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Abstract
Purpose  The continuous evolution of SARS-CoV-2 and possible future pandemics have risen concerns relevant to the 
effectiveness of the vaccines which are currently available. To this direction, new computational tools based on artificial 
intelligence (AI) and machine learning (ML) methods are incorporated, focusing on revealing hidden patterns and behaviors 
from, oftentimes, a great number of parameters that may affect (or not) the evolution of the pandemic.
Methods  In this study, we developed and validated prediction models of COVID-19 in-hospital mortality among vaccinated 
patients by applying Symbolic Regression (SR)-based, ML algorithms. Considering the key role of cytokines and chemokines 
in the modulation of the immune response, we employed a dataset combining several of the aforementioned biomolecules 
with commonly used laboratory markers as well as demographic and clinical data.
Results  Starting from a forty-four features dataset, we managed to restrict the total number of employed variables between 
6–8 and ended up in four possible equations accurately predicting data behavior. The feature ‘Days with symptoms from 
onset until admission’ appeared in every equation, while interleukins (ILs)-17A and -6 in 3 out of 4 models. The parameters 
‘IL-6’ and ‘IL-17A’, wherever combined led in a different survival effect on patients, compared to those cases where they 
solely appeared in an equation.
Conclusions  Our method is presented for the first time and aims to be part of a broader computational and statistical frame-
work that could aid in medical decision-making applications.
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1  Introduction

The detection and isolation of the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), the causative agent 
of COVID-19 was reported on January, 2020 [1]. Globally, 

as of 2 August 2023, there have been 768.983.095 confirmed 
cases of COVID-19, including 6.953.743 deaths, reported to 
the World Health Organization (WHO) [2]. The emergence 
of SARS-CoV-2 Variants of Concern (VOCs) [3] and wan-
ing immunity after either vaccination or infection [4] have 
increased the risks of breakthrough infection and subsequent 
hospitalization especially for people with immunocompromis-
ing conditions and/or common comorbidities such as chronic 
kidney disease, chronic lung disease and diabetes [5]. Of note, 
a recent systematic review and meta-analysis highlighted the 
marked immune escape associated with Omicron VOCs and 
symptomatic disease [6]. Hence there is a challenge of pre-
dicting severe outcomes among vaccinated inpatients with 
breakthrough SARS-CoV-2 infection [7, 8]. Machine learning 
(ML) approaches can be valuable tools to this end.

Since the start of the COVID-19 pandemic, ML has been 
used for various applications including but not limited to 
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COVID-19 detection from medical images [9] and wearables 
[10], outbreak predictions via wastewater surveillance 
[11], de novo drug design [12], assessment of vaccination 
hesitancy [13], identification of vaccination side effects 
predictors [14] and estimation of vaccines’ effects on 
mortality [15, 16], while relevant approaches based on road 
networks have been also presented [17–19]. More than 20% 
of recent research articles in ML during the past five years 
refer to medical/biomedical applications. In the context 
of COVID-19 progression and prognosis in hospitalized 
patients, ML-based predictive models have shown good 
performance facilitating the identification of high-risk 
subjects thus informing proper clinical decision making [20]. 
More recently Baker et al. [21], included vaccination status-a 
variable which few prior ML studies were able to use-as a 
predictor of mortality among inpatients with COVID-19. 
Undoubtedly, all these applications have opened the road 
to dive deeper into COVID-19 characteristics and trends 
difficult to spot with usual statistical tools. However, towards 
transparent and trustworthy Artificial Intelligence (AI), 
especially in medical science applications, it is preferable 
for a model to be fully interpretable and understandable [22].

From a technical point of view, ML, as a subset of AI, has 
been mainly utilized for data science and statistical analysis 
tasks, through supervised and unsupervised approaches [23, 
24]. It focuses on its ability to learn from data and forecast 
on unseen values of the implied dataset, both in classifica-
tion and regression problems [25]. The ML platform is usu-
ally given in the form of a “black-box” stage, which accepts 
some input features and outputs one or more dependent vari-
ables. This “black-box” model is oftentimes hard to decode. 
It lacks in interpretability and this may pose barriers in the 
whole prediction procedure and decision-making, especially 
when survival is in question.

One of the proposed techniques exploited towards this 
direction is Symbolic Regression (SR) [26, 27]. SR is capa-
ble of generating analytical equations that resemble well-
known theoretical and empirical mathematical equations, 
while driven only from data. Taking in mind genetic pro-
gramming (GP) and evolutionary computing (EC) princi-
ples, the process of extracting an equation resembles the 
mutation and crossover mechanisms of parent/child evolu-
tion in a population [28]. Although no physical limitations 
are considered during evolution, the SR algorithm usually 
searches over an infinite pool of operators, independent 
variables and constants, to find the optimal expression for 
a given dataset, in the form of an analytical equation that 
combines the important input features to extract the depend-
ent variable(s).

It is a fact that medical data from the field is oftentimes 
hard to obtain and leaves no chance of repeating a measure-
ment, especially if one takes in mind that the initial period 
of the COVID-19 pandemic had made things even more 

difficult [29]. In the literature, there are cases where medical 
scientists had to deal with little and non-representative data 
from short periods to draw their results [30]. As for the num-
ber of data points that seem adequate to train an ML model, 
there is no clear answer. There are cases where successful 
ML models have been proposed, with datasets containing 
less than a hundred values [31, 32]. When the choice of input 
parameters is previously known, it is a common choice to 
employ transfer learning to pre-train a model with massive 
data and then include new data points that emerge from new 
measurements in a post-training phase [33]. Moreover, the 
current and future direction toward generative artificial intel-
ligence would allow predictions with synthetic data [34]. 
Nonetheless, the complexity of the problem presented here 
would make it difficult to follow such approaches.

On August 9, 2023 WHO reported that the growth advan-
tage and immune escape characteristics of the Omicron EG.5 
variant, a descendent lineage of XBB.1.9.2 may increase the 
rate of new COVID-19 cases and become dominant in some 
countries or even on a global scale [35]. This continuous 
evolution of SARS-CoV-2 raises concerns relevant to the 
effectiveness of the vaccines which are currently available 
[36]. In this study, we aimed to develop and validate pre-
diction models of COVID-19 in-hospital mortality among 
vaccinated patients by applying SR-based, ML algorithms. 
Considering the key role of cytokines and chemokines in 
the modulation of the immune response, we have employed 
a dataset combining several of the aforementioned biomol-
ecules with commonly used laboratory markers as well as 
demographic and clinical data.

2 � Materials and methods

2.1 � Dataset description

We retrospectively assessed data retrieved from the CoVax 
study which involved adult vaccinated patients with break-
through SARS-CoV-2 infection who had been admitted to 
the COVID-19 Department of the University Hospital of 
Larissa, Greece [7]. Forty-four parameters each mapped to 
a mathematical representation (x1 to x44) were evaluated. 
The primary outcome was mortality prediction during hos-
pitalization (y) (Table 1). The effect of vaccine type (mRNA 
vaccine versus viral vector vaccine) on serum cytokines and 
chemokines was also examined.

2.2 � Symbolic regression/classification

Based on the theory of evolution, various programming tech-
niques have emerged, mimicking the biological processes, 
such as mutation and cross-over, and transforming them into 
explainable batches of code. The EC principle, as a superset, 
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includes the evolutionary algorithm (EA), the GP and the 
SR instances [37]. These are data-based approaches focus-
ing on extracting mathematical equations without previous 
knowledge of the system through an evolutionary process.

To deal with regression-based applications, SR employs 
the features (i.e., the input variables) of a system under 
investigation and creates a set of symbolic expressions, 
of various accuracy and complexity, aiming to describe 
its behavior. The process is usually represented by a tree-
structure with operator nodes, leaf nodes, and branches 

(Fig. 1a). Each operator node contains a mathematical 
operator, which applies on variables and constants 
coming from the leaf nodes [38]. The SR algorithm 
initially considers one or more parent tree structures and 
tries to find children structures which achieve minimum 
loss (usually, the mean squared error - MSE) through an 
iterative procedure that transforms the tree shape with 
mutation and crossover operations. The process terminates 
until minimum loss is achieved. The number of nodes and 
branches affects the corresponding equation complexity. 

Table 1   Parameters investigated for mortality prediction during hospitalization

a Sample collection dates were within 3 days of inpatient admission for cytokines and chemokines measurements

Parameter Type Parameter Type

Days Post Admission (DaysPAdsm) as to specimen collectiona int Ferritin float
Interferon Alpha (IFNa) float Creatine kinase (CPK) int
Interleukin 29 (IL-29) float Days of Hospitalization (DaysHosp) int
Interleukin 28A (IL-28A) float Fractalkine float
Interferon-Inducible T-Cell Alpha Chemoattractant (ITAC) float Interferon Gamma (IFNg) float
Days since second vaccine dose (Days2Dose) int Interleukin 10 (IL-10) float
Days with symptoms from onset until admission (DaysSympt) int C-C Motif Chemokine Ligand 20 (MIP-3a) float
Vaccine Type (Vac_Type) bool Interleukin 12 (IL-12p70) float
Sex bool Interleukin 13 (IL-13) float
Body mass index (BMI) int Interleukin 17A ( IL-17A) float
Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) float Interleukin 1 Beta (IL-1b) float
Age int Interleukin 2 (IL-2) float
Real-Time Polymerase Chain Reaction Cycle Threshold (RT-PCR CTs) float Interleukin 21 (IL-21) float
White Blood Cells (WBC) int Interleukin 4 (IL-4) float
Lymphocytes (Lym) int Interleukin 23 (IL-23) float
Platelets (PLTs) int Interleukin 5 (IL-5) float
C-reactive protein (CRP) float Interleukin 6 (IL-6) float
Creatinine float Interleukin 7 (IL-7) float
Urine float Interleukin 8 (IL-8) float
Aspartate transaminase (AST;SGOT) float Macrophage Inflammatory Protein 1-Alpha (MIP-1a) float
Alanine transaminase (ALT;SGPT) float Macrophage Inflammatory Protein 1-Beta (MIP-1b) float
Lactate dehydrogenase (LDH) int Tumor Necrosis Factor-Alpha (TNFa) float
Death (y) bool

Fig. 1   The SR/SC procedures, 
a From the two, random initial 
parents, child1 has been created 
with cross-over (change of 
a branch with a pre-existing 
branch) and child2 with muta-
tion (add a new branch), b 
mapping SR output to Boolean 
through a sigmoid function
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Equations with low complexity and low MSE are selected 
as potential solutions to the problem. The Julia-based 
programming environment PySR is employed here to 
extract the equations [39].

The SR dataflow is usually incorporated in regression 
problems, where variables are integer and floating-point 
numbers. However, in classification problems where the 
output can be binary (e.g., ‘0’ or ‘1’), the method must be 
adjusted. In this paper, we employ a symbolic classification 
scheme, where the SR equation enters a sigmoid function 
stage to transform to binary output, as shown in Fig. 1b. 
The output refers to the variable ‘Death’, with ‘0’ (all values 
below the threshold line) representing the patient survival 
and ‘1’ (all values above the threshold line) death.

2.3 � Computational model flowchart

The computational model extracts a prediction of ‘1’ or ‘0’ 
on the output parameter ‘Death’, by taking into account the 
mathematical relations of the input features. The available 
data is pre-processed and statistically analyzed before enter-
ing the calculations. Next, it is randomly divided to a train-
ing and a validation set, with a percentage of 80% and 20%, 
respectively. Training data is used to train the SR algorithm 
and validation data is used for comparison at the end of the 
calculations. At this point, the predicted output is compared 
to the validated output, which is unknown to the algorithm, 
to check the overall accuracy.

The final expression contains the input features that affect 
the result, based on training data. It is worth noticing that the 
algorithm has no prior knowledge of the system and auto-
matically weighs and selects the input features that seem to 
contribute to the extraction of the output variable. It starts 
with random construction of simple parent expressions and 
iteratively proceeds in forming child equations of various 
levels of complexity and error. The full suggested equation 
set is provided, and the final choice is made manually. The 
process is presented in Fig. 2.

3 � Results

3.1 � Statistical analysis of important parameters

During pre-processing, in order to obtain better understand-
ing of the problem, partial effects and correlations between 
all input parameters were calculated. The correlation dia-
gram is shown in Fig. 3. Taking in mind the large number 
of input parameters and the various correlations that appear 
between them, it would be beneficial to apply dimension-
ality reduction techniques to increase interpretability and 
lighten the computational burden of the method. However, 
this is anticipated by the SR mechanism applied. The SR 

has performed feature selection as part of its optimization 
process by selecting the most relevant variables to include 
in the proposed expressions.

The effect of vaccine type on cytokines and chemokines 
levels is depicted in Fig. 4. Compared to cases who had 
received mRNA COVID-19 vaccine 9 (N = 54), cases who 
had been vaccinated with viral vector vaccine (N = 20) were 
found to have higher serum levels of ITAC (p = 0.041) and 
IL-10 (p = 0.001). No significant differences were observed 
for the remaining molecules.

3.2 � Symbolic classification

As mentioned in Section 2.3, the choice of either a simple 
or a more complicated symbolic expression depends on the 
desired accuracy (in terms of MSE). Our computational 
process resulted in more than 500 possible expressions to 
choose. Since the most “complicated” equation is usually 
the most accurate, we had to weigh our decision on which 
equation to choose as to the specific understanding of the 
problem we wanted to solve. After careful investigation, 
we ended up in four possible expressions that achieved 
lower MSE and seemed to accurately follow and predict 
CoVax data behavior. They synergistically predict the out-
put ‘Death = 1’. Of note, the proposed equations originated 
without any prior hypothesis. They outputted logistic mod-
els (values ‘0’ and ‘1’) with a threshold of th = 0.5556 
(Fig. 1b), mapping the output, y, as:

Fig. 2   Computational model flowchart
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In binary classification problems, the threshold that 
distinct an ‘1’ from a ‘0’ case is typically set to th = 0.5. 
However, this threshold is not ideal for imbalanced data-
sets. The optimal threshold for our binary classification 
problem is calculated in terms of the F1 score. The F1 
score is a metric that combines both precision and recall, 
making it useful for imbalanced datasets [40].

Different input features were selected by the SC-derived 
equations. The accuracy of each equation is depicted below in 
terms of a confusion matrix and a ROC curve, which embeds 
the area under curve (AUC) metric. The confusion matrix 
employs the True Positive -TP (predicted:1 – actual:1), the True 
Negative -TN (predicted:0 – actual:0), the False Positive -FP 
(predicted:1 – actual:0) and the False Negative -FN (predicted:0 
– actual:1) values. To compare between different models, the 
one with the largest AUC is the most accurate.

Next, the four predicted equations are presented. Each 
one employs different input features. The SC algorithm 
automatically selected those features from the available 
that affected the output at most.

(1)f (y) =

{
0, y < 0.5556

1, y ≥ 0.5556

3.2.1 � Symbolic equations

The first equation, y1, employed 8 input characteristics,

 ×1  ×7  ×25  ×26  ×31  ×32  ×33  ×38

DaysPAdsm DaysSympt DaysHosp Fractalkine IL-13 IL-17A IL-1b IL-5

The second equation, y2, employed 6 input characteris-
tics, in an exponential form,

 ×7  ×8  ×10  ×32  ×34  ×39

DaysSympt Vac_Type BMI IL-17A IL-2 IL-6

The third equation, y3, employed 6 input characteristics, 
common to y2. However, it followed a different mathemati-
cal approach.

(2)y1 =
x33x38

x26 − 57.56
+ e

x7

(
−x2

31
−

0.031

x32

)
(−x1 + x25−0.989)

(3)y2 = 1.62e
−

1.752(x7 + 0.083)(x10x8 + e
0.878x32−24.248)

x34x39

Fig. 3   Input features correlation 
matrix
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Fig. 4   Comparison of serum cytokines and chemokines levels in mRNA vaccine (Group 1) and viral vector (Group 2) vaccine breakthrough 
cases. Mean value for each group is shown. T-Test p-value was > 0.05 for all molecules except for ITAC (p = 0.041) and IL-10 (p = 0.001)
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 ×7  ×8  ×10  ×32  ×34  ×39

DaysSympt Vac_Type BMI IL-17A IL-2 IL-6

Finally, the fourth equation, y4, employed 7 input charac-
teristics, in an exponential form, as

 ×7  ×12  ×25  ×31  ×38  ×39  ×40

DaysSympt Age DaysHosp IL-13 IL-5 IL-6 IL-7

3.2.2 � Accuracy metrics

Accuracy metrics for the classification output of each equation 
is presented in Figs. 5, 6, 7 and 8. The equation that achieved 
better metrics was y1. The confusion matrix (Fig. 5a) revealed 
that the model was capable of spotting 7 out of 9 ‘1s’ (‘Death’) 
from the dataset. Moreover, there was one FP prediction. The 
ROC curve (Fig. 5b) gave the AUC = 0.881, which was the 
higher obtained from this investigation.

In the first three equations, y1, y2, and y3, the prediction 
gave two FN results (Figs. 5a, 6a and 7a), meaning that 
two patients were predicted to live but they, finally, died. 
The accuracy result was further deteriorated in y4, where 
three FN results were obtained (Fig. 8a). Nevertheless, y4, 
achieved an FP = 0, i.e., it spotted all ‘Death’ = 0 instances.

(4)

y3 =
0.202x34x39

x8
√
x10 + x34 − x39

�
x32x7 + log

�
x32

�
− 1.007

� − 0.072518

(5)
y4 = e

x25x7

⎛
⎜⎜⎝
x31 + (0.015x12−1.61)

⎛
⎜⎜⎝
x40 + e

x31
x38

⎞
⎟⎟⎠
+ 1.36

⎞⎟⎟⎠
x39

3.2.3 � Symbolic equation comparison

The parameters defined as important and exploited to con-
struct the mathematical equations by the SC algorithmic 
procedure were derived without any prior hypothesis dur-
ing the calculations. Some of them appeared more than 
once, and this repetition may be further evidence of signifi-
cance. Table 2 presents the number of times specific fea-
tures appeared in the equations. The variable ‘DaysSympt’ 
appeared in all models, while ‘IL-17A’ and ‘IL6’ in 3 out 
of 4 models.

Diving deeper into the proposed equations, arguing on 
their partial effect on the respective models, it was observed 
that Equation y1 , the most accurate of four, written as

translates as follows:

Although equations y2 and y3 had different mathematical 
operators, they presented similar qualitative trends (increase 
or decrease behavior) when their input variables changed.

(6)y1 =
(IL1_b)(IL_5)

Fractalkine − 57.56
e
−DaysSympt

(
(IL_13)2+

0.031

IL_17A

)
(DaysHosp−DaysPAdsm−0.989)

y1 ↑ when

⎧⎪⎨⎪⎩

IL1

IL5

IL17A

DaysPAdsm

↑

y1 ↓ when

⎧⎪⎨⎪⎩

Fractalkine

DaysSympt

IL13

DaysHosp

↑

(7)y2 = 1.62e
−

1.752(DaysSympt + 0.083)(BMI∗Vac_Type + e0.878IL_17A−24.248)
IL2IL6

(8)y3 =
0.202 ∗ IL2 ∗ IL6

VacType
√
BMI + IL2 − IL6

�
IL17A ∗ DaysSympt + log(IL_17A) − 1.007

� − 0.072518

Fig. 5   Metrics for y1, a Confu-
sion matrix and b ROC curve
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The increase behavior:

while,

As far as equation y4 is concerned (the one with the low-
est AUC), it was written as:

Here, most features increased the equation output as:

y2, y3 ↑ when

{
IL6

IL2
↑

y2, y3 ↓ when

{
BMI

DaysSympt
↑

y2, y3 ↓ when IL17A ↑

(9)
y4 = e

DaysHosp∗DaysSympt

(
IL_13 + (0.015∗Age−1.61)

(
IL_7 + e

IL_13
IL_5

)
+ 1.36

)

IL_6

y4 ↑ when

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

IL13

Age

DaysHosp

IL5

IL7

DaysSympt

↑

while a decreased output resulted only from:

This is the only model where an increase in ‘DaysSympt’ 
led to an increase in y4.

Table 3 illustrates the patients’ labels with outcome 
‘Death’ = 1 discovered by each equation. None of the 
four proposed equations alone finds this outcome for all 
patients. To achieve maximum prediction ability, one 
could employ synergistically Eqs. 1 and 4 to ensure indi-
ces 55 and 54, and one of the Eqs. 2 or 3 that reveal all the 
remaining values.

All equations spotted the right outcome for labels 7, 
22, 30, 42 and 53. The outcome for patient no. 54 was 
only predicted by y4. We observed that equations y1, y2, 
and y3 that included the ‘IL17A’ term failed to predict 
it. As far as ‘IL6’ is concerned, this might have had an 
impact on patient no. 55 prediction since, wherever ‘IL6’ 
was present (e.g., in y2, y3, and y4), the prediction failed. 
Another observation is that label 47 was found only by y2 
and y3, which combined levels of ‘IL6’ and ‘IL17’, while 
y1 and y4, where these two features did not apply concur-
rently, failed to predict it.

y4 ↓ when IL6 ↑

Fig. 6   Metrics for y2, a Confu-
sion matrix and b ROC curve

Fig. 7   Metrics for y3, a Confu-
sion matrix and b ROC curve
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4 � Discussion

The continuous evolution of SARS-CoV-2 [36] but also of 
other RNA viruses such as influenza virus and the emerg-
ing tick-borne severe fever with thrombocytopenia syndrome 
virus imposes continuous global public health challenges 
which emphasizes the need for future pandemic preparation 
and response [41]. ML-based methods represent valuable 
tools towards this end [42]. In this study, we applied SR-based 
ML algorithms towards the development and validation of 
mortality prediction models for hospitalized patients with 
breakthrough COVID-19 infection. Starting from a forty-four 
features dataset, we managed to restrict the total number of 
employed variables between 6–8 and ended up in four possible 
equations accurately predicting CoVax data behavior.

The feature ‘Days with symptoms from onset until admis-
sion’ appeared in every equation, while ‘IL-17A’ and ‘IL-6’ 

in 3 out of 4 models. Of note, the parameters ‘IL-6’ and 
‘IL-17A’, wherever combined (e.g., in y2 and y3 ), led in a 
different survival effect on patients, compared to those cases 
where they solely appeared in an equation (e.g., in y1 and y4 ). 
It was recently shown that increased IL-6 and IL-17A levels 
are associated with severe and long COVID-19, respectively 
[43]. Moreover, high serum IL-6 at the time of hospitaliza-
tion has been associated with disease severity and patient 
survival [44]. Excessive levels of IL-6 promote generation 
of IL-17A and vice versa, resulting in amplified produc-
tion of both cytokines. IL-6 and IL-17A can also result in 
viral persistence either independently or synergistically [45]. 
IL-13, -2, -5 appeared in two out of four proposed equations. 
These three interleukins as well as the IL-17 biomolecule 
have been reported as important factors in the determination 
of risk for mechanical ventilation and/or death in COVID-19 
inpatients [46].

Since cytokines function in the regulation of innate and 
adaptive immunity, in this study we also explored the effect 
of vaccine type on serum cytokines and chemokines. Our 
analysis showed that serum levels of ITAC and IL-10 are 
significantly lower in hospitalized breakthrough cases who 
had received mRNA-based COVID-19 vaccines compared 
to those who had received viral-vector vaccines. IL-10 is 
considered a pleiotropic cytokine which may play a double 
role acting either as an anti-inflammatory molecule or as 
an immune stimulating factor in COVID-19, depending on 
the timing of its secretion [47]. As to ITAC (CXCL11), it 

Fig. 8   Metrics for y4, a Confu-
sion matrix and b ROC curve

Table 2   Number of times the 
input features appeared in every 
equation

a Days with symptoms from onset until admission

Input Property Times of appearance/ total 
equations

Input Property Times of appearance/ 
total equations

DaysSympa 4/4 IL-13 2/4
IL-17A 3/4 IL-2 2/4
IL-6 3/4 IL-5 2/4
BMI 2/4 DaysHosp 2/4

Table 3   True Positive values found by each proposed equation

‘Death’=1
1 7 22 30 42 43 47 53 54 55
2 7 22 30 42 43 47 53 54 55
3 7 22 30 42 43 47 53 54 55
4 7 22 30 42 43 47 53 54 55

Numbers are the patient labels in the dataset
Colored cells denote successful prediction
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has been reported that it is significantly upregulated fol-
lowing SARS-CoV-2 infection [48] and that its expres-
sion in early-disease plasma samples may differentiate 
between patients developing critical versus non-critical 
disease [49]. More recently, a randomized controlled trial 
assessing the longitudinal association of COVID-19 vacci-
nation with cytokine and chemokine concentrations among 
adult outpatients with symptomatic SARS-CoV-2 infection 
found that days since full vaccination and type of vaccine 
received are not correlated with cytokine and chemokine 
concentrations [50].

In regards to the interval between COVID-19 disease 
onset and admission, the available evidence has suggested 
that this is a variable having different prognostic values in 
different countries or regions with disparate health systems 
adopting different anti-epidemic strategies [51]. Similarly, 
the hospital length of stay for COVID-19 patients is depend-
ent on a number of factors including but not limited to 
patient's age, accessibility to health services and availability 
of resources [52]. In the CoVax study, both the absence of 
anti-S SARS-CoV-2 antibodies and poor clinical outcomes 
of COVID-19 disease were associated with a shorter period 
between symptom onset and hospital admission which is in 
line with the outcomes generated by Eqs. 1–3 [7].

With respect to the ‘BMI’ variable which, in this study 
appeared in two out of four equations, a meta-analysis of 208 
studies with 3 550 997 participants from over 32 countries 
found that the risk of COVID-19-related hospitalizations and 
death steadily increases with increasing levels of obesity not-
ing however that the most recent studies show a weaker asso-
ciation between obesity and COVID-19 outcomes compared 
with the earlier ones [53]. More recently, it was reported that 
individuals with obesity show a reduction in the maintenance 
of humoral vaccine responses which has implications for 
vaccine prioritization policies [54]. Our models have pre-
dicted a negative association between BMI and mortality. 
However, it should be noted that BMI was included as a 
continuous variable in the proposed equations and was not 
subdivided into categories. The “obesity paradox” has been 
previously commented in the CoVax study [7]. Overall, the 
parameters that were defined in this study as important and 
thus exploited to construct the mathematical equations by 
the SC algorithmic procedure have been associated in the 
literature with COVID-19 clinical outcomes which enhances 
the validity of our method.

5 � Conclusions

In this study we have provided fully interpretable analytical 
equations that capture mortality by selecting only the patient 
metrics regarded as most important (6–8 features only), signifi-
cantly reducing the overload imposed by examining all features 

(forty-five features). Notwithstanding the fact that SR has been 
mainly employed in regression-based problems, our method 
applies successfully in classification problems, too, where the 
equation output is a binary decision point (‘0’ or ‘1’). To our 
knowledge, this method is presented for the first time and aims 
to be part of a broader computational and statistical framework 
that could aid in medical decision-making applications.
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