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Abstract
Coastal wetlands are biodiversity hotspots, highly threatened, and for which restoration actions have been widely imple-
mented. Systematic monitoring of biodiversity after restoration actions on Mediterranean salt marshes vegetation needs 
further attention. We analyzed temporal changes in plant species composition and ecology in a restored brackish wetland 
on the Adriatic coast (Central Italy) by a re-visitation study of 33 historical plots (year 2010), newly collected after 10 years 
(2021), across a brackish mosaic composed by salt meadows, halophilous scrubs and salt steppes referable to three habitats 
of conservation concern in Europe (EU codes: 1410, 1420 and 1510*). Changes in species richness and cover, in the ecologi-
cal characteristics of the mosaic and each habitat type were tested by comparing some ecological groups (e.g. diagnostic, 
alien and ruderal species) and Ellenberg bio-indicator values by a Mann-Whitney test. Similarity percentage procedure for 
identifying which species indicate temporal changes was also performed. After restoration, we observed a general improve-
ment of the environmental quality of the brackish mosaic with the establishment of typical pauci-specific plant communities, 
a significant recovery of diagnostic species cover and a reduction of ruderal and alien ones. We also registered an increase 
in Ellenberg salinity and temperature values likely related also to coastal erosion and climatic change. The results of our 
study suggest that vegetation dynamics could be used to monitor coastal restoration trajectory in the Mid- and Long-Term 
local interventions.

Keywords  Adriatic coast · Multitemporal analysis · Vascular plants · Ecological groups (diagnostic, ruderal, alien) · 
Brackish vegetation · Ellenberg bioindicators

Introduction

Coastal wetlands are complex and dynamic ecosys-
tems widely distributed on the world’s shorelines (Scott 
et al. 2014). Occupying transitional waters between fresh-
water and marine realms (Pérez-Ruzafa et al. 2011) they 
conform intricate mosaics (Holland 1988) following steep 
environmental gradients (e.g. oxygen, pH, salinity) which 
encompass a particularly specialized flora and fauna. Wet-
land mosaics are shaped by seasonally changing abiotic (e.g. 

salinity, soil aeration, frequency and duration of inundations 
and elevation of the marsh surface) (Cooper 1982; Snow and 
Vince 1984; Armstrong et al. 1985; Niedowski 2000; Lefeu-
vre et al. 2003) and biotic factors (e.g. interspecific competi-
tion for light and nutrients) (Levine et al. 1998; Ungar 1998).

In coastal salt marshes plant species are mainly stress 
tolerant and specialist, well adapted to highly variable and 
dynamic ecological conditions (Lefeuvre et al. 2003), how-
ever also some generalist species coming from the adjacent 
ecosystems could occur. Specifically, the Mediterranean 
coastal salt marshes vegetation consists of a mosaic of low-
growing meadows with herbaceous plants able to dwell on 
wet and hydromorphic soils periodically flooded (Cutini 
et al. 2010; Gennai et al. 2022). Such meadows are com-
posed by grasses, sedges, rushes and other herbaceous angi-
osperms distributed across an observable zonation, accord-
ing to topographic and environmental variability as well as 
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vegetation succession linked to the geo morphogenesis of 
salt marshes (Taramelli et al. 2021).

Coastal wetlands also play a key supporting role for ani-
mal biodiversity as they provide critical habitats for resident 
(e.g. arthropods) and migratory fauna (e.g. birds) (Perennou 
et al. 2018; Sala et al. 2000). Indeed, they ensure different 
stages of the life cycle to a great variety of species offering 
a suitable habitat for fish and invertebrate spawning as well 
as for the larval and juvenile stages. Many migratory birds 
use marshes as feeding (offering trophic resources as fishes, 
invertebrates, insects and plants) (Niedowski 2000), nesting 
and resting areas (Viciani and Lombardi 2001).

Coastal wetlands also provide essential benefits to 
society, some of which with a considerable socio-eco-
nomic impact (Martínez-Megías and Rico 2021; Millen-
nium Ecosystem Assessment 2005). They contribute more 
than 20% of the total value of global ecosystem services 
(Costanza et al. 2014), while covering only a small per-
centage (4–9%) of global land surface (Morganti et al. 
2019; Zedler and Kercher 2005). Salt marshes provide a 
wide range of services as nutrient cycling, water remedia-
tion (Quin et al. 2015; Chalov et al. 2017), flood control 
(Acreman and Holden 2013; Quin and Destouni 2018), 
soil moisture regulation (Golden et al. 2017; Ameli and 
Creed 2019) and biodiversity conservation (Mitchell et al. 
2008; Cohen et al. 2016). In addition, they play a major 
role on carbon sequestration (Herbert et al. 2015) and 
climate regulation (Camacho et al. 2017; Morant et al. 
2020) with blue carbon (e.g. belowground carbon stocks 
and carbon burial rates) stocks reaching one of the highest 
values in the biosphere (Donato et al. 2011; Mcleod et al. 
2011) and subsequently they represent an excellent train-
ing ground to explore global change dynamics (Lefeuvre 
et al. 2003).

Despite the high biodiversity value and the numer-
ous benefits for the human wellbeing, coastal wetlands 
are among the most imperiled ecosystems both, glob-
ally (Golden et al. 2017; Chen 2019) and in the Medi-
terranean basin (Erwin 2009). Approximately 50% of 
the world’s wetlands have been lost since 1900 and their 
loss rate during the 20th and early 21st centuries aver-
aged − 1.085%.y1, varying between regions (e.g. Asia 
has lost the 83.7%, Europe the 71.0% and North America 
the 36.5%) (Davidson 2014; Davidson et al. 2018). In the 
Mediterranean, brackish marshes have undergone a drastic 
reduction due to land reclamation and conversion to crop-
lands, changes in water regimes, urbanization and invasive 
alien species (Lefeuvre et al. 2003; Destouni et al. 2013; 
Jaramillo and Destouni 2015; Adam 2019; Maneas et al. 
2019) combined with climate change (Seneviratne et al. 
2006; Orth and Destini 2018) and coastal erosion (Erwin 
2009; Taramelli et al. 2021) which have caused a drastic 
reduction of ecosystem services (Ghajarnia et al. 2020) 

and a loss of biodiversity. Specifically, the alterations on 
marshes hydrology (depth and hydroperiod) along with 
the increasing temperatures and the reduction of water 
supply registered during the last decades (Root et al. 2003) 
consistently threat more than 35% of wetland species 
(Martínez-Megías and Rico 2021).

For such outstanding threatened biodiversity, wet-
lands are protected by the intergovernmental Convention 
of Ramsar (Bonells and Zavagli 2011) which provides 
the regulatory framework for defining national and inter-
national conservation sites (so called Ramsar sites) and 
dedicated actions for their conservation and management 
(Matthews 1993; de Klemm 1995; Bonells and Zavagli 
2011). Furthermore, in Europe, most of the salt marsh 
plant communities have been of conservation concern 
and listed in the Habitats Directive (here after HD; Euro-
pean Directive 92/43/EEC) for which conservation and 
restoration actions are claimed. According to HD, mem-
ber states are committed to monitoring and preserving 
habitats extension into the Union and implementing the 
necessary management measures to keep them in a good 
“conservation status”.

Amongst the possible conservation measures, the resto-
ration of salt marshes, aimed at bringing back the brackish 
mosaic to its original condition faster than nature does on 
its own and at establishing a self-sustaining ecosystem 
status, has rapidly accelerated over the last decades with 
the great support of government agencies and conservation 
organizations (Adams et al. 2021). There is evidence that 
salt marshes vegetation recovery time under natural condi-
tions is quite fast (e.g. around 10 or more years, depend-
ing on the perturbation and the maturity of the marsh) 
(Broome et al. 1988), so after the necessary hydraulic 
reconstruction works, soft restoration schemes promoting 
spontaneous recovery of natural key species are advisable 
(Wolters et al. 2005, 2008). The assessment of the effec-
tiveness of saltmarsh restoration actions in terms of plant 
species composition in some European wetlands (Wolters 
et al. 2005; Billah et al. 2022) have evidenced a good 
recovery of native plant diversity over time (Curado et al. 
2014). Despite the importance of the restoration of salt 
marshes and its widely implementation in several coasts 
in the world (Billah et al. 2022), updated research and sys-
tematic monitoring activities aiming to assess biodiversity 
changes after restoration actions on Mediterranean salt 
marsh areas should be improved (Moreno-Mateos et al. 
2015; Billah et al. 2022).

In this context, the present work sets out to analyze 
vegetation dynamics on a restored salt marsh mosaic, 
through a multi-temporal analysis of vegetation plots 
collected before and after the implementation of resto-
ration actions in the Central Adriatic coast in Italy. We 
hypothesized a good response of vegetation that after 
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restoration will evolve towards improved of ecosystems, 
with a gain of diagnostic native species and a reduction 
of alien and ruderal ones. Specifically, by a re-visitation 
study (data collection carried out in the years 2010 and 
2021) we explored plant species composition and ecol-
ogy changes across the brackish habitats addressing the 
following questions: (i) Have the abundance and distri-
bution of vascular plant species changed during the last 
decade?; (ii) which are the abundance trends in the main 
plant groups (diagnostic, ruderal and alien species) and 
in halophilous and thermophilous species over time in the 
brackish mosaic habitats?

By increasing the knowledge on vegetation dynam-
ics and how it varies across the different habitats of the 
brackish mosaic after a restoration actions, we wish to 
contribute to improve the current scientific understanding 
on the effectiveness of implemented conservation strate-
gies (Wolters et al. 2005; Billah et al. 2022) and give new 
insights for the adaptive management and the prioritiza-
tion of the conservation actions in such highly vulnerable 
environment.

Materials and Methods

Study Area

The study area is located in the Adriatic coast of Central 
Italy (Molise Region; Fig. 1) characterized by Mediterra-
nean climate (Blasi 2003) and composed by sandy dunes 
which alternates with alluvial plains and river mouths (e.g. 
Trigno, Biferno and Saccione) (Stanisci et al. 2007; Car-
ranza et al. 2008). Salt marshes only occur at Biferno river 
mouth area and they represent a residual wetland which was 
larger one century ago (Forleo 2005). Salt marshes have not 
direct connections to the sea and are fed by salt water table 
and partially by artificial wetland drainages.

The target area has been exposed to high erosion risk with 
strong coastal erosion processes (Rosskopf et al. 2018). The 
period 1954–2014 registered an erosion rate of − 2.90 m/
year in the study area and such trend is expected to proceed 
over time (Aucelli et al. 2018).

The climate in the analyzed coastal tract, as in the whole 
Mediterranean region, is changing rapidly (IPCC 2022). The 

Fig. 1   Study area included in the Special Area of Conservation Biferno River mouth – Campomarino (SAC IT7222216)
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statistical analysis of climatic data recorded in the last fifty 
years (1970–2020) in the nearby weather station of Termoli 
(SCIA climatic database; Desiato et al. 2006, 2007, 2011) 
evidenced a consistent rise of temperatures and a slight 
decrease of annual precipitations. The mean annual tem-
peratures in the last half century has been of 16,74 °C with 
annual values that significantly increased from 15,5 °C to 
18,6 °C (R2 = 0,839, p-value < 0,001) (Fig. 3). Precipitations 
in summer (that is the period of greatest aridity stress for 

plants in the Mediterranean biome, Nardini et al. 2014) reg-
istered a mean value of 21,50 mm and a slight decline from 
≈ 30 mm to ≈ 19 mm (R2 = 0,053, p-value = 0,1081) (Fig. 2).

We analyzed the plant communities of the residual brack-
ish wetlands occurring in the inter-dunal humid depressions 
of the Biferno river mouth area (Fig. 1), including a rich 
mosaic of ecosystems of Conservation Concern in Europe 
(included in Annex I of the Habitats Directive, hereafter 
HD) (EEC 1992; European Commission 2013; Stanisci et al. 

Fig. 2   Mean annual temperature and summer precipitation from 1970 to 2020 (Termoli weather station). Data were retrieved from SCIA cli-
matic database (Desiato et al. 2006, 2007, 2011). Regression and graphs made with R statistical software (R Core Team 2020)

Fig. 3   A schematic profile describing the typical brackish vegetation zonation in the study area and the respective EU habitat types (EEC 1992) 
along with their codes. Asterisks indicate EU priority habitats. A description of the habitats is reported in Table 1
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2014) (Fig. 2) and conforming a key site for the conservation 
of the fauna. For its great biodiversity value, the area is a 
node of the Natura 2 K network (Special Area of Conserva-
tion: IT7222216 Biferno river mouth-Campomarino coast) 
and is a pilot site for testing ecological monitoring tools, 
in situ and remotely sensed (Marzialetti et al. 2020).

Vegetation and Biodiversity of the Brackish Mosaic

Salt marshes in the Biferno mouth are composed by a mosaic 
of habitats of Conservation Concern (HD 92/43/CEE; http://​
vnr.​unipg.​it/​habit​at/​index.​jsp) whose spatial variability (e.g. 
zonation) is shaped by the interplay of several environmental 
factors as: water table level, local micro morphology, sub-
strate salinity and seashore distance. Vegetation zonation in 
the Biferno mouth brackish mosaic is schematically reported 
in Fig. 2 and briefly described in Table 1, below.

Biferno mouth wetlands also host several species of 
fauna, such as the migratory and sedentary birds (e.g. 
Ixobrychus minutus, Gallinula chloropus, Phalacrocorax 
carbo, Ciconia nigra, Himantopus himantopus and Botaurus 
stellaris) (De Lisio et al. 2008), reptiles (i.e. Hemys orbicu-
laris, Testudo hermanni) (Berardo et al. 2015), amphibians 
(e.g. Epidalea viridis) and bats (Prisco et al. 2017).

In 2016, the area was part of an environmental restoration 
program, funded by LIFE10 NAT/IT/00262 project which 
aimed at recovering the wetland ecosystem. The water flow 
pattern was re-established by opening the artificial wetland 
drainages and recovering the local hydrological regime 
(Prisco et al. 2017). Restoration included the demolition 
of artifacts, the reclamation of hazardous materials and the 
reconstruction of banks (Pellizzari et al. 2007; Prisco et al. 
2017). Still, a boardwalk and a set of picket fences were put 
in place to protect salt marshes area from human trampling.

Vegetation Sampling

During the years 2020-21, we re-visited (hereafter T2), 33 
vegetation plots collected in 2010 (hereafter T1) (Di Franco 
et al. 2012). Vegetation plots, collected within the Biferno 
brackish wetlands before and after the restoration of wet-
lands carried out in the year 2016 (Prisco et al. 2017) are 
representative of the brackish mosaic dominated by the fol-
lowing habitats of conservation concern (HD: 92/43/EEC): 
1410: Mediterranean salt meadows - Juncetalia maritime; 
1420: Mediterranean and thermo-Atlantic halophilous 
scrubs - Sarcocornietea fruticose − 1510*: Mediterranean 
salt steppes – Limonietalia). Phytosociological relevés of 16 
m2 (4 × 4 m) were carried out following a stratified random 
protocol that used a detailed land cover map (1: 5000 scale; 

Table 1   EU habitat names (EEC 1992) along with their short name, brief description and the dominant species present in the Biferno mouth 
brackish mosaic

For the schematic description of brackish vegetation zonation see Fig. 2

Habitat name Short name Description Dominant species

Coastal lagoons
(EU habitat 1150*)

Coastal lagoons Aquatic vegetation growing on shallow 
brackish waters with strong temporal 
variations in salinity and water depth, 
responding to differences in water table 
inputs, rainfalls and temperatures.

Ruppia cirrhosa

Mediterranean salt meadows
(EU habitat 1410)

Salt meadows Subalophilic meadows of backdunal humid 
depressions with medium-high sandy 
substrates flooded by brackish water for 
medium-long period.

Juncus acutus, J. maritimus

Mediterranean and thermo-
Atlantic halophilous scrubs

(EU habitat 1420)

Halophilous scrubs Pauci-specific communities consisting of 
perennial halophytes, mainly chamae-
phytes and succulent nanophanerophytes, 
growing on periodically flooded areas

Sarcocornia fruticosa

Mediterranean salt steppes
(EU habitat 1510*)

Salt steppes Halophilic perennial herbaceous species of 
the back side of the halophilous scrubs, 
on small dumps with salty soils (clayey, 
clayey-slimy or sandy), temporarily 
humid, but not submerged.

Limonium narbonense

Mediterranean temporary ponds
(EU habitat 3170*)

Temporary ponds vegetation Amphibious vegetation given by small 
therophytic and geophytic species with 
late-winter/spring phenology, growing in 
small temporary ponds.

Isolepis cernua, Juncus bufonius

Sub-pannonic steppic grasslands
(EU habitat 6420)

Steppic grasslands Reed vegetation growing on sandy-clay soils 
in contact with dune grasslands.

Tripidium ravennae

Page 5 of 15 101

http://vnr.unipg.it/habitat/index.jsp
http://vnr.unipg.it/habitat/index.jsp


Wetlands (2022) 42:101 

1 3

AA.VV. 2008) and high-resolution color digital orthophotos 
(flight 2007, granted by the Civil Protection) for identifying 
the strata.

For re-visitation, we sampled the same T1 plots following 
the description of the location reported in the reference study 
(Di Franco et al. 2012). We carried out phytosociological 
relevés following the same sampling protocol (Chytrý et al. 
2014) and in the same season (April-October) to remove the 
effects of phenological differences (Vymazalová et al. 2012). 
In addition, in order to limit the pseudo-turnover caused by 
observer bias (Klimeš et al. 2001; Vittoz and Guisan 2007), 
one of the researchers who had conducted the T1 sampling 
campaign was also involved in T2 field work activity. For 
each georeferenced vegetation plot we registered the com-
plete list of vascular plants and their cover values in com-
pliance with Braun-Blanquet scale (Westhoff and Van Der 
Maarel 1978; Pignatti 1995; Braun-Blanquet 2013) using the 
classical phytosociological approach. Species nomenclature 
follows the updated checklist of “Flora d’Italia” (Pignatti 
et al. 2017–2019).

Data Preparation

We investigated brackish plant communities’ ecology over 
time (T1: 2010, T2: 2020/21) exploiting the bio indication 
value of some plant groups (e.g. diagnostic, ruderal and alien 
species) (Santoro et al. 2012; Del Vecchio et al. 2016) and 
the Ellenberg’s ecological indicator scores for salinity and 
temperature (Ellenberg 1974).

We considered three main ecological groups which pro-
vide key information on habitat health (e.g. conservation 
status, disturbance, threat degree) (Cardinale et al. 2012; 
Keith et al. 2013). Diagnostic species, playing a major role 
in determining the structure and functioning of the EU habi-
tats, are a reliable indicator of conservation status (Chytrý 
and Tichý 2003). We defined the diagnostic species for each 
habitat type according to the Italian Interpretation Manual 
of Habitats Directive (Biondi et al. 2009) and accounting 
of updated information reported on the “Italian Vegeta-
tion Prodrome” (Biondi et al. 2014; European Commission 
2013). Ruderal native species, having an opportunist eco-
logical strategy and being well adapted to disturbed habitats 
(Malavasi et al. 2016), are excellent indicators of ecosystem 
alterations (Del Vecchio et al. 2015a). Ruderals were here 
identified based on previous phytosociological studies of 
the Italian Adriatic coast (Bini et al. 2002; Di Franco et al. 
2012; Pirone et al. 2014; Sciandrello and Tomaselli 2014; 
Tomaselli et al. 2020). Alien plant species (IAPs) that are 
species growing outside their natural range (Richardson 
et al. 2000) which could severely alter ecosystem function-
ing (Pyšek et al. 2020), point out a consistent threat to bio-
diversity. IAPs were identified following the inventory of 

the non-native flora of Italy (Viciani and Lombardi 2001; 
Celesti-Grapow et al. 2009; Galasso et al. 2018).

Temporal changes in the brackish communities’ ecology 
were also explored by Ellenberg’s salinity and temperature 
indicator values. To each plant we assigned the Ellenberg’s 
Bioindicator Value (Ellenberg 1974), which is an ordinal 
number (1–9) describing species preference along ecological 
gradients assigned according to Pignatti et al. (2005).

Statistical Analysis

After a brief comparison of the number and cover of species 
of the different groups (e.g. diagnostic, ruderal and alien) 
over time for the entire mosaic and each habitat type, we 
explored temporal changes in the ecology of the analyzed 
vegetation, by comparing Ellenberg bioindicator values. For 
each relevé, we calculated the mean Ellenberg bioindicator 
values weighted according to species cover as follows:

where rji is the cover of the species i in the relevé j, and xi 
is the Ellenberg bioindicator value x for the species i (Diek-
mann 2003; Evangelista et al. 2016; Calabrese et al. 2018). 
For each habitat and temporal step we calculated the WA for 
salinity and temperatures depicting environmental condi-
tions (Pignatti et al. 2005; Jantsch et al. 2013; Del Vecchio 
et al. 2015b).

Furthermore, we analyzed the temporal variation of 
ecological groups and for the Ellenberg values by a Mann-
Whitney post hoc test on ranked data (cover and richness). 
The two-tailed (Wilcoxon) Mann-Whitney U test was used to 
test whether the medians of the two time steps are different.

Afterward, we identified the species that contribute most 
consistently to the differences between the two temporal 
groups (T1 and T2) using a similarity percentage procedure 
(SIMPER) (Clarke 1993).

Statistical analyses were performed in the R statistical 
computing program (R statistical software, R Core Team 
2020) using the Vegan package (Oksanen et al. 2020) and 
using PAST (paleontological statistics software for educa-
tion and data analysis) (Hammer et al. 2001).

Results

In the whole brackish mosaic, we recorded 92 vascular plant 
species and subspecies of which 29 were diagnostic of at 
least one EU habitat type (31,5%), 25 were ruderal (27,2%) 
and 6 were alien(6,5%).

We observed a general decrease in the total number of 
species (from 71 to 54; Table 1) as well as in the number 
of diagnostic (from 24 to 22), ruderal (21 to 10) and alien 
species (from 5 to 4).

Concerning the single EU habitats, we observed a 
decline on the total number of species, however diagnostic 
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species slightly increased in salt steppes, whereas IAPs 
remained stable in the salt meadows and the halophilous 
scrubs (Table 2).

The analysis of ecological groups and Ellenberg bio-
indicator values over time revealed important changes in 
the entire brackish mosaic (from 2010 to 2020/21) and 
such changes varied across the different habitat types.

We registered in the whole brackish mosaic a signifi-
cant increase in the cover of diagnostic species (Psame = 
0,031) and a significant decrease in the cover and rich-
ness of ruderals (respectively Psame < 0,001 and Psame = 
0,014) (Fig. 4).

As observed at mosaic level, we registered significant 
gains of diagnostic species cover in the salts meadows 
(Psame = 0,046) and steppes (Psame = 0,011) and a signifi-
cant decrease of their richness per plot in the halophilous 
scrubs (Psame = 0,007) (Fig. 4). As regards the ruderal 
species, we observed a significant decrease in cover and 
richness in halophilous scrubs (respectively Psame < 0,001 
and Psame < 0,001) and salt steppes (respectively Psame = 
0,025 and Psame = 0,025). Concerning alien species, we 
found a significant decrease in cover in salt steppes (Psame 
= 0,038) (Fig. 4).

Concerning the Ellenberg salinity value, the analy-
sis showed a significant increase over time in brackish 
mosaic (Psame < 0,001) and in halophilous scrubs and salt 
steppes (Psame < 0,001 and Psame =0,012 respectively) 
(Fig. 5).

The species that, according to SIMPER analysis (simi-
larity percentage) (Table 3), contributed 50% of floristic 
changes in the salt meadows habitat are diagnostics and 
thermophilous (T ≥ 7) with low-medium Ellenberg Salin-
ity values. The cover of these species increased over time, 
except for Juncus maritimus that decreased. In halophil-
ous scrubs and salt steppes habitats the temporal changes 
are given by the increase of some halophilous species 
(e.g. Sarcocornia fruticosa and Limonium narbonense 
with Ellenberg Salinity value of 8–9) and by the reduc-
tion of species with low Ellenberg Salinity value (e.g. 
Juncus maritimus and Plantago crassifolia with 6 and 1 
indicator value).

Discussion

The analysis of vegetation dynamics on restored salt 
marshes in the Adriatic coast in Central Italy (Biferno 
brackish area) revealed consistent changes on floristic 
composition and an improved conservation status.

The significant increment of diagnostic species along 
with the significant decrease of ruderal and alien plants, 
are likely related to the improvement of the environmental 
conditions after the restoration actions carried out in 2016 
by the project LIFE + MAESTRALE (NAT/IT/000262) 
(Prisco et al. 2017). As observed in other wetland ecosys-
tems after naturalization interventions in America (e.g. 
Roman et al. 2002; Gratton and Denno 2005; Buchsbaum 
et al. 2006; Spieles et al. 2006; Matthews et al. 2009) or 
Europe (e.g. Curado et al. 2014), also in the Adriatic coast 
the native plant diversity tends to recover. The observed 
recolonization can suggest the incipient establishment of 
a self-sustaining ecosystem status (Zedler and Kercher 
2005; Rey Benayas et al. 2009).

We observed a reduction in the number of species in 
the salt marsh mosaic which is probably linked to the suc-
cessional process that led the salt marsh mosaic towards 
more natural conditions characterized by paucispecific 
plant communities with average richness ​​ranging from 
4 to 13 species (Géhu et al. 1984). The richness decline 
could respond to the interplay of different processes 
favored by the restoration of wetlands and the construction 
of boardwalks (Prisco et al. 2017), as: (a) the expansion 
and gain in cover of the salt tolerant native species (Arte-
misia caerulescens, Halimione portulacoides, Limonium 
narbonense and Sarcocornia fruticosa) that have mor-
phological and physiological adaptations to live on saline 
environments (Moreno-Mateos et al. 2015) aided by the 
reconstruction of ponds and wetland (Prisco et al. 2017), 
(b) the reduction and loss of ruderal species (e.g. Arundo 
plinii, Melilotus albus and Vicia sativa) partially due to 
the decrease of human trampling disturbance prevented by 
dedicated paths for tourists and visitors of the area (Prisco 
et al. 2017), (c) the low number of alien species is likely 

Table 2   Total number of 
species over time (T1: 2010 
and T2: 2020/21) for the entire 
mosaic and for each EU Habitat 
type

Salt meadows (EU habitat 1410); Halophilous scrubs (EU habitat 1420) and Salt steppes (EU habitat 
1510*)

Mosaic Salt meadows Halophilous 
scrubs

Salt steppes

T1 T2 T1 T2 T1 T2 T1 T2

Total number of species 71 54 57 38 23 18 21 12
Number of diagnostic species 24 22 14 13 6 4 1 2
Number of ruderal species 21 10 15 9 2 0 5 0
Number of alien species 5 4 3 3 1 1 3 1
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due to the competition with the native halophilic species 
that increased their cover over time. But the persistence 
of some exotic species could be due to the fact that they 
also grow in croplands and farms in the neighboring fields 
(Joyce et al. 2016) and (d) the loss of plant species from 
other ecosystems of the close coastal dune mosaic, likely 
due to wetland restoration interventions. Indeed 2021 spe-
cies composition of each habitat type appeared closer to 
mature conditions (e.g. increase of diagnostic species) 
and the vegetation zonation along the brackish ecological 
gradient seemed less fragmented. Moreover, the differ-
ent EU habitats of the brackish mosaic are currently quite 
distinguishable in the field and their species composition 
seemed closer to typical halophytic species assemblage 
(Biondi et al. 2009; Bonari et al. 2021).

Specifically, in halophilous scrubs (EU Habitat 1420) 
the perennial diagnostic Sarcocornia fruticosa increased 
its cover and, as observed in previous studies (Biondi 
and Casavecchia 2010; Moreno-Mateos et al. 2015), this 

expansion may be favored by an increase of soil salinity 
contents. Indeed, S. fruticosa is well adapted to saline 
soils and its seeds easily germinate in a wide range of 
salinities (up to 1 M NaCl) (Redondo et al. 2004; Muñoz-
Rodríguez et al. 2017). Higher soil salt concentrations 
may be also behind the significant growth of some halo-
tolerant species as Halimione portulacoides (Álvarez-
Rogel et al. 2001) in halophilous scrubs (EU 1420) and 
steppes (EU 1510*). As Halimione portulacoides is quite 
rare in Italian wetlands (Géhu and Biondi 1996; Corbetta 
and Pirone 1999; Cutini et al. 2010), its observed incre-
ment in the central Adriatic coast is of great conservation 
interest.

Similarly, in salt steppes (EU habitat 1510*) an increased 
cover of the diagnostic species Limonium narbonense was 
registered. These salt steppes occur at intermediate saline 
gradient values (Álvarez-Rogel et al. 2001; Baumberger 
et  al. 2012; González-Alcaraz et  al. 2014) between the 
hypersaline S. fruticosa (EU habitat 1420) and the less tol-
erant Juncus spp. meadows (EU habitat 1410).

Furthermore, on salt meadows (EU Habitat 1410), we 
observed an increase in the cover of the diagnostic species 
with medium Ellenberg salinity indicator values (Schoenus 
nigricans, Juncus acutus, J. littoralis); such species prefer 
lower salinity (Molina et al. 2003), and are also tolerant to 
summer aridity (Angelini et al. 2016), that is increasing in 

Fig. 4   Boxplot comparing cover (dark green) and richness (light 
green) for the ecological groups (diagnostic, ruderal and alien spe-
cies) in the two time steps (T1: 2010 and T2: 2020/21) for the entire 
brackish mosaic, Salt meadows (EU habitat 1410); Halophilous 
scrubs (EU habitat 1420) and Salt steppes (EU habitat 1510*). Aster-
isks indicate significant differences according to the Mann-Whitney 
post hoc test (*p < .05, **p < .01, ***p < .001)

◂

Fig. 5   Boxplot comparing Ellenberg Salinity weighted values (WA) 
in two time steps (T1: 2010 and T2: 2020/21) for brackish mosaic 
and for Salt meadows (EU habitat 1410); halophilous scrubs (EU 

habitat 1420) and Salt steppes (EU habitat 1510*). Asterisks indicate 
significant differences according to the Mann-Whitney post hoc test 
(*p < .05, **p < .01, ***p < .001)
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the Adriatic coasts (IPCC 2022) as on other coastal wetlands 
in the world (Osland et al. 2016).

Besides the floristic and ecological changes depicting an 
ongoing successional recover of the brackish communities 
following the restoration actions (reconstruction of water 
ponds and wetlands and boardwalk construction) (Prisco 
et al. 2017), the observed vegetation dynamics could be 
also linked to a variety of environmental processes (Balzan 
et al. 2020) affecting the Central Adriatic coast (e.g. coastal 
erosion, climate change) (Aucelli et al. 2018; IPCC 2022).

For instance, the observed reduction in cover of Jun-
cus maritimus is likely due to its weak tolerance of arid-
ity stress (Boscaiu et al. 2011), which has become more 
pronounced in the last decade. As observed on South-
Eastern Europe salt rich grasslands (Eliaš et al. 2013), 
even in the Central Adriatic brackish area, the trajectories 
towards more halophytic status in some habitats of the 
mosaic (EU habitats 1420 and 1510*) and the increase 
of dry tolerant species in the salt meadows of the back-
dunes (EU habitat 1410) are probably related to higher 
temperatures and increased summer aridity in the study 
area. Similar changes in species composition and structure 
were observed in other coastal habitats as sandy dunes 
(Fenu et al. 2013; Del Vecchio et al. 2015b; Prisco et al. 
2016) and such variation was explained as a vegetation 
response to the rise of local temperatures and the reduc-
tion of summer rain-water availability.

The significant increase on Ellenberg Salinity values 
denotes an increase in the salt concentration in the Biferno 
wetland area, which is likely connected with the global 
warming and further favored by the ongoing coastal erosion 

processes affecting this section of the coast (Rosskopf et al. 
2018) during the last 50 years, with an average erosion rate 
of − 2.90 m/year. Indeed, with coastal erosion, the shoreline 
has come closer to the brackish grasslands, exposing them 
to a greater influence of salt aerosol coming from the sea. 
Coastal erosion seemed to be a crucial factor related to the 
substantial reduction in coastal dune plant cover not fol-
lowed by a re-colonization of the typical species and when 
the amount of erosion is significant, in terms of the retrac-
tion speed of the coast line, all the habitats tends to vanish 
(Feagin et al. 2005; Schlacher et al. 2008; Attorre et al. 2012; 
Doody 2013; Ciccarelli 2014; Bertacchi et al. 2016). In par-
ticular, Prisco et al. (2016) found that in the sites of Molise 
shoreline affected by coastal erosion, there is a clear reduc-
tion in species richness of dune grasslands as well as a loss 
of the integrity of coastal vegetation zonation. The alteration 
of coastal dune morpho-ecological integrity which ensure 
inland protection (Acosta et al. 2003; Drius et al. 2019) 
promotes the development of more halophilic and selec-
tive environmental conditions in the back-dune wetlands. In 
addition, sea level rise linked to climate change may have 
caused the intrusion of salt-water into wetland aquifers as it 
was assessed in other regions (Erwin 2009).

Unfortunately, monitoring studies after restoration 
actions, based on ecological groups and key species abun-
dance pattern, in salt marshes and coastal wetlands are very 
few so a comparative analysis between different geographi-
cal regions is not possible and as found by Moreno-Mateos 
et al. (2012) the recovery of wetlands following restoration 
as currently practiced is often slow, incomplete and in the 
Long term does not restore all ecosystem functions.

Table 3   Plant species 
contribution to the temporal 
floristic changes and species 
mean cover (from 2010 to 2020) 
in the different EU Habitats 
assessed by the similarity 
percentage procedure (SIMPER; 
Clarke 1993)

For each taxon, the Ellenberg ecological indicator values for salinity (S) and temperature (T) are also 
reported. Salt meadows (EU habitat 1410); halophilous scrubs (EU habitat 1420) and Salt steppes (EU 
habitat 1510*)

Ellenberg 
Values

Species Con-
tribution (%)

Cumulative 
Contribution 
(%)

Mean 
Cover

Species S T T1 T2

Salt meadows Plantago crassifolia 1 8 13,24 13,24 11,3 30,5
Juncus maritimus 6 7 10,78 24,03 22,1 13,5
Schoenus nigricans 1 7 8,647 32,67 7,71 19,8
Artemisia caerulescens 9 7 6,662 39,33 5,63 17,2
Juncus littoralis 5 8 4,757 44,09 5,46 7,58
Juncus acutus 5 8 4,755 48,85 1,5 11,1
Elymus acutus 3 7 4,129 52,98 3,63 8,83

Halophilous scrubs Sarcocornia fruticosa 8 9 18,85 18,85 34,5 58,3
Halimione portulacoides 8 9 14,78 33,63 12 26,5
Juncus maritimus 6 7 12,61 46,24 22,1 4,88
Artemisia caerulescens 9 7 8,336 54,58 1,5 14,3

Salt steppes Limonium narbonense 8 7 23,94 23,94 4,8 67,5
Plantago crassifolia 1 8 15,18 39,12 40,8 0
Halimione portulacoides 8 9 12,39 51,51 0 32,5
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However, similar gain in diagnostic and native species 
was observed after restoration and conservation actions 
(the construction of boardwalk and the installation of picket 
fences to protect dune ecosystems from human trampling) 
on other coastal ecosystems (e.g. sand dunes) in the Adri-
atic coast (Santoro et al. 2012; Šilc et al. 2017; Prisco et al. 
2021).

Conclusion

As we hypothesized, the vegetation dynamics in the ana-
lyzed wetland reflected a clear improvement in ecosystem 
quality after restoration, with a gain of diagnostic native 
species and a reduction of ruderal and alien ones. Moreover, 
we observed the cover increase of halophilous and thermo-
philous species over time.

We then found variations on ecological features and spe-
cies occurrence and abundance pattern across the different 
EU habitats conforming the brackish mosaic: salt meadows, 
halophilous scrubs and salt steppes (respectively 1410, 1420 
and 1510*). Such changes are most likely related to an inter-
twining of environmental changes (restoration actions, cli-
mate change and coastal erosion).

We observed, after the restoration action, a general 
improvement of the naturalness of the Biferno mouth with 
a successional process that led the salt marsh mosaic towards 
typical paucispecific plant communities. Moreover, the 
results demonstrated that, after adequate hydraulic work and 
reduced human pressure, these fragile ecosystems could be 
able to recover typical vegetation in the Mid and Long Term. 
In addition, the observed expansion of hypersaline commu-
nities may be also related to other environmental drivers as 
climate change (e.g. rise of local temperatures, the decline 
of summer precipitation) and coastal erosion that affected 
this section of Adriatic coast. These environmental changes 
likely exposed Biferno wetland to an increase on water salt 
concentration and to a greater influence of salt aerosol which 
favored the expansion of halophilous diagnostic species and 
the rarefaction and loss of ruderal and alien plant taxa.

The applied re-visitation approach, based on historical 
plots represents a cost-effective monitoring procedure that 
matches the need of periodical reporting requested by the 
European HD. We hope re-visitation monitoring studies 
by vegetation plots will be implemented over increasingly 
larger scales, in order to increase the current knowledge on 
vegetation dynamics after wetland restoration actions and 
identify the most effective approaches so as to manage and 
recover these fragile ecosystems.
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