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Abstract
Purpose of Review We summarize combination immunotherapy strategies for the treatment of breast cancer, with a focus on
metastatic disease. First, a general overview of combination approaches is presented according to breast cancer subtype. Second,
additional review of promising combination approaches is presented.
Recent Findings Combination strategies utilizing chemotherapy or radiotherapy with immune checkpoint inhibition are being
evaluated across multiple phase III trials. Dual immunotherapy strategies, such as dual immune checkpoint inhibition or com-
bined co-stimulation/co-inhibition, have supportive preclinical evidence and are under early clinical investigation. Modulation of
the immune microenvironment via cytokines and vaccination strategies, as well as locally focused treatments to enhance
antigenic responses, are active areas of research.
Summary Pre-clinical and translational research sheds new light on numerous ways the immune system may be modulated to
fight against cancer. We describe current and emerging combination approaches which may improve patient outcomes in
metastatic breast cancer.
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Introduction

Immunotherapy attracts interest as a therapeutic strategy in
breast cancer due to recognition of immune system involve-
ment in the tumor microenvironment, observation that a ro-
bust immune response may confer a favorable prognosis, and
achievement of meaningful clinical outcomes with immune-
based therapies [1, 2••]. Enhanced survival utilizing immuno-
therapy as monotherapy has been limited, and it is increasing-
ly accepted that in breast cancer, a combination of immuno-
therapy with other systemic or locally focused treatments may
be helpful to induce an immunogenic cell death which pro-
motes and sustains an immune-mediated response [3–5]. The

purpose of this review is to describe combination strategies for
immunotherapy in the treatment of breast cancer, with a focus
on metastatic disease. First, a general overview of combina-
tion approaches across breast cancer subtypes is presented,
and second, a more comprehensive review of various combi-
nation approaches is reviewed.

Summary of Combination Approaches
According to Tumor Subtype

Hormone-Receptor Positive Metastatic Breast Cancer

There is growing recognition of the effects of androgens and
estrogens on immune function, which opens new possibilities
for combination treatment strategies utilizing hormone block-
ade [6]. The androgen receptor (AR) is expressed in thymic
tissue, and under experimental conditions, blockade of AR
leads to increases in thymic volume and maturation of naïve
T cell clones, which have the potential to become tumor reac-
tive [7, 8]. AR inhibition may also directly inhibit tumor
growth, as the AR is expressed in 60–80% of breast cancers
and is also involved in the PI3K/Akt/mTOR andMAPK path-
ways [9]. In prostate cancer, AR antagonist therapy (with
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enzalutamide) was associated with increases in dendritic cell
expression of programed death ligands 1 (PD-L1) and 2 (PD-
L2), relative to untreated patients. [10]. A number of trials are
ongoing evaluating the role of AR inhibition plus anti-PD-1/
L1 in hormone-receptor positive breast cancer. (Table 1)

CDK 4/6 inhibitors such as palbociclib, ribociclib, and
abemaciclib are now standard-of-care options for hormone-
receptor positive breast cancer, and function primarily by
blocking the transition from G1 to S phase of the cell cycle
[11]. It has been demonstrated preclinically that CDK4/6 inhib-
itors may incite anti-tumor immune responses due to interferon
production, reduced proliferation of Tregs, and stimulation of
effector T lymphocytes which augments the effect of immune
checkpoint inhibitors (ICI) [12, 13]. Mouse models have also
shown synergistic effects of CDK4/6 and PI3K inhibition with
PD-1 and CTLA-4 inhibition [14]. Recently, the combination of

abemaciclib plus pembrolizumab (anti-PD-1) was found to be
safe in metastatic hormone receptor positive breast cancer, with
an ORR of 28.6% at 24 weeks [15]. In comparison, the phase II
MONARCH 1 study of abemaciclib monotherapy in HR+/
HER2- mBC achieved an ORR of 10.6% with abemaciclib
monotherapy at the same 24-week time point and at final 12-
month analysis had an ORR of 19.7% [16]. A study assessing
the combination of aromatase inhibition with abemaciclib and
pembrolizumab has just completed accrual (NCT02779751).
Additional trials are in progress evaluating combinations of
ICI with small molecule targeted therapies (Table 1).

Because CDK4/6 inhibition may upregulate PD-L1 within
the tumor microenvironment, another avenue of investigation in
hormone-sensitive breast cancer is to evaluate combination im-
munotherapy approaches at the time of progression following
receipt of CDK4/6 inhibitor. The MORPHEUS trial is a multi-

Table 1 Selected combination ICI trials in metastatic breast cancer

ICI agent Combination agent Tumor type Phase of study NCT identifier

Chemotherapy plus ICI (TNBC)

Atezolizumab Paclitaxel TNBC# Phase III NCT03125902

Atezolizumab Gemcitabine/carboplatin or capecitabine TNBC## Phase III NCT03371017

Pembrolizumab Nab-paclitaxel or paclitaxel or gemcitabine/carboplatin TNBC### Phase III NCT02819518

Targeted therapies + ICI

Atezolizumab Entinostat or ipatasertib or fulvestrant HR+ HER2- Phase I/II NCT03280563

Lodapolimab Abemaciclib HR + HER2- Phase I NCT02791334

Atezolizumab Pertuzumab + trastuzumab HER2+ Phase II NCT03417544

Pembrolizumab HER2 bi-armed activated T cells HER2+ Phase I/II NCT03272334

Atezolizumab Paclitaxel + trastuzumab + pertuzumab HER2+ Phase III NCT03199885

Durvalumab Olaparib TNBC Phase II NCT03167619

Durvalumab Olaparib TNBC Phase II NCT03801369

MEDI4736 (anti-PD-L1) Olaparib +/- cediranib TNBC Phase I/II NCT02484404

Avelumab Talazoparib TNBC/ HR+ Phase II NCT03330405

Dual ICI

Ipi/nivo RT or capecitabine TNBC Phase II NCT03818685

Ipi/nivo HER2- Phase II NCT03789110

Ipi/nivo Bicalutamide HER2- Phase II NCT03650894

Ipi/nivo Cyclophosphamide + doxorubicin HER2+ Phase I/II NCT03409198

Ipi/nivo INCAGN01876 (GITR agonist) mBC Phase I/II NCT03126110

Nivo (phase I), Ipi/nivo (phase II) NKTR-214 TNBC Phase I/II NCT02983045

Nivo NKTR-214, NKTR-262 (TLR agonist) TNBC Phase I/II NCT03435640

Ipi/nivo Entinostat (HDAC inhibitor) mBC Phase I NCT02453620

Combination ICI/co-stimulatory

Nivo +/- ipi BMS-986178 (OX40 agonist) mBC Phase I/II NCT02737475

NCT, national clinical trials; ICI, immune checkpoint inhibition; TNBC triple negative breast cancer;HR+, hormone receptor positive;HER2+, HER-2-
Neu positive; HER2-, HER-2-Neu negative; Ipi, ipilimumab; nivo, nivolumab; TLR. toll like receptor; mBC, metastatic breast cancer
# ≥ 12 months since prior chemotherapy
## ≤ 12 months since prior chemotherapy
###≥ 6 months since prior chemotherapy
^ following clinical benefit from platinum-based chemo
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arm study that aims to evaluate second-line hormone–directed
therapy (fulvestrant) in combination with immunotherapy
(atezolizumab, anti-PD-l/L1) with or without various targeted
therapies, including tyrosine kinase inhibitors (e.g., the AKT
inhibitor, ipatasertib), angiogenesis inhibitors (e.g.,
bevacizumab), and epigenetic modifiers (e.g., the histone
deacetylase inhibitor, entinostat) (NCT03280563). These thera-
pies are associated with unique immunomodulatory effects. For
example, AKT signaling is implicated in macrophage M1/M2
polarization [17], whereas blockade of vascular endothelial
growth factor with bevacizumab may be associated with influx
and activation of immune cells into tumors [18], and entinostat
is associated with neutralization of myeloid-derived suppressor
cells and enhanced efficacy of anti-PD-1/L1 [19].

Another potential immunotherapy target in hormone sensitive
breast cancer is transforming growth factor beta (TGFβ), a
multipotent cytokine which is present at high levels in the tumor
microenvironment and is immunosuppressive. TGFβ can direct-
ly suppress the effector function of CD4+ and CD8+ T cells by
transcriptional regulation of cytotoxic mediators granzyme,
perforin, and interferon [20]. In addition, TGFβ limits T cell
proliferation and differentiation [21, 22] but may also exclude
T cells from the tumor microenvironment by promoting fibrosis
and extracellular matrix deposition [23–25]. TGFβ gene signa-
tures have been found to be enriched among less proliferative
luminal-type tumors, raising interest in TGFβ as a potential tar-
get for hormone sensitive breast cancer [26]. Furthermore, TGFβ
is one of the most abundant factors secreted within bone and is
known to stimulate breast cancer bone metastases, which is a
common site of metastasis in hormone-sensitive breast cancer
[27]. In a mammary carcinoma model, TGFβ blockade at the
time of radiation improved radiosensitivity in vitro and in vivo by
attenuating DNA damage responses [28], as well as mediating
interferon gamma (IFNγ) production [29]. Addition of anti-PD1
to radiation and TGFβ blockade further improved survival in
murine mammary carcinoma models [29]. In light of these data,
a number of TGFβ antagonists are being developed in combina-
tion with anti-PD-1/L1 in breast cancer. M7824, a bispecific
antibody that targets both PD-L1 and TGFβ has demonstrated
in murine models an ability to increase CD8+ Tcell and NK cell
activity, and increase MHC and PD-L1 expression within the
tumor [30]. In a small trial, anti-TGFβ (fresolimumab) was eval-
uated in combination with palliative radiotherapy in metastatic
breast cancer. Three of 23 subjects experienced a best response of
stable disease; however, in a post hoc analysis, subjects random-
ized to the higher dose of fresolimumab had a significantly higher
median OS (HR 2.73, 95% CI 1.02–7.30, p = .039) [31].

Human Epidermal Growth Factor Receptor 2–Positive
Metastatic Breast Cancer

HER2 overexpression is found in 15–20% of invasive breast
cancers and is associated with aggressive behavior and poor

survival related to metastatic recurrence [32]. Targeted anti-
HER2 treatments function by inhibiting intracellular signal-
ing, but also by facilitating antibody-dependent cellular cyto-
toxicity (ADCC), which relies on both the innate and adaptive
immune system [33–35]. Furthermore, anti-HER2 antibodies
have been shown to synergize with anti-PD-1/L1 inmammary
carcinoma models [36]. A number of trials are evaluating anti-
PD-1/L1 with anti-HER2 antibodies +/- chemotherapy. The
phase Ib/II PANACEA trial assessed pembrolizumab plus
trastuzumab in trastuzumab-resistant advanced HER2+ BC,
and showed an overall response rate (ORR) of 15% (90% CI
7–29%) among patients with PD-L1 positive tumors and ORR
of 0% in patients with PD-L1 negative tumors [37]. There is
an ongoing phase III study evaluating first-line paclitaxel plus
trastuzumab plus pertuzumab with or without atezolizumab
for metastatic HER2-positive breast cancer (NCT03199885).

Ado-trastuzumab emtansine (T-DM1, Kadcyla) is an
antibody-drug conjugate that combines trastuzumab with a po-
tent cytotoxic moiety, emtansine. In preclinical evaluations, T-
DM1 potently synergized with ICIs including anti-CTLA-4 and
anti-PD-1, resulting in massive T cell infiltration, tumor rejec-
tion, Th1 helper T cell polarization, and T regulatory depletion
[38]. However, the phase II KATE2 study of trastuzumab-
emtansine plus placebo versus atezolizumab in HER-2+ ad-
vanced BC failed to demonstrate a clinically significant im-
provement in PFS (HR 0.82, 95% CI 0.55–1.23, p = .33)[39].
Similar to the PANACEA trial, subjects with PD-L1-positive
tumors had numerically higher PFS and ORR [39], indicating
that biomarker-driven patient selection may be important for
further clinical development of anti-PD-1/anti-HER2 combina-
tion approaches in HER2-positive breast cancer.

Additional immunotherapies are being developed to capital-
ize upon ADCC as a mechanism of tumor cell death.
Margetuximab is an anti-HER2 antibody with a genetically en-
hanced fragment crystallizable (Fc) region that allows for in-
creased FcγRIIIA receptor affinity, which may optimize
ADCC-dependent tumor killing by natural killer (NK) cells,
particularly in patients with a CD16A low-affinity binding ge-
notype. In a recent phase III trial, margetuximab was associated
with modest increases in PFS compared with trastuzumab in
HER2+ BC 5.8 mos vs 4.9 mos (HR 0.76, 95% CI 0.59–0.98,
p = 0.033), and of comparably greater benefit in patients with a
low-affinity CD16A-F allele PFS 6.9 mos vs 5.1 (HR 0.68 95%
CI 0.52–0.90, p = 0.005) [40, 41•]. Margetuximab may have
unique promise if evaluated in combination with other modula-
tors of ADCC and adaptive immune response. For example, a
phase I study of margetuximab plus pembrolizumab is currently
in progress (NCT02689284). There are tri-specific antibodies in
development that also exhibit enhanced Fc receptor binding in
addition to targeting of two surface antigens [42].

Another unique aspect of HER2-positive metastatic breast
cancer is the potential for the HER2 protein to serve as a
tumor-associated antigen. Nelipepimut-S, also known as E75,
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is a 9-amino acid peptide from the extracellular domain of
HER2/neu and is capable of eliciting an anti-HER2 immune
response. Preclinical data suggested the addition of
granulocyte-macrophage colony–stimulating factor (GM-CSF)
to nelipepimut (NeuVax) may induce proliferation, maturation,
and migration of dendritic cells [43]. Recently, the phase III
PRESENT study failed to show benefit of nelipepimut plus
GM-CSF for prevention of cancer recurrence in patients with
early-stage low-intermediate HER2 positivity [44]. Similarly, a
recent phase IIb trial evaluating nelipepimut plus trastuzumab
failed to improve disease free survival (DFS) among the
intention-to treat (ITT) population (HR 0.62, 95% CI 0.31–
1.25, p = 0.18); however, there was a significant benefit in the
triple negative breast cancer (TNBC) subgroup (HR = 0.26, p =
.013) [45]. Setbacks in clinical development of short peptide–
based vaccines has fueled ongoing investigation into different
modes of vaccination, including autologous cells, DNA, and
dendritic cell (DC)–based vaccines, as well as ongoing evalua-
tion of combinations with various adjuvant therapies.

Triple Negative Metastatic Breast Cancer

Lack of targets and limitations of standard cytotoxic chemother-
apy have prompted exploration of combination immunotherapy
strategies in TNBC. In a phase III trial (Impassion130), the
addition of atezolizumab to chemotherapy (nab-paclitaxel) was
demonstrated to improve PFS and lead to a clinically significant
improvement in OS among PD-L1-positive unresectable/
metastatic TNBCs (PFS 7.5 v 5.0 mo, HR = 0.62; 95% CI,
0.49 to 0.78; p < 0.001), leading to Food and Drug
Administration (FDA) approval for this indication [2••].
Interim analysis of the ongoing phase III KEYNOTE-522 trial
which evaluates pembrolizumab plus chemotherapy in the neo-
adjuvant and the adjuvant settings in TNBC demonstrated im-
provement in the pathological complete response rate regardless
of PD-L1 status [46•]. Additionally, there are several ongoing
phase III trials evaluating various chemotherapy backbones
combined with anti-PD1/L1 (Table 1). Other emerging targets
for combination therapy in TNBC include poly(ADP-Ribose)
polymerase 1 (PARP) inhibitors, tyrosine kinase inhibitors, im-
mune co-stimulatory/co-inhibitory antibodies, androgen recep-
tor antagonists, and epigenetic modulators [47]. For more in-
depth reading, see article by Kim (this issue).

Deficiencies in homologous recombination correlate with
improved response to platinum-based chemotherapy and
PARP inhibitors [48–51], particularly in breast cancers with
germline/somatic mutations in the BRCA1/2 gene [47]. There
is emerging interest in combination ICI with PARP inhibitors
[52]. Preclinical data suggests that PARP inhibition upregulates
PD-L1 expression in breast cancer cell lines and animal models.
Furthermore, blockade of cytotoxic T lymphocyte antigen 4
(CTLA-4)—a T cell co-inhibitory molecule—was shown to be
effective in combination with PARP inhibitors in an ovarian

cancer BRCA-deficient model [53, 54]. A phase I/II trial of
niraparib with pembrolizumab in advanced TNBC has achieved
an ORR of 28% and disease control rate (CR/PR or SD ≥ 16
weeks) in evaluable patients of 80% [55]. Several ongoing trials
are evaluating PARP inhibition plus ICI (NCT03167619, NCT
03801369, NCT02484404, NCT03330405) in breast cancer.

Emerging Combination Immunotherapy
Approaches

A recent systematic review identified 107 molecules targeting
16 immune checkpoint pathways in clinical development in
published literature [56•] (Table 2). A comprehensive review
of all possible combination approaches is beyond the scope of
this paper, but selected combination approaches and mecha-
nisms will be reviewed (Fig. 1).

Combination with Initiators of Immunogenic Cell
Death

Immunogenic cell death is a form of cell death sufficient to induce
an adaptive immune response through molecular signaling [57].
Damage-associated molecular pattern (DAMP) signaling acti-
vates DCs via toll-like receptors (TLRs) and results in initiation
of tumor-specific B cell and T cells adaptive responses [58].
Standard approaches for the treatment of breast cancer, including
radiotherapy (RT) and chemotherapy, have the ability to induce
immunogenic cell death. In amelanomamodel, anti-CTLA4with

Table 2 Next-generation immune modulator pathways classified by
cell type and action

Stimulatory Inhibitory

Lymphoid OX-40
GITR
4-1BB (CD137)
ICOS

LAG-3
TIM-3
TIGIT
Adenosine signaling pathway

Non-lymphoid PAMP/DAMP receptors
CD-40

IDO1
CSF-1/CSF-1-receptor
TGF-β
CD47/SIRPα
Chemokines

Natural killer KIR-2
IL-15

NKG2A

GITR, glucocorticoid-induced tumor necrosis factor-receptor (TNFR)-re-
lated; ICOS, Inducible co-stimulator; LAG-3, lymphocyte activation
gene-3; TIM-3, Transmembrane immunoglobulin and mucin domain 3;
TIGIT, T cell immunoglobulin and ITIM domain; PAMP, Pathogen-asso-
ciated molecular pattern; DAMP, Damage-associated molecular pattern;
IDO-1, Indoleamine-2,3-dioxygenase 1; CSF-1, Colony-stimulating fac-
tor-1; TGF-β, Transforming growth factor-beta; SIRPα, Signal-regulato-
ry protein alpha; KIR2R, Killer-cell immunoglobulin-like receptor; IL-15,
Interleukin-15; NKG2A, natural killer gene 2A
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RTwas associated with PD-L1 upregulation, and the addition of
anti-PD-L1 reversed T cell exhaustion, promoted clonal T cell
expansion within the tumor, and enhanced response [59].
Numerous current trials are ongoing to determine optimal dosing
and schedule of RT for immunogenic purposes. Cytotoxic che-
motherapy has immune-modulatory effects such as expanding or
activating NK cells, DC cells, and T cells; depleting tumor-
associated macrophages, myeloid derived suppressor cells, T-
regs, and IFNγ and PD-L1 upregulation [60–63]. Since the
FDA approval of atezolizumab with nab-paclitaxel, this has be-
come a robust area of research, with several phase III trials
assessing utility of dual chemotherapy with ICI (Table 1).

Dual Co-inhibition

Dual ICI co-inhibition with anti-CTLA-4 plus anti-PD-1/L1 is
associated with improvements in PFS and OS in melanoma,

and there is preclinical data to support its use in breast cancer
[64]. A pilot trial of durvalumab (anti-PD-L1) plus
tremelimumab (anti-CTLA-4) in metastatic breast cancer re-
sulted in an ORR of 17% with 0% ORR among ER-positive
patients, but an ORR of 43% among TNBC patients, suggest-
ing patients with TNBC, may be more likely to benefit [65].
There are several phases I and II studies in breast cancer uti-
lizing dual ICI (see Table 1). One legitimate concern is toxic-
ity, with a recent analysis of melanoma/renal cell carcinoma
trials demonstrating increased efficacy but a near doubling of
grade 3–4 toxicity compared with single-agent ICI [66, 67••,
68, 69]. Retrospective analyses have demonstrated that re-
sponses to dual ICI may persist well beyond treatment discon-
tinuation related to toxicity [70•]. A number of guidelines
have been published to guide clinicians on how to effectively
manage immune-related toxicities. Clinical trials are ongoing
to evaluate whether toxicities could be mitigated by reducing

STING

IL-2

IL-12

OX-40L

T cell agonists

Antigen presenting cell

activation and maturation

Tumor antigens

NK cell

RT

Chemo

Cryo

oncolytic virus

Cytotoxic therapies

Tumor

Checkpoint 

blockade

PD-1

CTLA-4

TGF-B

T cell antagonist
Antibody-dependent

Cellular cytotoxicity

Effector T cell activation

Fig. 1 Illustration of selected mechanisms modulating immunogenic cell
death. Cytotoxic therapies such as radiotherapy, cryoablation,
chemotherapy, and oncolytic viruses in addition to natural killer (NK)
cells induce tumor cell antigen release. Tumor antigens are associated
with damage-associated molecular pattern (DAMP), which activates
antigen-presenting cells. Subsequent T cell activating signaling by

STING pathway, IL-2 and IL-12, and OX-40L induces effector T cell
maturation and activation. Effector T cells are capable of antibody-
dependent cellular cytotoxicity (ADCC) against tumor cells. Tumors are
capable of immune-evasion strategies such as PD-1 and CTLA-4
expression to counter ADCC and TGF-β signaling to suppress effector
T cell activation
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dosing and/or frequency of anti-CTLA-4 [71]. Additionally,
there exist strategies to block tumor cell evasion by targeting
alternative immune checkpoints such as TIM-3, LAG-3, and
BTLA-4. (Table 2)

To date, the majority of clinically investigated ICIs target T
cells, yet there are additional cell types that may facilitate anti-
tumor immunity, each with targetable co-inhibitory molecules.
For example, CD47 is expressed on tumor cells and interacts
with signal regulatory protein alpha on macrophages to trigger
a “don’t eat me” signal [72]. CD47 is an innate immune check-
point whose overexpression correlates with poor prognosis [73].
Targeting the CD47 protein may be relevant in combination with
anti-HER2 antibody therapy or other antibody-based therapies,
as blockade of CD47 may enhance antibody-mediated phagocy-
tosis of tumor cells via ADCC. In a phase I study, an anti-CD47
molecule (ALX148) was safely combined with trastuzumab, and
was associated with an ORR of 22% among trastuzumab-
resistant gastric cancers [74]. Although CD47 signaling involves
innate immune cells, murine models also suggest that CD47
blockade improves CD8+ T cell response [75, 76]. ALX148
was also safely combined with pembrolizumab (anti PD-1), with
encouraging activity in non-small cell lung cancer and head/neck
squamous cell cancer cohorts [77].

A number of antibody-drug conjugates are being devel-
oped in breast cancer, such as trastuzumab-deruxtecan (DS-
8201a) which is a novel drug-antibody combination which
pairs anti-HER targeting with a topoisomerase-inhibitor.
There are two ongoing phase Ib trials assessing DS-8201a in
combination with ICI in mBC: one with pembrolizumab
(NCT04042701) and one with nivolumab (NCT03523572).

Sacituzumab govitecan combines Trop-2 targeting with a
topoisomerase-inhibitor and was shown to be active in
pretreated TNBC, with an ORR of 33.3% (95% CI 24.6–
43.1) and median duration of response 7.7 months (95% CI
4.9–10.8) [78]. There are no reported preclinical or clinical
trials evaluating the combination of sacituzumab with ICIs
or other immunotherapies in breast cancer; however, this is
an active area of interest.

Bispecific dual immunomodulators combining two inhibi-
tory functions are being explored [79]. Ongoing is a phase 1
trial of XmAb20717, a combined PD-1 x CTLA-4 antibody in
selected advanced solid tumors (NCT03517488). Its safety
data will be reviewed with interest as combinations of anti-
PD-1/L1 plus anti-CTLA-4 are known to be more toxic than
monotherapy. LAG-3 is a surface molecule which binds to
major histocompatibility complex II (MHCII) on antigen pre-
senting cells, and may serve to block T cells from binding
MHCII and becoming activated. [80] A number of antibodies
against LAG-3 are in development, as well as bispecific anti-
bod ie s tha t engage bo th LAG-3 and PD-1 /L1 .
(NCT03219268, NCT03440437).

Co-stimulation and Co-inhibition Combination
Approaches

There exist numerous co-stimulatory targets including the tumor
necrosis factor receptor (TNFR) family members OX40, 4-1BB,
and GITR [81–84]. OX40 is expressed on CD4+ and CD8+ T
cells and when ligated, has the ability expand Tcells, improve T
cell effector function, improve T cell memory, and facilitate

Table 3 Selected vaccine/oncolytic combination trials in metastatic breast cancer

Vaccine agent Combination agent Phase of study NCT identifier

Oncolytic virus–based vaccine

T-VEC Atezolizumab Phase I NCT03256344

T-VEC Paclitaxel Phase I/II NCT02779855

T-VEC Phase II NCT02658812

T-VEC Paclitaxel or endocrine therapy Phase I NCT03554044

Dendritic cell–based vaccine

Tumor blood vessel antigen Gemcitabine Phase I NCT02479230

Tumor cell–based vaccine

SV-BR-1-GM (GM-CSF secreting line) Pembrolizumab Phase I/II NCT03328026

Peptide-based vaccines

PVX-410 (XBP1, CD138, CS1) Pembrolizumab Phase I NCT03362060

HER2 intracellular domain Polysaccharide-K + pertuzumab or trastuzumab Phase I/II NCT01922921

Personalized synthetic long peptide Nab-paclitaxel + durvalumab Phase II NCT03606967

LTX-315 (oncolytic peptide) Ipilimumab or pembrolizumab Phase I NCT01986426

Carbohydrate-based vaccines

Globo H carbohydrate antigen Cyclophosphamide Phase II/III NCT01516307

T-VEC, Talimogene laherparepvec; GM-CSF, granulocyte-macrophage colony-stimulating factor; XBP1, X-box binding protein 1; CS1, Cyclin D3
(CCND3) subset 1
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tumor clearance [85]. In mammary carcinoma models, anti-
OX40 plus anti-PD-L1 was more effective than monotherapy
in inducing regression [86, 87], and was associated with in-
creases in tumor-specific T cells. [86] In an independent study,
anti-OX40 plus anti-CTLA-4 plus HER2 vaccine seemed to
reverse T cell anergy, enhance CD8+ T cell effector function,
and increase longevity of memory T cell response [88]. A
bispecific antibody targeting CTLA-4 and OX40 (ATOR-
1015) has demonstrated efficacy in tumor models and is being
tested in a phase 1 trial (NCT03782467) [89]. Timing of PD1/L1
blockade may be crucial for the efficacy of combination therapy.
For example, in mammary carcinomamodels, sequential admin-
istration ofOX-40 followed by anti-PD1wasmore effective than
monotherapy, whereas concurrent blockade was not effective
[90, 91], and was associated with high levels of peripheral cyto-
kine production. Anti-OX40 has also been combined with radi-
ation in a phase I trial (NCT01862900) which provided stereo-
tactic body RT to metastatic lesions in the liver or lung with
aOX40-mAb in metastatic breast cancer [92]. These targets
may be more effective when combined with modulators of in-
nate immunity, such as with ligands of the DNA-sensing stimu-
lator of interferon genes (STING) pathway [93]. STING protein
is expressed in multiple cell types including macrophages, T
cells, DCs, and can trigger an anti-cancer immune response
[94]. In a mousemodel, STING signaling improved tumor clear-
ance in combination with anti PD-1 and anti-OX40 [93].

Tumor Microenvironment Modulation

Cytokines may exhibit inhibitory or stimulating effects and,
therefore, can be therapeutically targeted [95, 96]. One ex-
ample TGFβ, a multipotent cytokine which is described
above in the context of hormone-sensitive breast cancer.
Other cytokines being evaluated with anti-PD-l/L1 in breast
cancer include intratumoral IL-12 and pegylated IL-2. IL-12
is a potent inflammatory cytokine that induces IFNγ pro-
duction and Th1 T cell response, but is too toxic for sys-
temic administration. In a mouse model, intratumoral IL-12
was associated with improved antitumor responses when
delivered in combination with anti-PD-1 [97]. A pilot study
has been conducted in metastatic TNBC whereby
intratumoral IL-12 plasmid was safely administered by elec-
troporation, and was associated with increases in TIL count
by immunohistochemistry (from mean 3 to 11% by day 28
of treatment, vs 5% in untreated tumors by day 28) [98]. A
phase II study combining intratumoral plasmid IL-12 with
pembrolizumab is in progress [99].

IL-2 is a central factor for orchestrating an anti-tumor im-
mune response, and is associated with activation and prolifer-
ation of both CD8+ and CD4+ T cells. Systemic administra-
tion is FDA-approved for the treatment of metastatic melano-
ma and renal cell carcinoma (RCC); however, the therapy is

toxic with a narrow therapeutic window and requires inpatient
administration. The pegylated IL-2 prodrug, NKTR-214, is
associated with prolonged half-life and favorable pharmaco-
kinetics, enabling outpatient administration and reduced tox-
icity. NKTR-214 was effective in combination with ICI in
both melanoma and mammary carcinoma models [100]. In a
phase I study, NKTR-214 was shown to be well-tolerated
relative to systemic IL-2 in a phase I study (grade III adverse
event rate of 18%), with preliminary signals of clinical activity
in melanoma/RCC [101]. The combination of NKTR-214 and
nivolumab is currently being assessed in phase I and II studies
in breast cancer (NCT02983045, NCT03435640).

Antigenic Cell Death: Radiation Therapy
and Cryoablation

The abscopal effect, whereby the immune system creates a
robust response against distant metastases following local
treatment, powerfully illustrates the concept of immune-
mediated cell death [102]. Radiotherapy and cryotherapy are
well-established locally focused anti-cancer treatments which
are being combined with immunotherapy in attempt to en-
hance known immunogenic effects against cancer [103]. The
combinations of RT with immunotherapy and cryoablation
with immunotherapy face hurdles to development such as
establishing effective dosing, the optimal number of treat-
ments, timing of intervention, and optimal immunotherapeutic
combination agent.

There are numerous clinical trials investigating RTwith ICI
for treatment of breast cancer. In the mTNBC setting, a single-
arm phase II study assessing the combination of RT with
pembrolizumab demonstrated a partial response of 33% in 9
of 17 patients eligible at 13 weeks, 11% with stable disease in
patients unselected for PD-L1 expression [104]. In contrast, a
single-arm phase II study in HR+/HER2- mBC evaluated RT
with pembrolizumab in the palliative setting and did not dem-
onstrate a clinical benefit, though reported no unexpected ad-
verse events [105]. Ongoing are several other studies includ-
ing a pilot trial investigating the combination of preoperative
pembrolizumab and RT boost prior to standard of care surgery
and adjuvant RT (NCT03366844). In metastatic breast cancer,
a combination of brain radiation with tremelimumab and
durvalumab is being assessed in a pilot phase for patients with
mBC with intracranial involvement (NCT02563925), and a
phase II study is currently evaluating the efficacy of
pembrolizumab with RT in mTNBC and high-risk hormone-
positive disease (NCT02730130).

The possible permutations of RT with existing immuno-
therapies are vast, and combinations of RTwith PARP inhibi-
tion, OX-40 signaling, TGF-β inhibition, and vaccines among
others which will be discussed in a separate review in more
detail (this issue).
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Several existing trials of cryotherapy in combination with
immunotherapy in local non-metastatic cancers offer implica-
tions for future treatment of metastatic disease. A pilot study
utilizing cryoablation with ipilimumab demonstrated safety in
women with operable breast cancer [106]. A phase II random-
ized study of perioperative ipilimumab, nivolumab, and
cryoablation versus standard care in resectable TNBC follow-
ing standard of care neoadjuvant therapy is ongoing [107].
The number of cryoablative treatments and timing for optimal
outcome needs to be established; in one retrospective obser-
vational study of patients with metastatic breast cancer, mul-
tiple cryoablations were associated with greater median OS
compared with single cryoablations (76 months vs 48 months,
p = 0.0005) [108].

Antigen Delivery and Antigenic Cell Death:
Vaccines and Oncolytic Viruses

Vaccines may be in the form of peptides, carbohydrates, or-
ganelles, and cells. They have the potential to enact powerful
effector functions, or alter the tumor microenvironment to
support an immune response. Critical to the success of vac-
cines is the proper selection of antigen, vector, adjuvant, route,
dose, and schedule [58]. Combinations of vaccines with ra-
diotherapy and chemotherapy are ongoing areas of research
and covered in more detail in accompanying reviews (this
issue). In addition to HER2-directed vaccines, another prom-
ising target is the mannose receptor, as shown in a phase II
study of oxidized mannan-MUC1 which demonstrated en-
couraging reductions in recurrence rate (12.5% versus 60%)
in a small study [109]. The multivalent poxviral–based cancer
vaccine, PANVAC, which targets CEA and MUC1 and also
contains genes for costimulatory molecules B7.1, ICAM-1,
and LFA-3, showed a numerically increased PFS of 7.9
months vs 3.9 months when combined with docetaxel (HR
0.65, 95% CI 0.34–1.14, p = 0.09) [110].

Cell-based vaccines can induce broad activation of the im-
mune system, and decreased resistance of tumor cells. SV-BR-
1-GM (GVAX) is composed of tumor cells transfected with
the GM-CSF gene. These cells over-express genes encoding
tumor-associated antigens, and express MHC II and other
immunostimulatory proteins which facilitate a coordinated
anti-tumor response [111]. In a phase I study, GVAX was
associated with regression of distant metastases [111, 112].
GVAX is currently in phase II trials (NCT03328026) in com-
bination with pembrolizumab.

Proteasome inhibition thus poses an attractive target by
which to enhance the accumulation of misfolded protein,
which triggers an unfolded protein response and leads to cell
cycle arrest and apoptosis, an approach that is promising in
breast cancer models [113–115]. A phase II trial of 12 patients
did not show any benefit against mTNBC as monotherapy

[116]. However, a small study demonstrated a trend of im-
proved PFS in hormone-sensitive breast cancer when com-
bined with fulvestrant (PFS 5.4 v. 9.0 months, HR 0.73,
95% CI 0.49–1.09 p = 0.06) [117]. Inhibition of the protea-
some can also been explored as a method of generating vac-
cines against intracellular proteins that are otherwise seques-
tered from antigen presentation via the autophagy process
[118]. An ongoing study is evaluating an autophagy-based
vaccine in combination with anti-PD-1 and anti-OX40 in met-
astatic TNBC (NCT02737475).

Oncolytic viruses have been approved for use in melanoma.
Talimogene laherparepvec (T-VEC) is an HSV-1 virus modified
to replicate in tumor cells and express GM-CSF to increase
tumor-antigen presentation by dendritic cells. T-VEC is current-
ly being evaluated in breast cancer in combination with anti-
CTLA4, chemotherapy, or endocrine therapy (Table 3). CVA21
(CAVATAK) is a coxsackie-based oncolytic viruswhich adheres
to ICAM-1 in order to enter a cell, then eventually lyses the cell
releasing more viruses which can perpetuate cell lysis [119]. In
mammary carcinoma models, CAVATAK in combination with
doxorubicin resulted in synergistic cell death [120]. A non-viral
oncolytic strategy utilizing the peptide LTX-315 is studied in a
phase I trial in combination with ipilimumab or pembrolizumab
(NCT01986426).

Conclusion

Combination immunotherapy strategies are intriguing as they
may generate a more complete and durable response against
tumors. However, at this point, the field is dominated by pre-
clinical data and phase I evaluations. The sheer number of
possible combination approaches is daunting and presents a
unique challenge for the future of drug development. Novel
adaptive clinical trial designs will hopefully enable more effi-
cient screening of these combination approaches, as well as
the development of next-generation biomarkers that will allow
us to personalize combination immunotherapy according to
the biological characteristics of a patient’s tumor and pre-
existing immune response.
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