models is a fundamental lack of clarity about the exact object
which is divided. As we shall see, authors consider without distinctions the allocation
of resources to Btheories^, Bapproaches^, Bmethods^, Bresearch programs^, Bresearch
projects^ etc. By doing so, they bypass two important dimensions of the epistemolog-
ical reflection about the division of cognitive labor. First, the epistemic choices made by
researchers are determined by a hierarchical network of shared objectives, from
experimental, technical practices to conceptual and representational activities. Second,
the significance and the form taken by epistemic diversity are highly dependent on the
kind of object under study. Our argument is that these elements should be carefully
taken into account when building DCL models and when interpreting the results
obtained. We suggest, based on concrete instances of such social epistemology model-
ing, that the ignorance of these features leads to unsatisfying conclusions about the
desirable institutional conditions of research. Finally, more than a refinement of the
mathematical models used, what is needed to improve social epistemology insight in
research policy is a qualitative reflection about the dynamics of scientific progress.

2 DCL models: common architecture

2.1 A (short) systematic review

Many reviews of the different kinds of works dealing with the DCL problems are
available (see, for instance, Muldoon 2013; Goldman and Blanchard 2016; Avin
2018b). Let us reiterate here the main directions taken by philosophers interested in
this question since Kitcher’s (1990) seminal study. The starting point is the idea of a
tension, within scientific communities, between individual and collective rationality.
Kitcher imagines the case of a shared objective (for instance, determining the physical

4 Some instances of this interpretative prudency, among others: BCan our models fix useful concepts and
provide templates for causal mechanisms that could be at play? Could they be used to help shape the debate
around emerging policy decisions? The answers will come from future work in the field^ (Avin 2018b, p.32);
BThe cautious conclusion to be drawn from these differences is that, in its entirety, the relationship between
diversity and epistemic performance is likely to be more complex than can be captured by any simple model^
(Pöyhönen 2016, p. 4530); BOf course these models are limited in two critical ways. First, they proceed into
idealizations about the structure of the scientific community and about individual scientists. Real scientists and
scientific communities are more complicated than our models, and it is always possible that a critical causal
factor has been left out^ (Zollman 2018, p. 26).
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structure of a certain molecule), with two competitive methods to reach it – method I
and method II, method I being known as more accurate. For Kitcher, a purely rational
epistemic agent will choose method I to solve the problem posed. Yet, this behavior
does not optimize the division of cognitive labor, which would (mathematically)
benefit from a more balanced distribution of human resources between method I
and method II. Kitcher then shows that this idealized community may be nearer to the
optimum if there exists a reward scheme according a larger reward to scientists
working on the less popular Bresearch program^. This mechanism will be efficient
on the condition that scientists do not follow a strictly epistemic rationality, but have
other sources of motivation (professional credit or rewards). Following this line,
Strevens (2003, 2013) proposes another reward scheme, based on the Bpriority rule^
according to which the first research program that discovers a certain result gets all
the reward. Zollman (2018) develops a quite distinct mathematical model to assess the
effect of the search for professional credit (versus the Bseek the truth^) on scientific
progress.

Besides rewards and credit, other factors were studied for their ability to optimize the
division of cognitive labor. Zollman (2010) addresses the formation of consensus on the
right theory of a given phenomenon. Considering two theories T1 and T2, T1 being
favored in the initial experiments, he suggests on the basis of historical instances that it
may be rational, at the scale of a given scientific community, to pursue the poorly
justified theory T2 (because T2 may be, finally, the right one and should not be
eliminated too quickly). Using computer simulations, he then (not surprisingly) shows
that the communication rate between individuals influences the collective rationality:
structures with less communication may score better in choosing the right theory.

A third kind of factor influencing the division of cognitive labor is mobilized by the
epistemic landscape models launched by Weisberg and Muldoon (2009). Here, it is the
Bcognitive diversity^ which is put to the fore. The authors consider an Bepistemic
landscape^ explored by individuals following distinct engagement strategies. This
epistemic landscape represents, in a three dimensional space, all the Bresearch
approaches^ possible in a given field of research (Pöyhönen 2016), and their respective
significance.5 Epistemic agents may adopt a Bcontrol^ engagement strategy (they move
in the landscape without taking into account the behavior of the other agents), or be
Bfollowers^ (they adopt the most significant programs explored by their predecessors);
they also can behave as BMaverick^, and explore unknown zones. The idea is then to
determine, depending on the initial conditions (size and shapes of the landscape) which
population, or mix of populations, optimize the division of cognitive labor (the
cumulated significance of the research process) (Weisberg and Muldoon 2009;
McKenzie and Himmelreich 2015; Pöyhönen 2016).

All these works share an identical macro-conception of the dynamics of science as a
closed system internally regulated by an invisible-hands mechanism (Wray 2000).
Individual scientists are free to choose the direction of their research, in a context of
unlimited resources (Viola 2015). In particular, there is Bno superintendents^ (Strevens
2013, p. 21). Against this idealization, Viola (2015) insists on the necessity Bto consider

5 As noticed by Pöyhönen (2016), significance may be understood according to Kitcher (1993) (Chap. 4) and
Kitcher (2001), as Bthe significance of the truths that can be uncovered by using this approach^ (Pöyhönen
(2016), p.4522).
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the role of external social factors such as the political decisions to pursue some or other
scientific project^ (p. 9). In particular, the role of funding agencies should be explicitly
addressed. Following this line, Avin (2018b) renews the epistemic landscape model to
study the effect of Bcentralized funding^ on the division of cognitive labor. He
simulates distinct ways of funding science, based on the estimated significance of the
project (its position on the epistemic landscape), on the time passed by the individuals
in the system, or on a lottery (random distribution). Depending on the size of the
epistemic landscape, he shows that the lottery strategy may be the best one in terms of
cumulative significance of the projects followed. He concludes that dealing with the
classical opposition between Bplausibility and originality^ (Polanyi 1962) or Bexplora-
tion and exploitation^, a random allocation of resources may optimize the division of
cognitive labor. He links this result to more qualitative arguments defending lottery as a
good way to select projects (Gillies 2014; Fang and Casadevall 2016).

Let us add, to close this rapid outlook on the DCL models, the work of Kummerfeld
and Zollman (2016), which aims to quantify the Bconservatism^ of a scientific com-
munity constituted by individuals left to Btheir own devices^ (p. 1057). As Kitcher did,
but by using more intricate mathematical machinery, they suggest that individual
epistemic rationality conflates with the optimum division of cognitive labor when
individuals have to choose between a Brisky^ and a Bsafe^ alternative. They conclude
that the mechanism of grant allocation should voluntarily fund a certain amount of
Brisky^ projects, to compensate the endogenous Bconservatism^ of the scientific
community.

All these DCL models have a common architecture, that is to say, they share a
common general formulation of the question of the division of cognitive labor in
science, and a common scheme to solve it. The starting point is to consider a certain
pre-defined objective O to reach, which is shared by a given community. Typically, this
objective may be a (theoretical, experimental, utilitarian, technical) problem to solve. It
may also be, specifically in the case of epistemic landscape models, an ensemble of
objectives defining a research area. The authors then consider the existence of various
means Mi to reach O, each of them having a utility function quantifying their ability to
fulfill O. The central aim is then to distinguish the individual instrumental rationality,6

which tends to maximize the probability, for each researcher, to reach O, and other
Bnon-epistemic7^ factors, such as the search for rewards or professional credit, the

6 Let us maintain, following Kelly (2003), that instrumental rationality classically designates Bthe rationality
which one displays in taking the means to one’s ends^ (p. 612)^. It is opposed to epistemic rationality, defined
as Bthe kind of rationality which ones displays when one believes propositions that are strongly supported by
one’s evidence and refrains from believing propositions that are improbable given one’s evidence^. In DCL
models, as noted by Zollman (2018), epistemic rationality is understood as a form of instrumental rationality:
Bepistemic rationality is a species of instrumental rationality, viz. instrumental rationality in the service of one’s
cognitive or epistemic goals^ (Kelly (2003), p. 613). In other words, epistemic rationality is expected to be
mobilized to choose the best alternative (the Mi which has the estimated highest probability to reach O) to
solve a cognitive or epistemic problem. This instrumentalist conception of epistemic rationality corresponds to
the multiplicity of the (cognitive, practical, utilitarian) kinds of objectives considered in the DCL models.
7 The opposition between Bepistemic^ and Bnon-epistemic^ factors may be discussed, since the objective of
DCL models is precisely to show that Bnon –epistemic^ factors positively influence the search for truth.
However, the rationale behind this distinction lies on a contrast between the motivations guiding the choices
made by researchers, as well exposed in Zollman (2018). If these motivations are exclusively those of solving
the problems posed to the community, they are considered as acting as purely epistemic agents –even if this
problem is not itself strictly cognitive.
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cognitive features of the individuals or the centralized selection of means by funding
agencies. The shared general conclusion, since Kitcher’s work, is that researchers (or
peer-reviewers affiliated to funding bodies) only following individual instrumental
rationality do not optimize the division of cognitive labor. Indeed, since all possible
research projects (Mi) have a certain probability to reach O, it is counter-productive to
concentrate resources only on the most promising approaches. Yet, individual instru-
mental rationality is supposed to generate the phenomenon of herding on secure
alternatives. Reciprocally, Bnon-epistemic^ factors may positively modify the division
of cognitive labor by promoting the exploration of more risky alternatives.

The first step in the elaboration of DCL models is then to define a theoretical
optimal distribution of resources. This optimal DCL may be mathematically expressed
(e.g in Kitcher 1990; Strevens 2003; Kummerfeld and Zollman 2016), or implicitly
fixed by the initial conditions chosen. This is the case for the epistemic landscape
models, where the pre-determined form of the landscape determines what would be an
optimal distribution of labor to explore it given certain initial funding conditions
(number of researchers and number of projects selected) and respect to a given variable
(for instance the cumulative epistemic significance reached).

2.2 What exactly is divided?

Let us specify this general scheme, by addressing a crucial point: what, exactly, is
thought to be divided? In other words, what are exactly Mi and O? The question is
relevant, since the authors apply the same schemes to distinct objects. As noted by De
Langhe (2014), BKitcher’s basic unit of analysis is Bmethods,^ Strevens uses Bresearch
programs,^ and Brock and Durlauf use Btheories.^^. He adds: Bbecause as far as their
dynamics of adoption are concerned the literature uses these concepts interchangeably,
I will use only the concept of Btheories^ understood as standards for the division of
cognitive labor to which individual scientists make contributions^ (p. 445, our italics).
Kummerfeld and Zollman (2016) explicitly recognize this indeterminacy, when they
clarify their notion of Bgeneral research project^ by including in it Bdifferent theoretical
commitments, paradigms, research methodologies, treatments strategies in medicine,
and so on^ (p. 1059). This vagueness of the object which is divided is particularly
significant in the epistemic landscape models. Pöyhönen (2016) explicitly addresses the
question of Bwhat does an epistemic landscape represent^, and deduces that they are not
Ba search space for a single problem^ (p. 4525). An epistemic landscape would stand
for a Bscientific research topic (e.g synthetic biology, astrophysics, endocrinology)^,
divided into Bdifferent but complementary research approaches^. For instance, the
authors argues, Battempting to synthesize novel DNA nucleotides and studying the
stability of these molecules by computational methods are independent but both neces-
sary research approaches in synthetic biology^ (p. 4523). Interestingly, he adds that the
Bdiscrete patches^ composing the epistemic landscape Brepresent a combination of (i) a
research question being investigated, (ii) instruments and methods for gathering and
analyzing data, and (iii) background theories used to interpret the data^. Consequently,
as the author confesses himself, Bepistemic landscapes underlying real scientific re-
search involve a greater number of interdependencies between the elements of ap-
proaches (question, instrument, methods, theories)^ (p. 6). These precisions are the
most complete we may find within the literature of epistemic landscape models. The
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works of Weisberg and Muldoon (2009) or Avin (2018b) consider epistemic landscapes
as an ensemble of Bresearch approaches^ or Bprojects^.

This diversity ofMi’s nature also reflects in the multiplicity of kinds of objectives O
which are mobilized as examples illustrating the DCL models. Kitcher (1990) takes the
case of the elucidation of the physical structure of a given molecule (of medical
importance); Zollman (2010) that of the explanation of a disease (the peptic ulcers),
or more generally that of all Btruth seeking^ objectives (Zollman 2018); Goldman and
Blanchard (2016) cites the elucidation of the structure of the DNA; Pöyhönen (2016)
considers Bthe study of opioid receptors in chemical biology, or critical phenomena in
statistical physics^ (p. 4530) etc.

What we want to show in the next section is that because of the interchangeable use
of distinct kinds of ends and means, two important dimensions of the dynamics of
scientific progress are absent from the DCL models. Then, in the third section, I will
suggest that these absent dimensions are missing dimensions, in the sense that they
should be explicitly taken into account when interpreting the results of DCL models –
which is never done in the corresponding papers. We conclude that to be politically
relevant, works on DCL do not need to improve the sophistication and/or the mathe-
matical complexity of their models, but should consider seriously some qualitative
epistemological issues about the logic of scientific research.

3 Two absent dimensions of the debate

The argument we will defend here is that the current DCL models may not give an
accurate description of what could be a theoretical optimal division of cognitive labor
(first step of the DCL models). In particular, two dimensions are absent. First, it has to
be noticed that the scientific field is structured as a system of hierarchical, intercon-
nected practices motivated by a superposition of different kinds of objectives. Second,
the epistemic significance of pluralism is highly dependent on the nature of the object
under study, and as a consequence, depends on the discipline or field of research
considered.

3.1 Research objectives are embedded within various systems of practices

Let us imagine a given objectiveO that could be taken as an example in a possible DCL
model: the search for a treatment against a new, unknown bacterial disease D. Let us
also suppose that there exist two general ways to solve this problem: for instance, the
search for a vaccine (Mv), or for a new antibiotic molecule (Ma). Each meanMi has an
estimated utility function, and epistemic agents are supposed to distribute their effort
following different rules (instrumental rationality, credit, rewards, random selection
etc.). These utility functions may be estimated, for instance, on the basis of past
successes in dealing with bacteria belonging to the same biological class. However,
this is not the end of the story. We can imagine that each Mi constitutes itself an
objective which can be fulfilled by following distinct possible ways. For instance, there
may exist various different methods to prepare a vaccine (by targeting distinct proteins
from the bacterial membrane), and various techniques to find antibiotics (molecular
screening, or rational-drug design (Adam 2005). And each of these methods defines a
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new objective, with potentially various means to achieve it. This recursive logic may be
even more complex if we consider higher-level alternatives. For instance, the modern
techniques and concepts used in medicine, anchored in cell and molecular biology, may
be questioned by more holistic conceptual frames –found in some Btraditional^medical
practices. The initial objective O may then be fulfilled within two general approaches,
anchored in opposite representations of diseases, organisms, or life itself (C1 and C2).
Besides, it is worth noting that the competition between C1 and C2 may have an
importance for many other objectives O –in medicine or fundamental biology. To
consider this interlocking of objectives, we propose to invest, as a conceptual toolbox,
the general Bgrammar of scientific practices^ recently formulated by Chang (2014).

The contemporary attention to science Bin practice^ (Soler et al. 2014) gives a
representation of science, as a process, made of interconnected networks of more or less
independent types of practices. The so-called Bnew-experimentalism^, notably
launched by Hacking (1983), aims at describing in detail the heterogeneous elements
entering experimental practices (Chang 2014). These experimental practices are con-
sidered as Bhav[ing] a life of their own…^ (Hacking 1983, p. x), independently of their
hypothesis-testing role. Later, the need appeared to integrate representational (concep-
tual, theoretical) activities in the frame of scientific practices (Woody 2014). Following
this line, the activities of epistemic agents are multidimensional, since this notion of
practice includes Bphysical, mental, and Bpaper-and-pencil operations^^, as argued by
Chang (2014) (p. 68). Chang then proposes the notion of Bsystem of practices^ to
describe the hierarchical interlocking of Bepistemic activities^ motivated by distinct
Baims^. First, in this scheme, Ball scientific work, including pure theorizing, consists of
actions^ (our italics, p. 67). An action (or an activity, in Chang’s Bgrammar of scientific
practices^) performed by an epistemic agent, is characterized by the Bpresence of an
identifiable aim^ (p. 72). To reach this aim, the agent develops Ba coherent set of
mental or physical operations (…) in accordance with some discernible rules^ (Idem).
This activity, led by Binherent purposes^, is also motivated by Bexternal functions^. For
instance, the act of lighting a match mobilizes a set of operations, and may be part of a
more global plan (for instance, to light a Bunsen burner), itself constituting an activity
within a larger system of practices (aiming to answer a theoretical question, or to find a
new therapy etc.). The notions of Bactivities^ and Bsystems of practices^ are then
relative, and depend on the scale of analyses. The important point is that each action
performed by an epistemic agent is integrated in a hierarchical network of purposes,
and is characterized by its internal coherence.8 In Chang’s scheme, coherence is
ensured by the success in achieving one’s end. More generally, we may consider that
the coherence is linked to the relevance of the means used to reach the objective
motivating the activity (or system of practices) in question. In other words, coherence is
ensured by the deployment of instrumental rationality, leading to determinations of the
means most adapted to the ends considered (Kelly 2003; Zollman 2018). Let us recall
here that these activities or systems of practices may gather distinct kinds of (mental,
physical) objectives, and then distinct kinds of means Mi: technical operations, setting-
up of experimental protocols, formulation of new concepts or new theories, etc.

8 For a graphical representation of this hierarchical imbrication of activities, see the Bcommentary^ on Chang’s
work by L. Soler and R. Catinaud in Soler et al. (2014).
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How can we apply this scheme to the question of the division of cognitive labor? As
DCL models do, let us first consider, in a God’s eye perspective, the possibility to
define a theoretical optimal division of cognitive labor given a certain problem to be
solved (objective O). This resolution may be achieved by developing distinct activities.
These activities are integrated in a system of practices, and are then defined both by
their inherent purposes and by their various hierarchical external functions. Given this
situation, two remarks should be made. First, inherent purposes may be divided into a
variable number of underlying objectives. For instance, if we refer to the instance
proposed at the beginning of this section, the search for a treatment to disease Dmay be
considered as the general end of a system of practices including a first level of sub-
objectives o and o’ (the search for a vaccine or for an antibiotic treatment). These
constitute the inherent purpose of sub-systems of practices (including technical, exper-
imental, or theoretical operations). We can expect that depending on the nature of O
(technical, experimental, theoretical etc.), the thickness (the number of imbricated
systems of practices) of the corresponding network may be highly variable. Finally,
each DCL optimization problem is best described as a superposition of optimization
problems.

Second, a given activity may have various external functions. For instance, the
development of an experimental technique T (e.g a method of protein extraction from
bacteria) may be important for various possible alternatives Mv1 and Mv2 in preparing
a vaccine against D. Besides, this experimental technique may be relevant for other
systems of practices –in immunology, biochemistry, clinical medicine, or molecular
biology. Let us imagine now that Mv1 and Mv2 (the Bvaccine^ solutions to cure D)
have a lower utility function thanMa precisely because the protein extraction activity is
not efficient. If we consider onlyMv1, Mv2 andMa, the optimization problem will have
a certain theoretical solution. This solution would be very different if we posed the
optimization problem between Ma and T: we can expect that T would have a higher
utility function that both Mv1 and Mv2. This is true because T is supposed to be
important forMv1,Mv2, and for other systems of practices. This last formulation would
be more accurate with respect to the real state of the system of scientific practices.
Finally, the solution of a given optimization problem varies depending on the scale of
the analysis. BTheories^, Bmethods^, Bapproaches^, Bprograms^ are not interchange-
able units. Ideally, a well-posed DCL problem should consider altogether these distinct
dimensions, reflecting the hierarchical interlocking of objectives characterizing the
systems of scientific practices.

3.2 The management of plurality may not be always considered as an optimization
problem

In the multiplicity of kinds of objectives and means taken interchangeably as basic units
in DCL models, distinct disciplines are cited: physics (the study of critical phenomena
in Pöyhönen 2016), chemistry (the elucidation of the structure of a given molecule or
the opposition between phlogiston theory and modern chemistry in Kitcher 1990),
fundamental biology (the structure of DNA in Goldman and Blanchard 2016), medi-
cine (the explication of peptic ulcers in Zollman 2010). These instances designate
different kinds of objectives (theoretical, technical, experimental), but they also concern
various kinds of objects. Yet, we argue that this generalization is biased since many
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scientific objects generate questions whose resolution cannot be considered as a
common DCL problem. To make this point, we propose to consider the notion of
complexity, classically defined as the co-existence of multiple causal pathways, belong-
ing to distinct levels of organizations (Mitchell 2009). For instance, mental pathologies,
or human behavior more generally, constitute typical complex phenomena, with genet-
ic, biological and environmental causes possibility non reducible to the molecular level.
In these cases, the question of the multiplicity of radically distinct approaches might
not be formulated into an optimization problem: the different directions of research are
better described as distinct heuristics than as alternative means characterized by their
estimated utility functions.

Let us take, for instance, as an objective O, the seek for an explanatory theory of a
particular behavioral (normal or pathological) trait. Following Longino (2013), we can
consider the co-existence of distinct kinds of disciplines that she identifies as Bquan-
titative behavioral genetics^, Bsocio-environmental approaches^, Bmolecular behavioral
genetics^, and Bneurobiological approaches^ (p. vii). At the metaphysical level, this co-
existence may either be considered as a (temporary or permanent) consequence of our
cognitive limitations, or as a result of the existing diversity of levels of organization in
nature (Ruphy 2005). In all cases, it is arguable that this plurality has an inherent value
which exceeds the estimated efficiency of each approach to provide a good explanation to
the behavioral trait we consider. This is due to the fact that, at least temporarily, all the
available explanations may capture something of the phenomenon under study (for
instance, a partial causal mechanism). In this frame, even a quite marginal alternative
(for instance, psychoanalysis), may deserve to be pursued, because it may constitute a
possible heuristic allowing the identification of particular causal pathways. This idea was
defended in the case of theories of cancer. The classical, gene-centered theory, is currently
challenged by an Borganicist^ one (the Tissue Organization Field Theory, Soto and
Sonnenschein 2011), and these competitive approachesmay be considered as two distinct
heuristics to exhibit the causes of cancer (Malaterre 2007). Finally, we argue that for
complex objects, the co-existence of distinct approaches cannot be thought in the frame
proposed by current DCL models. The alternatives may not be compared in their
efficiency to reach a pre-defined objective. Indeed, if we accept that pluralism reflects,
to some extent, the variety of causes determining the phenomenon at stake, then these
alternatives are mutually dependent (each approach delivering a part of the explanation).
The situation is distinct in most of the instances provided in the DCL literature, where
each approach is supposed to have a singular, independent utility function.

In the next section, we aim to show that these two absent dimensions (the hierar-
chical interlocking of objectives and the ontological limits to the DCL formalism) are
missing dimensions. They would need to be explicitly addressed in order to interpret in
a correct way the results provided by the DCL models.

4 Why these absent dimensions are missing dimensions

As most of the authors writing on DCL models, we are conscious that the very
modeling activity inevitably presupposes the use of idealizations or simplifications
which do not preclude in themselves their heuristic value –their ability to capture
certain features of a given phenomenon (Muldoon and Weisberg 2011; Ylikoski and

3 Page 10 of 16 European Journal for Philosophy of Science (2019) 9: 3



Aydinonat 2014; Pöyhönen 2016). However, this heuristic value tightly depends on a
careful work of interpretation of the results they provide. Here, we argue that the
negligence of the elements of the dynamics of scientific research we considered in the
previous section may generate important misinterpretations when DCL models try to
provide advice for science policy. We think the best way to defend this thesis is to
consider some concrete examples of DCL models whose conclusions aim to formulate
political insights. By doing so, our objective is to show why these absent dimensions
may constitute, very concretely, missing dimensions.

4.1 Example 1: funding science by lottery?

The first instance we will consider is that of Avin’s (2018a, b) case in favor of the
introduction of some random elements in the mechanism of grant allocation to scien-
tists. Apart from its synthesis of qualitative arguments defending random allocation as a
possible way to overcome the Bconservatism^ of peer-review (Gillies 2014), Avin
proposes a contribution through a DCL model. Based on this model, he suggests that,
given a certain landscape progressively explored by epistemic agents, a peer-review
only based on instrumental rationality (selecting projects on the basis of their estimated
significance) might be, in some cases, sub-optimal. On the contrary, a system of lottery
which randomly allocates resources may out-perform the classical peer-review process.
Intuitively, this result is directly linked to the fact that the epistemic landscape is not
known in advance: all estimation of the future significance of a project may then be
mistaken. On the basis of this result, he proposes a mechanism where a certain
proportion of projects (those which do not belong to the x% best or worst proposals
as evaluated by a first round of selecting peer-review) enter a process of random
funding. We argue that this proposal is biased, or insufficient, since it is grounded on
a misrepresentation of the very structure of the systems of scientific practices. The
interest of random allocation is assessed, in Avin’s model, for the cases of poorly
known epistemic landscape, with a great number of projects whose potential signifi-
cance is difficult to estimate. In these (hypothetical) situations, it is quite intuitive
indeed that a random distribution may be the most efficient way to explore the space.
Avin (2018a) links these situations to Bbasic research^ (p. 33). In parallel, he lists some
situations where Blottery should not be used^ (p. 31). Among them, he evokes the case
of projects with Bbounded uncertainties^ (where the need to obtain a quick answer, for
instance under the pressure of Bexternal constraints^, prevents Bany significant explo-
ration of uncertainties or open-ended avenues^) and of Bfully explored^ epistemic
landscapes (where the knowledge of a given Barea^ is sufficient in yielding a good
estimation of the utility functions of the project to be pursued). It seems to us that these
two cases express the same general (qualitative) idea: when the problems to be solved
are sufficiently clearly defined, and the significance of the possible research project to
address them are sufficiently known (to sum up: when the epistemic landscape is
sufficiently known), then random allocation might not be the optimal solution to divide
cognitive labor. Following this criterion, we argue that it is not at all obvious that there
do really exist Bepistemic landscapes^ adapted to such a funding by lottery. Indeed, the
rationale behind Avin’s research policy advice lies on the assimilation of Bbasic
research^ to large epistemic landscapes with many Bpeaks^ whose significance is
strongly indeterminate. In Chang’s terms, these peaks represent possible activities, with
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both inherent purpose and external functions. As we noticed in the previous sections,
these activities are embedded in systems of hierarchical, interconnected practices. The
global significance of a given activity is then dependent on the partial significance of
all the practices constitutive of its inherent purpose, and of the others systems of
practices which would benefit from its development. Let us imagine a project P with
a poorly estimated significance in a given Bepistemic landscape^ E. P, and the sub-
activities it entails (e.g. the development of new techniques or experimental proce-
dures), may have a clear significance for other systems of practices, corresponding to
other Bepistemic landscapes^. Its sub-activities may also have known significance
within E itself, independently of P (for instance, if they constitute sub-objectives of
other projects whose significance is better known). It is worth noting that P or its sub-
activities may also be important to face some pressing external constraints – situation
where, following Avin himself, lottery is not welcome. Finally, we argue that lottery’s
argument is based on the hypothetical existence of many isolated projects (activities or
systems of practices), whose significance would be strongly indeterminate. We think
that the qualitative assessment of the structure of the systems of scientific practices
suggests that the very existence of such Bepistemic landscapes^ needing a funding by
lottery is not at all self-evident. Consequently, we argue that the recognition of the
network structure of scientific activities leads one to formulate research policy advice
opposed to Avin’s. Random allocation is presented as a solution to the lack of
information about the significance of proposed research projects. Our alternative view
suggests that a more exhaustive examination of the relevance of each research project
with respect to the existing systems of practice would show that there are fewer cases
than Avin anticipates in which the epistemic landscape is insufficiently known. This
examination would also show that when the epistemic landscape is insufficiently
known, the degree to which it is unknown is overestimated by Avin. Thus, the need
for randomized funding allocation is mitigated, and perhaps evaporates entirely.9

The important point is that even if Avin’s model is instructive and well-suited to
describe the way science is funded, its normative aim (guiding the way science should
be funded) might be impaired by the conception of the essential properties of the
research process it is based on. Our argument may open another direction of investi-
gation into the optimization of grant allocation through peer-review processes. As we
suggested, one of the main epistemic challenges of science policy is the evaluation of
the comparative interest of the proposed projects. The relevance of this evaluation
depends, indeed, on the knowledge we have of the insertion of these projects into the
existing hierarchical network of interconnected practices. Yet, as rightly pointed out by
DCL models, and notably by Avin’s model, the peer-review process may not be well-
suited to adequately capture the current relationships between these systems of practice.
The empirically measured lack of robustness of peer-review confirms this point (Graves
et al. 2011). However, rather than through a random distribution of resources, we argue
that a better evaluation of the interest of the proposed projects could be reached through
a more decentralized mechanism of evaluation. As a limited panel of reviewers does
not represent well the current state of scientific practices, an active participation of all
the scientists actively practicing research in choosing the projects to be funded could

9 This exhaustive examination may be completed, in the spirit of Kitcher (2001), by a democratic assessment
of the various desires expressed by ordinary citizens.
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provide a better knowledge of the objective interest of these projects. For instance, we
propose that each scientist could have a right (and a duty) to choose a limited number of
projects among the ensemble of all the propositions made by their colleagues; the
projects presenting the best average mark would then be funded.10 We argue that with
this kind of global scheme, the convergence of interests (and so the estimated value of a
given project) would be better evaluated. Obviously, this decentralization of evaluation
is susceptible to be fully efficient only if there exist classificatory systems enabling each
researcher to easily identify the projects which are interesting to him. Without giving a
complete practical solution, we suggest that the use of key-words or key-expressions,
similar to that developed to classify scientific literature in numerical bases of data, may
be a fruitful direction to follow.

This proposal may open interesting modeling possibilities. In all cases, DCL models,
if they want to improve their utility in designing science policy strategies, should
represent the real multidimensional structure of the systems of scientific practices in
a more suitable way.

4.2 Example 2: promoting Brisky^ strategies?

A second instance of DCL models proposing explicit political insights may be found in
Kummerfeld and Zollman (2016). The core of their model lies on a distinction between
Bsafe^ and Brisky^ alternatives, which may be Bdifferent theoretical commitments,
paradigms, research methodologies, treatment strategies in medicine, and so on^ (p.
1059). These alternatives have utility functions with respect to given, pre-determined,
objectives.11 In Kummerfled and Zollman’s model, a Bsafe^ alternative is known to be
the Bbest line of research^¸ that is to say the one Bthat has given the highest average
payoff so far^ (p. 1062). The risky one is considered as such because its (Gaussian)
utility function, even if it has a higher mean value, is poorly known. The simulation
machinery shows that when the utility function of the Brisky^ alternative has a higher
mean value that the utility function of the safe one, the individual instrumental
rationality is sub-optimal. By neglecting the risky alternative, individuals do not
maximize the global utility of the community when distributing their cognitive effort.

The authors deduce from this result that funding agencies should actively
Bencourag[e], in some situations, unpopular, risky science^ (p. 1057, our italics). The
central challenge to make this conclusion politically relevant is to delineate more
precisely these Bsituations^ in which uncertain projects should be voluntarily funded.
We argue that this task needs to take into account the hierarchical interlocking of
objectives structuring the systems of scientific practices.

Let us note that the authors consider cases where a given choice is made to fulfill
one, and only one, well-defined objective. Yet, as we have discussed previously, each
Bresearch project^ at stake may have multiple external functions (Chang 2014). This is
equally true for the sub-objectives implied by each alternative. To revisit our previous
example, the development of a new vaccine to cure the disease D (a typical Bresearch

10 We may also imagine here that publics which are exterior to the scientific field (citizens, economic sphere or
political actors) could also have their say in this process of proposing and voting for projects.
11 If we follow the examples provided by the authors, these objectives may be to cure peptic ulcer, to make
astronomical predictions of the Blocations of heavenly bodies^ in 1550 (by choosing between Ptolemaic or
Copernican paradigms, p. 1063) etc.
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project^ in Kummerfeld and Zollman sense) may be useful in other areas. For instance,
it may lead to the chemical and physical characterization of a given protein P of the
bacterial membrane, which is important in immunology, cell biology etc. It may also
lead to the improvement of a given technique T to extract proteins from bacterial cells.
We can suppose in this case that depending on the objective we consider, the Bresearch
projects^ will have distinct utility functions. Even if the development of a vaccine is a
Bsafe^ alternative with a relatively low utility function (in comparison to, say, the
search for antibiotics) to cure D, the knowledge of protein P and the improvement of T
may have high utility functions relatively to other systems of practices (motivated by
distinct general objectives). In this case, the herding of scientists in the Bsafe^ alterna-
tive may be counter-productive for the problem at stake (the search for a treatment
against D), but positive at a larger scale (relatively to other systems of practices).
Kummerfeld and Zollman’s argument, if valuable in local contexts (that is to say, to
solve a precise problem, or to explore a given, well-defined epistemic landscape), is
harder to justify in more global ones (when considering the existing interconnections
between the systems of practices). Finally, the apprehension of the situations where
Bunpopular^ science should be actively promoted is certainly far for being an easy task.

It could be noticed against our argument that Kummerfeld and Zollman’s model,
such as the majority of DCL models, aims to study the optimal distribution of cognitive
effort precisely in such local contexts, where each scientific objective is thought in
isolation from the others. However, from the point of view of research policy, the
optimization of the division of cognitive labor is a global problem, where all disci-
plines, specializations, research questions are to be thought together. Consequently, in
their ambition to provide political insights, DCL models should mobilize a more
realistic account of the structure of the systems of scientific practices.

5 Conclusion

The question of the relevance of social epistemology to guide research policy is a
pressing one, as showed by the recent publishing of a volume of the Roar Transactions
on this subject (Viola 2018). In this paper, we address it in the specific case of DCL
models, which have flourished since the publication of Kitcher’s (1990) seminal work.
These works try to assess what exactly is an optimal distribution of cognitive labor
among researchers, and how the institutional conditions regulating science may con-
tribute to its achievement. We show that when faced with the first question, DCL
models ignore two central dimensions of the dynamics of science (the hierarchical
interlocking of objectives and the variable epistemic significations of pluralism). We
argue that this ignorance is problematic, since it may lead to misinterpretation of the
results of the DCL models, and to biased policy advice. In this sense, they really
constitute missing dimensions in the debate. This conclusion does not lead to a
rejection of DCL models per se as epistemologically and politically irrelevant, but
aims at figuring out some important properties of the dynamics of science that should
be taken into account in this modeling activity.

As Muldoon (2013) confesses, Bthere is much work left to do^ (p. 124) to under-
stand the Bbenefits and burdens of diversity^ and the optimal division of cognitive
labor. What form should this work take? We argue that the search for more refined
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quantitative DCL models should be supplemented by qualitative studies of the episte-
mic or psychological principles guiding the social organization of science, the conse-
quences of the pressure exerted on individual scientists by centralized piloting, the
balance between targeted and free research are crucial issues to inform science policy,
and qualitative history and philosophy of science certainly have a central role to play on
this matter.
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