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Abstract
Purpose of Review Immune checkpoint blockade (ICB) has changed the clinical course of multiple cancer types and durable
responses have now been observed in breast cancer (BC) patients. Most data suggest that, compared to other subtypes, triple-
negative BC (TNBC) patients are more responsive to ICB, and anti-PD-L1 therapy is now approved in PD-L1+ metastatic
TNBC, in combination with chemotherapy.
Recent Findings Nearly 40% of PD-L1+ TNBC patients did not respond to this combination. Thus, additional biomarkers appear
to be necessary to more precisely identify potential responders. A comprehensive analysis of the breast tumor microenvironment
(TME) and peripheral blood may identify potential biomarkers for a more accurate selection of patients likely to respond to ICB.
Summary Herein, we summarize key features of the breast TME, and beyond, that may hold predictive power in determining
immunotherapy benefit. Incorporation of these features in controlled clinical trials may help further guide personalized care for
BC immunotherapy.
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Introduction

The PD-1/PD-L1 axis is a critical component of peripheral
tolerance. This pathway is meant to serve as an ‘off switch’
for T cells following a successful adaptive immune response
and suppress prolonged or chronic inflammation, limiting po-
tential autoimmunity. However, tumors can evade T cell-
mediated responses by expressing PD-L1 which, when

engaged with PD-1 on T cells, disrupts effector T cell activity
and promotes exhaustion [1]. Importantly, PD-L1 can be
expressed on many cell types in the TME, including tumor
cells, stromal cells, and immune cells (macrophages, dendritic
cells, and rare lymphocytes) [2].

To date, PD-L1 expression on tumor-associated stromal
cells is the only biomarker shown to be predictive of ICB
benefit in phase III randomized controlled BC trials.
However, lack of harmony in evaluating PD-L1 status could
impact the utility of this biomarker. The Food and Drug
Administration (FDA) has approved four unique PD-L1 anti-
body clones, including Dako 28-8, Dako 22C3, Ventana
SP142, and Ventana SP263. In addition to the different PD-
L1 epitopes recognized by these clones, various staining pro-
tocols and scoring systems have been used to evaluate PD-L1
positivity, which negatively impacts study-to-study compari-
sons. Since the results of the IMpassion130 trial were report-
ed, multiple groups have sought to understand the differences
in performance between these assays. Two groups recently
found that the SP142 assay could erroneously identify PD-
L1-positive tumors as PD-L1-negative, regardless of the per-
cent cut-offs set for benefit assessment [3]. Oyan et al. found
that compared to the SP263 and 22C3 assays, the SP142 assay
underperformed at detecting PD-L1 expression on tumor cells
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[3]. More importantly, for ICB prediction in BC, another
group that produced a similar result using a single pathologist
also reported that the SP142 assay detects significantly fewer
PD-L1-positive immune cells compared to all other assays
[4•].

Despite the perception that the studies comparing anti-PD-
L1 clones might clearly identify the superior PD-L1 detection
assay, other experimental details must be carefully examined
when interpreting the data. First, it must be considered that
although the two studies mentioned above compared assays
among the same tissues, intratumor heterogeneity can skew
this comparison. In addition, formalin-fixed, paraffin-
embedded tissues may have reduced sensitivity versus frozen
tissues when using the same PD-L1 staining protocol [5, 6].
Thus, it is crucial that standards be set for evaluating PD-L1
positivity, as PD-L1 expression currently stands as the most
widely accepted biomarker.

Much of the work addressing anti-PD-L1 safety and effi-
cacy in BC has focused on PD-L1-positive patients. Early
studies, such as the phase 1 trial conducted by Schmid et al.
in 115 metastatic TNBC patients, revealed that PD-L1-
positive (≥ 5%) patients had higher responses to atezolizumab
than PD-L1-negative patients (ORR, 17% vs. 8%) [7••]. In
contrast, the phase 1b JAVELIN study, which included locally
advanced or metastatic BC of all subtypes, three different
criteria were used to stratify patients based on PD-L1 expres-
sion on either tumor cells or immune infiltrates [8••]. The
study showed that PD-L1 expression, whether on tumor cells
or immune infiltrates, did not predict response to avelumab
[8••]. Instead, it was found that TNBC patients with dense
aggregates of tumor-associated immune cells (n = 12) had
an ORR of 16.7% compared to a 1.6% ORR in the entire
cohort (n = 24) [8••]. These studies suggest that PD-L1-
positive immune cells are associated with anti-PD-L1 benefit,
but only in a subset of patients. The small percentage of re-
sponders with PD-L1-negative tumors also indicates a need to
refine biomarker strategies. Finally, one should consider that
(1) since the SP142 assay appears to be the least sensitive
assay and (2) since the number of infiltrating immune cells
likely demonstrates some linearity with prevalence and inten-
sity of PD-L1 expression, that PD-L1 staining of immune cells
may simply be a proxy for those with the most robust tumor-
immune infiltrate.

Indeed, in the IMpassion130 trial, which led to the approv-
al of atezolizumab and nab-paclitaxel in metastatic TNBC, it
was PD-L1 expression on infiltrating leukocytes, not tumor
cells, that was associated with benefit to anti-PD-L1 [9••].
Among patients with PD-L1-expressing tumors (≥ 1%), those
receiving atezolizumab and nab-paclitaxel had an ORR of
58.9% (95% CI, 51.5–66.1) compared to 42.6% (95% CI,
35.4–50.1) of patients who received placebo and nab-pacli-
taxel, although these responses were more durable in the
atezolizumab arm [9••]. Since the results from the

IMpassion130 study and others mentioned above suggest that
PD-L1 expression alone does not provide enough information
to fully predict ICB response, several other potential bio-
markers are being evaluated in the clinic. Table 1 displays
several selected ongoing clinical trials in which some of these
potential biomarkers are included in the enrollment criteria.
This review focuses on recent clinical findings on the predic-
tive capacity of potential biomarkers for ICB response and
survival. We discuss the mechanisms that contribute to the
behavior of these biomarkers in the context of tumor-
immune interactions, which are largely governed by host
and tumor genetics.

Breast Cancer Immunogenicity

BC typically harbors a lower intratumoral immune presence
than most other malignancies. However, some BC subtypes
tend to be more immunogenic with increased inflammation
compared to others [10, 11]. Spatially, the composition of
various immunologic compartments can add to this complex-
ity, enhancing the potential sources of heterogeneity. The tu-
mor and immune system interact on different levels, whether
in the tumor itself, the tumor-adjacent stroma, or any adjacent
or regional lymph nodes or tertiary lymphoid structures [12].
The immune composition in these compartments may have
vastly different physiological consequences and can change
as disease progresses. In addition, treatment options used as
standard-of-care (e.g., radiotherapy or chemotherapy) can
have immunologic consequences [13].

Nearly two-thirds of diagnosed breast tumors are estrogen
receptor (ER) and/or progesterone receptor (PR) positive, col-
lectively referred to as hormone-receptor (HR)-positive [14].
Immune cells are scarce in most HR-positive tumors, which
has been attributed to factors including general immune sup-
pression and the lack of sufficient numbers of tumor-
expressed T cell antigens to trigger anti-tumor immunity
[15]. Interestingly, while patients with HR-positive tumors
respond well to hormone therapy initially, many acquire resis-
tance or progress to metastatic disease and demonstrate higher
numbers of mutations, possibly via enhanced activity of
APOBEC nucleotide-modifying enzymes [16].

Human epidermal growth factor-receptor 2 (HER2)-posi-
tive tumors, caused by the HER2/ERBB2 gene amplification,
are also often HR-positive [17]. However, these tumors are
often more immunogenic than luminal, HER2-negative tu-
mors [18]. Some evidence shows that HER2-positive tumors
exhibit greater numbers of antigens than ER+/PR+ HER2-
negative counterparts [19]. Importantly, HER2 overexpres-
sion sustains tumor growth, but can also trigger an HLA-A2-
restricted cytotoxic lymphocyte (CTL) response to HER-2/
neu extracellular domain-derived peptide p369-377 [20].
Thus, T cells directed toward the p369-377 peptide in tumors
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overexpressing HER2 could be potential targets in an ICB
setting.

Finally, TNBCs (i.e., those lacking ER/PR expression or
HER2 gene amplification) account for 15–20% of disease and
are usually the most aggressive and invasive of the BC sub-
types [21, 22]. Given the inherent resistance to hormone ther-
apy and the high volume of TILs often found in TNBC tu-
mors, it is no surprise that the first FDA approval for ICB in
BC is in the TNBC population.

Genetic Biomarkers

Tumor Mutational Burden

The accumulation of genomic alterations is a hallmark of can-
cer. Regardless of origin, most cancers increase in genetic
instability during disease progression [23]. Loss of DNA re-
pair and subsequent genetic damage creates many avenues for
tumor cells to be recognized by the immune system as ‘non-
self’ [24]. Tumor mutational burden (TMB) is a measure of
the number of missense mutations encoded in the genome per
megabase [25]. Cells with deficient DNA repair can acquire
mutations which are carried on through daughter cell genera-
tions. While “driver” mutations (e.g., those inducing onco-
gene activation or loss of negative suppression) permit a gain
of function, most alterations to the genome have no direct
effect on cell fitness [24–26]. Thus, as a function of inherent
genetic instability, “passenger”mutations accumulate through
subsequent tumor cell generations [24, 26]. TMB can be cal-
culated using targeted next-generation sequencing (NGS)
panels, although the measurement is more precise when a
higher percentage of the genome is assayed [25]. For im-
proved utility, TMB scoring might also involve bioinformatic
algorithms that include a minimal cut-off for total genomic
content and methods to exclude genetic variants that are not
likely immunogenic [25]. Consistent with their reduced in-
flammatory nature, HR-positive, HER2-negative luminal-like
tumors generally have a lower TMB than the more clinically
aggressive HER2-enriched and basal-like/TNBC tumors

[27•]. Barroso-Sousa et al. also found that BC tumors with a
high TMB (> 10 mutations per megabase) were more com-
monly metastatic versus primary tumors [28•]. Thus, more
aggressive BC subtypes and more advanced BC tumors gen-
erally have higher TMBs, which may be important for deter-
mining potential ICB benefit.

The accumulation of TMB increases the “foreignness” of
cancer cells, which increases the probability of an anti-tumor
immune response. A higher TMB can stochastically lead to
more encoded neoantigens, and if recognized by cognate T
cell receptors (TCRs), stronger T cell effector responses. After
the stratification of breast tumors based on TMB, patients with
high TMB tumors survived longer, particularly when they had
robust immune infiltrates, while the degree of immune infil-
trate did not prognosticate low-TMB tumors [27•]. This sug-
gests that the immune system, even if capable of homing to
and interfacing with the tumor, cannot mount an efficient anti-
tumor response without a high TMB. Although the utility of
TMB as a biomarker of ICB outcome in BC remains under-
explored, there have now been preliminary reports testing this
hypothesis. For instance, the TAPUR phase II basket study
enrolled heavily pre-treated metastatic BC patients with high
TMB, regardless of HR expression (n = 28) for treatment with
pembrolizumab (anti-PD-1) [29]. The study preliminarily re-
ported a 21% ORR (95% CI, 8–41), which is promising for
ICB given as a monotherapy. Although this study did not
include a group with low TMB, it is important to note that
the KEYNOTE-086 phase II study tested pembrolizumab in
pre-treated metastatic BC patients regardless of TMB status
and observed only a 5.3% ORR (95% CI, 2.7–9.9) [30].

Neoantigen Load

While TMB is intimately linked to the number of potential
neoantigens encoded in the tumor genome, it does not provide
information on those mutations most likely to be actively
processed and loaded on major histocompatibility complex
molecules (MHCs) [31, 32•]. Neoantigen load is a refinement
of TMB and consists of altered peptide sequences derived
from the mutant gene that are predicted to bind to a particular

Table 1 Current clinical trials testing immune checkpoint blockade

Clinical trial no. Phase n Therapeutic agents BC criteria for enrollment

NCT03989089 II 44 Pembrolizumab HER2− with APOBEC3B mutation

NCT03025035 II 20 Pembrolizumab BRCA-mutated BC

NCT03820141 II 39 Trastuzumab and pertuzumab + durvalumab HER2-enriched and HER2-amplified BC

NCT03801369 II 28 Olaparib + durvalumab BRCA-wild-type metastatic BC

NCT03789110 II 14-30 Nivolumab + ipilimumab hypermutated HER2− metastatic BC

NCT02693535 II 28 Pembrolizumab TMB-high mBC

NCT03044730 II 30 Capecitabine ± pembrolizumab endocrine-refractory, HR+/HER− metastatic BC

NCT03608865 II 30 Durvalumab + tremelimumab hypermutated HR+ metastatic BC
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MHC family member [31]. In contrast, TMB could include
many mutations that cannot be loaded onto MHC molecules,
and thus inconsequential in guiding an adaptive response [31].
Using structural and experimental binding-affinity data,
neoantigen load provides information about newly formed
tumor antigens that are most likely to be presented to T cells
as non-self [31, 32•]. As with TMB, HER2-enriched and
TNBC tumors are usually associated with a higher neoantigen
load, which aligns with the presence of tumor-infiltrating lym-
phocytes (TILs) [33]. However, it is important to note that
calculating true neoantigen load requires acquisition of several
parameters, including whole exome sequencing, RNA se-
quencing (to limit the analysis to alterations that are
expressed), and a reliable method for HLA-typing the individ-
ual patient. Thus, in addition to being computationally inten-
sive, neoantigen load as a biomarker could be difficult to em-
ploy routinely in the clinic.

T Cell Receptor Repertoire Analysis

As assessing genomic features like TMB and neoantigen load
are informative methods for determining tumor antigenicity,
these tools are indirect. For this reason, several groups have
explored T cell receptor sequencing (TCR-seq) data using
NGS platforms to evaluate TCR clonality, which provides a
measurement of the proliferation or expansion of distinct pop-
ulations of antigen-specific T cells [34]. In contrast, measure-
ments of TCR diversity inform on the robustness or fitness of
the general adaptive immune system, representing the size of
the pool of potential TCR clonotypes that could be leveraged
for anti-tumor immunity [34]. The CDR3 region of TCRβ is
the most variable and can be sequenced to determine the diver-
sity of clonotypes, as well as the abundance of specific
clonotypes within the tumor [34]. Low TCRβ diversity was
associated with poor overall survival in metastatic BC patients
[35]. More recently, in a small cohort of 18 patients with met-
astatic ER-positive or TNBC tumors treated with durvalumab
(anti-PD-1) and tremelimumab (anti-CTLA-4), expansion of
multiple TCRβ clonotypes was observed in TNBC tumors
compared to ER-positive tumors. The authors speculated that
this increase in TCRβ clonotypes may reflect expansion and
proliferation of T cell clones with anti-tumor activity in re-
sponse to ICB and could be an early on-treatment biomarker
for benefit to therapy [32•]. Thus, the current data indicate that a
diverse TCR repertoire is meaningful for general survival and
control of disease, and the presence of oligoclonal T cells may
be targets and/or biomarkers for immunotherapy outcome.
Whether sequencing tumor genes to determine neoantigen loads
or analyzing the TCR repertoire, these potential biomarkers
have financial and computational limitations. Furthermore, a
gold standard method for prediction of therapeutic outcomes
must be determined in large cohorts where all information is

captured, and predictive capabilities are assessed in an unbiased
manner.

Mismatch Repair Deficiency

Mismatch repair genes correct mismatched nucleotide bases
(e.g., A/C, G/T) within the genome during DNA replication.
These errors often occur in non-coding short-tandem repeats
in the genome known as microsatellites. Mismatch repair de-
ficiency (dMMR), a form of genetic instability, occurs when
MMR genes become mutated or epigenetically silenced,
which ultimately leads to high microsatellite instability
(MSI-H) [36]. Although defective DNA repair can lead to
general increases in mutations, Vaderwalde et al. showed that
a higher MSI does not necessarily translate to a higher TMB
[37]. Thus, high MSI has been studied as a potentially inde-
pendent predictive biomarker in other cancers like colorectal
because of the high (15–20%) rate of occurrence [38]. After
promising results from the phase II CheckMate142 study for
metastatic colorectal cancer patients, the FDA-approved
nivolumab (anti-PD-1) plus ipilimumab (anti-CTLA-4) for
patients with MSI-H or dMMR tumors that progressed after
chemotherapy [39]. MSI-H and dMMR tumors are much less
common in BC patients (1–2%), but MSI-H is associated with
lower survival rates and poor disease prognosis [40, 41].
Because of the success of MSI-H as a biomarker biomarker
for pembrolizumab response, the FDA’s approval included all
solid tumor types, a first for tumor-intrinsic genetic features
[42]. The predictive capacity of this biomarker was further
demonstrated in BC when one group observed a significant
response in a metastatic dMMR TNBC patient after
nivolumab treatment [43••]. In another case testing
pembrolizumab monotherapy, a rapid response was seen in a
metastatic luminal BC patient with dMMR [44••]. Thus,
dMMR deficiency may be a universally predictive biomarker,
extending across subtypes. However, this is anecdotal evi-
dence and will require larger numbers of BC patients to con-
clusively determine if this association holds true.

BRCA1/2 Mutation Status

BRCA1 and BRCA2 are tumor suppressors involved in the
repair of DNA double-strand breaks. The mutation of one or
both of these genes and the resulting DNA repair deficiency
increases the risk of mutations in other genes and the devel-
opment of BC and ovarian cancer [45]. Germline BRCA1/2
mutations occur in about 5% of BC patients [46]. TNBC tu-
mors with germline BRCA1 mutations have higher stromal
TILs and higher PD-L1 and CTLA-4 gene expression than
tumors with wild-type BRCA1, suggesting an increased prob-
ability of a positive ICB response [47, 48]. Anti-PD-1 plus
anti-CTLA-4 therapy (but not monotherapy) significantly in-
creased the response to cisplatin in these patients [47]. The
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FDA has approved PARP inhibitors to treat patients with met-
astatic BRCA1-mutated BCs [49]. Importantly, PARP inhibi-
tors display immunoregulatory effects in murine BC models,
leading to speculation over whether these inhibitors might
work in combination with ICB [50, 51]. Similarly, in human
cells, long-term BRCA2 inhibition was shown to induce cell-
intrinsic immune signaling through the STING pathway [52].
Interestingly, in the phase III IMpassion130 trial, patients with
BRCA1/2 mutant tumors had a significantly increased PFS
from nab-paclitaxel/atezolizumab compared to BRCA1/2
wildtype tumors, but only when immune infiltrates expressed
PD-L1, suggesting that the BRCA1/2 mutation does not inde-
pendently predict response [53•]. As PD-L1 positivity on im-
mune cells was found to be the most prognostic biomarker in
this case, considering BRCA1/2 mutations provides opportu-
nity for a more personalized approach to ICB. This hypothesis
is being tested in multiple malignancies, including BC, ovar-
ian cancer, and bladder cancer [54–56].

Non-genetic TME Biomarkers

Immunogenic Cell Death

For neoantigens to effectively prime T cells, they must be
released from dying cells and engulfed by phagocytic profes-
sional antigen-presenting cells (e.g., dendritic cells). Thus, one
way to leverage potential neoantigens existing in the tumor
genome for therapy is to prime adaptive immunity by poten-
tiating their release through tumor cell death. Immunogenic
cell death (ICD), or any cell death mechanism that by nature
triggers an adaptive immune response, appears crucial for
clinical response to ICB. ICD is characterized by hallmark
increases in surface calreticulin, ATP secretion, and HMGB1
release [57]. Calreticulin expression at the cell surface sends
phagocytosis signals to antigen presenting cells [58].
Extracellular ATP recruits dendritic cells and macrophages
by binding to the P2Y2 receptor on target cells and further
triggers the maturation of myeloid-derived dendritic cells and
the expansion of macrophages [59]. The ectonucleotidases
CD39 and CD73, expressed on immune and endothelial cells,
also interact with ATP by hydrolyzing it into adenosine, giv-
ing ATP added immunosuppressive effects, including
shunting T cells away from effector activity and memory for-
mation toward immunosuppressive activity and apoptosis [60,
61]. After its release from necrotic cells and immune cells that
have recognized antigen, HMGB1 targets TLR4 to activate
dendritic cells and optimize the presentation of tumor-
associated antigens [62]. ICD inducers, such as some chemo-
therapy agents, have commonly been used to drive immune
responsiveness as an ‘adjuvant’ [62, 63•]. These have been
theorized as part of the primary mechanism behind the effica-
cy of chemotherapy, which indirectly releases tumor-

associated antigens to induce a clinically meaningful anti-
tumor response. Thus, ICD markers could be effective predic-
tive biomarkers in patients who have previously undergone
chemotherapy as part of a priming regimen for ICB.
Importantly, this line of thinking also in part forms the basis
for the nab-paclitaxel plus atezolizumab treatment schedule
for metastatic TNBC, although in most experimental studies,
taxanes are generally considered poor ICD-inducers, as op-
posed to other agents, such as topoisomerase inhibitors [57].

MHC-II Expression

Tumor cells can present cancer antigens to Tcells, and most, if
not all, of these antigens are intracellular self-antigens that
trigger cytotoxic CD8+ T cell-directed immunity. CTL re-
sponses require antigens to be presented by MHC-I. CD4+
T helper cells, on the other hand, also have significant roles
in anti-tumor immunity that have become more realized in
recent years. In addition to classical T helper activity, CD4+
T cells are crucial for an optimal anti-tumor CD8+ T cell
response [64]. Antigen presentation by MHC-II is required
for CD4+ T cell-dependent effector activity. Unlike MHC-I,
MHC-II expression is usually restricted to antigen presenting
cells. However, some tumors can express MHC-II and poten-
tially present CD4+ T cell antigens through MHC-II through
mechanisms that are not completely understood. Although the
factors driving tumor-specific MHC-II are unknown, Ras/
MAPK activation has been shown to suppress MHC-II ex-
pression in BC [65]. Tumor-specific MHC-II expression ap-
pears to drive enhanced CD4+ and CD8+ T cell recruitment
and/or expansion, interferon signaling, and high expression of
immune checkpoint molecules [66, 67]. Tumor-specific
MHC-II expression has now been reported as a biomarker
for anti-PD-1 therapy outcomes in a variety of studies and
cancer types [66, 68, 69]. Most recently, reverse protein array
analysis was conducted on tumor epithelium from 156 HR+/
HER2-negative BC and TNBC patients treated with
pembrolizumab in the I-SPY2 trial. This analysis, performed
on over 30 individual potential biomarkers, revealed tumor-
specific MHC-II expression as one of the only predictive
markers of anti-PD-1 benefit and was not associated with ben-
efit to chemotherapy alone [70••].

TILs

The abundance of TILs, a crude but easily measurable marker
of immunologic presence in the TME, has been a proposed
biomarker for response to ICB. In BC, however, TILs have a
strong prognostic value and predictive capacity when used as
a biomarker for chemotherapy response, complicating their
use as a biomarker specifically for ICB. Importantly, in BC,
the prognostic and predictive power of TILs likely depends on
regional location in association to the intratumoral space. The
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recommended method (International TILs working group) is
to evaluate stromal TILs [71]. Intratumoral TILs include im-
mune cells that have penetrated past the stroma and are direct-
ly interacting with tumor cells. Stromal TILs have no physical
contact with tumor cells and are found within the stromal areas
that run between tumor cell nests. Intratumoral TILs were
found to be difficult to evaluate on H&E-stained slides, more
heterogeneous than stromal TILs, and less reproducible [71].
A robust TIL presence was associated with disease-free and
overall survival in TNBC [72], and higher TILs predicted
response to neoadjuvant chemotherapy (NAC) in HER2-
positive BC and TNBC, but not ER-positive BC [73].

Although total TILs carry some prognostic power, individ-
ual TIL populations tell a more complex story. While high
CD8+ T cell infiltration indicates a positive prognosis,
CD4+ Tregs and gamma-delta T cells were found to be nega-
tive prognostic indicators [74, 75]. In addition, high CD8+ T
cell/Treg ratio predicted DFS and OS after NAC [76].
Molecular profiling of tumor-associated cells additionally re-
vealed that a plasma cell signature was associated with a good
prognosis, while a neutrophil signature associated with a less-
favorable prognosis [77]. These findings suggest that not only
a strong immune presence contributes to survival, but also a
relative lack of immunosuppressive features may also contrib-
ute. In the phase Ia trial that tested atezolizumab as a mono-
therapy in metastatic TNBC patients, trends toward higher
ORR and longer OS were found in patients who had > 10%
TILs or > 1.35% intratumoral CD8 T cells prior to treatment
[7••]. These findings further suggest a need for a panel of
immunemarkers tomore appropriately evaluate immune pres-
ence and the dominance of anti-tumor immune cells versus
immunosuppressive cells within the TIL population. Despite
its utility in prognosticating and predicting benefit to chemo-
therapy, the composition of stromal TILs, and the association
with immunotherapy outcomes remain to be more thoroughly
tested clinically.

ER Expression

Surface markers and genomic qualities of tumor cells can shed
light on the likelihood of a positive response to ICB. These
findings reinforce the idea that the less hormone-dependent
tumors are, the more genetically unstable and immunogenic
they are likely to be. The more immune-permissive ER/PR-
negative tumors are more likely to develop neoantigens, trig-
ger anti-tumor immunity, and foster a durable response to ICB
[15]. ER-positive tumors, particularly the luminal A subtype,
are usually accompanied by low immunogenicity, few TILs,
and a low mutational burden compared to HER2-enriched
tumors and TNBC, both of which are generally more respon-
sive to ICB [19, 71, 78, 79]. In fact, high TILs correlated with
negative prognosis in ER-positive tumors, whereas positive
associations were found in ER-negative tumors [80]. This

discrepancy might be best attributed to immunosuppressive
features of the ER that potentially enhance tumor progression.
ER can be putatively expressed on virtually all cell types that
can be found in the TME, including tumor cells, stromal cells,
endothelial cells, and immune cells [81–84]. Endogenous es-
trogen, 17β-estradiol (E2), was shown to enhance immuno-
suppressive functionality in multiple cell types, contributing
to tumor progression. In humans and mice, E2 can induce the
recruitment of M2 tumor-associated macrophages and the ex-
pansion of myeloid-derived suppressor cells within the tumor
[82, 84]. In addition, E2 treatment reduced the sensitivity of
human liver carcinoma cells to natural killer cell- and CD8+ T
cell-directed killing by inducing the expression of proteinase
inhibitor-9, a granzyme B inhibitor [81, 83]. Finally, E2-
treated mice showed higher numbers of Foxp3+ Tregs in
one study, while another study further demonstrated higher
PD-1 expression and immunosuppressive functionality in
Tregs isolated from tumors of E2-treated mice [85, 86]. The
propensity of estrogen to mediate immunologic suppression
suggests that ER expression may be a biologically functional
predictor of ICB benefit and suggest new strategies to modu-
late anti-tumor immunity in ER-positive tumors.

Serum Lactate Dehydrogenase

The minimally invasive nature of collecting peripheral blood
makes circulating biomarkers attractive to study as predictive
indicators for immunotherapy. Serum lactate dehydrogenase
(LDH) has shown promise in the clinic and has a high level of
evidence as a reasonable biomarker in multiple malignancies
including melanoma and non-small cell lung cancer [87–89].
Serum LDH serves as a surrogate for cell turnover, which
increases as tumors gain proliferative momentum and overall
aggression [90]. Under physiologically normal anaerobic con-
ditions like muscle fatigue, LDH converts pyruvate, the final
product of glycolysis, into lactate. LDH is released by cells
upon lysis or death, and increased serum LDH levels indicates
active disease [91]. Healthy humans maintain low LDH levels
that only reflect normal systemic cell turnover, which makes
LDH a potentially suitable biomarker for diseases that involve
excessive tissue breakdown, which includes not only cancer,
but also heart failure, anemia, lung, and liver disease [92].

In the TME, high LDH suppresses T cell cytokine produc-
tion and cytolytic activity. Tregs further gain metabolic advan-
tage over effector Tcells through a Foxp3-mediated shift away
from glycolysis in the glucose-poor, lactate-rich TME [93].
LDH levels usually associate with worse outcomes but seem
to provide some predictive benefit for immunotherapy. In the
phase Ib KEYNOTE-012 study that tested pembrolizumab in
patients with metastatic BC tumors that expressed ≥ 1% PD-
L1 by IHC, all five patients with high LDH levels showed
rapid tumor progression [94, 95•]. However, in a cohort of
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170 metastatic TNBC patients from the KEYNOTE-086
study, a 2% ORR (95% CI 0.1–9) was observed in patients
with high LDH levels compared to 7%ORR (95%CI 3–15) in
patients with normal or low LDH levels, but the difference
was not significant [96•]. Of note, the KEYNOTE-012 ex-
cluded PD-L1-negative tumors (41.4% of all tumors) and in-
cluded patients who had abnormally high LDH levels [95•].
Nonetheless, the predictive benefit of serum LDH seems to
vary between studies. Further investigation should help deter-
mine a standard for LDH cut-off levels and refinement of
exclusion criteria.

Conclusions

The identification of more accurate biomarkers of ICB
benefit remains an ongoing area of study. Figure 1 repre-
sents the potential ICB biomarkers that have shown the
most promise for BC patients. Understanding the immune
landscape of the TME across BC subtypes can help guide
ICB therapies toward patients who are most likely to re-
spond. Since many ‘classical’ biomarkers are either rare in
BC, or do not adequately predict response in patients, fu-
ture studies integrating multiple biomarkers could be use-
ful in optimally predicting ICB response.
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