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Abstract

In this work further research was achieved on the separation by Independent Components (IC) of simulated abnormal breathing
sounds (ABS) sources immersed in normal breathing sounds. This study considers only ABS discontinuous sounds, known as
crackles, and includes fine and coarse types for both inspiratory and expiratory phases. Additionally, we develop a novel proposal
to automated characterization of the IC associated with crackles. We analyzed the efficiency of three independent component
analysis algorithms, i.e. FastICA, Infomax and TDSEP, through the Amari index, the signal to interference ratio, and the total
relative distortion index. In the simulated multichannel signal scenarios, the performance indexes showed that Infomax is the best
algorithm to solve the problem of blind source separation, supporting the results found in previous efforts. Finally, the presence of
crackles in the IC obtained by Infomax was determined through their kurtosis and skewness, whereas the type of crackle was
found by their characterization via the spectrogram of selected IC. Results indicate that the proposed methodology is able to
adequately extract the crackle sources and identify the respiratory cycle phase in which they appear. Also, we managed to
estimate the type and number of existing crackles in each source. In conclusion, our methodology can provide quantitative
information on the clinical relevance of crackles in respiratory patients.
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1 Introduction

Breathing sounds (BS) offer relevant information on pulmo-
nary parenchyma and airways physiology and pathology. As a
result, the methods used for analyzing BS components are of
special importance [1, 2]. The BS acoustic characteristics dif-
fer significantly between normal and abnormal sounds.
Normal breathing sounds (NBS) are produced by the respira-
tory activity in healthy subjects and are differentiated accord-
ing to their localization in the thoracic surface, the respiratory
cycle phase, and with the square of the air flow [2]. On the
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other hand, abnormal sounds have acoustic characteristics that
indicate the presence, severity, and localization of a disease in
the respiratory system [2].

Discontinuous abnormal sounds, also known as crackles,
have an explosive and transient character. In terms of their
temporal morphology, crackles can be classified as fine (FC)
and coarse (CC) and can be produced in different lung diseases,
such as pulmonary fibrosis or asbestosis. It is clinically relevant
to detect crackles and establish their characteristics and locali-
zation in both the respiratory cycle and the thoracic surface [2].

One of the most recent techniques for crackle extraction
from BS is independent component analysis (ICA). For
ICA, relevant assumptions are that crackles are added to BS
and that these sources are independent by being generated
through different biological processes. In other words, BS
are generated by turbulences in the bronchial tree, whereas
crackles are produced by the sudden opening of abnormally
closed airways [3, 4]. Recently, the viability of different ICA
algorithms has been evaluated for the extraction of indepen-
dent components (IC) associated with crackles [1].
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Nonetheless, in these previous efforts, it was not considered
the possible temporal overlapping of crackles due to simulta-
neous openings of different airways. In [3], clustering of
sources via nonlinear indexes is used in the automated selec-
tion of IC associated with crackles in multichannel recordings.
However, only FC sounds in the inspiratory phase were sim-
ulated to test the proposed automated selection, thus ignoring
CC sounds and the expiratory phase.

This study presents an additional step in the multichannel
BS processing via ICA considering simulations that include 1)
different types of crackles, 2) temporal overlapping of crackle
sources, and 3) both inspiratory and expiratory phases. The
elements incorporated in this study better reflect the real con-
ditions in which BS are acquired; hence this research work
may represent a more robust blind source separation (BSS)
technique for crackles in BS. To this end, we proposed in this
study two simulated scenarios. In the first one, we evaluated
the efficiency of three popular ICA algorithms, FastICA,
Information-Maximization (Infomax), and Temporal
Decorrelation Source Separation (TDSEP), to select the opti-
mal algorithm to extract crackle sounds. Once the optimal
algorithm was selected, the second simulated scenario allowed
the detection and automated selection of IC associated with
crackles.

1.1 Theoretical background
1.1.1 Independent component analysis

ICA is a statistical technique that looks to recover a group of
unobserved independent signals from their lineal mixture in
measured signals. In the noise-free ICA model, the measured
signals x() are represented by x(¢) = As(f), where s(t) are the
unobserved source signals, and A is the mixing matrix, which
is invertible and has linearly independent columns. By calcu-
lating the inverse of A, i.e., separation matrix W, the source
estimations or independent components s(¢) are calculated as
s(£)=Wx(¢). FastICA, Infomax, and TDSEP are among the
most popular ICA algorithms. FastiCA minimizes negentropy
between components, Infomax maximizes the joint entropy of
the components by minimizing the existing mutual informa-
tion between them, and TDSEP minimizes the existing tem-
poral cross-correlation between components [5].

1.1.2 Skewness and kurtosis

Skewness and kurtosis are representative indexes of the prob-
ability density function of a random variable based on the third
and fourth central moment, respectively. Skewness describes
the asymmetry degree of a distribution, where zero represents
a symmetrical distribution. On the other hand, kurtosis de-
scribes the degree of data concentration around the mean val-
ue — a Gaussian distribution has a kurtosis value of zero [6].
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1.1.3 Spectrogram

Time-frequency analysis of a non-stationary signal can be
achieved by the squared magnitude of the short-time Fourier
transform. In this paper, the spectrogram is used to character-
ize the crackle sources.

2 Methods
2.1 Simulated scenarios
2.1.1 Breathing sounds from healthy subjects

To generate the proposed scenarios, NBS data from a healthy
subject were used in which simulated crackles were inserted.
The participant included in the study gave his informed con-
sent. The BS signals were acquired on the back of the subject
with a 5 x 5 microphone array. For further details on the mi-
crophone array, sensor nomenclature, and the breathing ma-
neuver performed by the subject, refer to [1, 3, 4]. For the
digitalization of the multichannel BS and air flow signals we
used a 12 bit A/D card with a sample frequency of 10 kHz.
The signals were filtered with a 201 order, FIR band-pass filter
in the 75 to 1500 Hz band.

2.1.2 Simulated crackles - Single channel scenario

To create the first simulated scenario (i.e., simulated scenario
1) we considered five sources, and thus five mixtures. This
scenario was built by linearly combining one NBS channel
with two simulated FC sources and two simulated CC sources
using a random mixing matrix A, whose coefficients guaran-
teed a low enough signal to noise ratio (SNR) to make sure
that the crackles were not visible. We simulated both FC and
CC using the mathematical model proposed by Kiyokawa
et al. [7]. This model maintains the temporal characteristics
of FC, with an initial width deflection (IDW) of 0.9 ms and a
two cycle duration (2CD) of 3 ms, and those of CC, with an
IDW of 2.2 ms and a 2CD of 10 ms [8]. The crackles were
inserted in the inspiratory (IP) and expiratory (EP) phases
considering temporal overlapping. Furthermore, source 1 is
given by the NBS channel, source 2 contains six FC in the
IP, source 3 contains five CC in the IP, source 4 contains five
FC in the EP, and source 5 contains six CC in the EP. For BSS
and to select the optimal algorithm we used the ICA algo-
rithms previously mentioned (i.e. FastICA, Infomax, and
TDSEP). In FastICA we obtained symmetrically the IC and
we used the hyperbolic tangent as the non-lineal function. In
TDSEP we used time delays in the range T=0, 1, ..., 50.
Finally, in Infomax we used the extended version.
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2.1.3 Simulated crackles — Multichannel scenario

In the second scenario (i.e., scenario 2), we used a NBS mul-
tichannel record (25 channels) and four types of insertion: ten
FC in the IP, nine CC in the IP, nine FC in the EP, and ten CC
in the EP. These four simulated crackle sources were inserted
in the PRC4, PM4, PRX3, and PLC3 channels, respectively,
considering crackle transmission between channels as well as
temporal overlap. We made the insertions by adding the crack-
le sources to the NBS, maintaining the same SNR restriction
achieved in scenario 1.

2.2 Optimal ICA algorithm selection

The Amari index (Am) and the signal-to-interference ratio
(SIR) were among the indexes used to evaluate the separation
made by the three ICA algorithms in scenario 1. Further in-
formation of these indexes can be consulted in [1, 9]. As the
third index, we calculated the total relative distortion (TRD),
defined as follows:

A
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rp = /L (1)

5]

where § represents the estimated sources and s; the reference
signals. TRD represents the total error in the source separa-
tion, i.e. it is associated with different types of errors in the
estimations (e.g. interferences, noise, and artefacts). Ideally,
TRD should equal zero [10].

2.3 Automated crackle detection

For the second scenario we used the algorithm with the best
performance obtained during the evaluation made in scenario
1. Once the IC were calculated, we performed the automated
selection and characterization of the ones containing crackle
information according to the following steps:

1. We determined crackle presence in the IC by calculating
the kurtosis and skewness of each of the squared compo-
nents during IP and EP. If the values for kurtosis and
skewness overcome the established thresholds in either
IP or EP, this specific IC are confirmed to contain crackles
in that respiratory phase. After a series of preliminary tests
involving IC with and without crackles, kurtosis and
skewness thresholds were set at 35 and 4.5, respectively.

2. We determined the crackle types (i.e. fine or coarse) with
the spectrogram of the selected IC from step 1. Knowing
in which phase of the respiratory cycle the crackles are
located, the spectral power was calculated in the frequen-
cy bands given by the 2CD of FC and CC. The frequency
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Table 1 Performance indexes of ICA algorithms
Index FastICA Infomax TDSEP
Am 0.36 030 4.13
SIR Source 1 89.35e+002 67.07e+004 0.59e+002
Source 2 2.52e+002 2.06e+004 1.20e+002
Source 3 390.62¢e+ 909.64e+ 30.15e+
002 004 002
Source 4 1.15e+004 0.24¢+004 27.80e+
002
TRD Source 1 1.11e-004 0.14¢-005 16.88¢-003
Source 2 39.67e-004 4.83e-005 7.77e-003
Source 3 0.25e-004 0.01e-005 0.33e-003
Source 4 0.86e-004 4.08¢-004 0.35¢-003

Boldface type indicates best performances.

band for CC is between 195 and 205 Hz, whereas for FC,
it is between 660 and 670 Hz. The type of crackle was
determined according to the frequency band with the
highest spectral power.

3. We determined the number of crackles by obtaining local
maxima of the envelope of the frequency band, in the
corresponding respiratory phase, of the crackle type that
exists in the selected IC.

3 Results
3.1 Optimal ICA algorithm selection
Table 1 shows the calculated performance indexes for the

three ICA algorithms. According to the Am index, Infomax
had the best performance, thus obtaining the lowest value of
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Fig. 1 IC obtained by Infomax in the scenario 2
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Table 2  Calculated kurtosis and skewness in scenario 2
Index IC (a.u.)
11th 17th 18th 24th

IP EP IP EP 1P EP IP

Kurtosis 581 165 111.0 133 269 814 159 383
Skewness 6.48 326 891 3.02 325 745 321 521

IP: Inspiratory phase. EP: Expiratory phase. Boldface type indicates
presence of crackles in corresponding respiration cycle phases of speci-
fied IC.

the three algorithms, followed by FastICA. SIR indicates that
Infomax achieved the best source extraction in three of the
four crackle sources (sources 2—4), whereas TRD shows that,
for the same sources, Infomax achieved the lowest degree of
distortion. Thus, according to the SIR and TRD values,
Infomax achieved an acceptable performance in the extraction
of source 5. Given these results, we chose Infomax as the best
algorithm to separate crackles from NBS.

3.2 Automated crackle identification in the IC

Figure 1 depicts the 25 IC obtained by Infomax from a respi-
ratory cycle. In the 11th, 17th, 18th and 24th IC estimated
crackle sources can be observed, whereas the rest of the IC
resemble respiratory sound information. Table 2 shows the
calculated kurtosis and skewness values in a respiratory cycle
of the four aforementioned IC. These indexes allowed us to
automatically detect the 11th and 17th IC as sources with
crackles in the IP, and IC 18 and 24 as sources with crackles
in the EP.

The spectral power in the FC and CC frequency bands
during the IP for the 11th and 17th IC and during the EP for
the 18th and 24th IC indicated that both the 11th and 24th IC
contained CC, whereas the 17th and 18th IC contained FC.
Finally, we calculated the number of crackles in each of these
IC: the 11th and 18th IC included nine crackles each, whereas

Fig. 2 Spectrograms of simulated
CC (left) and FC (right)

Seconds
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the 17th and 24th IC had ten crackles a piece. Together, these
results show that nine CC in the IP were present in the 11th IC,
ten FC in the IP were present in the 17th IC, nine FC in the EP
could be found in the 18th IC, and ten CC in the EP could be
found in the 24th IC. These results indicate that the 11th, 17th,
18th, and 24th IC correspond to the four simulated crackle
insertions described in scenario 2. The difference in the spec-
tral power of the frequency bands between FC and CC can be
seen in the spectrograms introduced in Fig. 2.

4 Discussion

We proposed a methodology for the automated extraction and
identification of the type and number of crackles in NBS by
ICA. Through simulated crackles, we managed to generate a
controlled scenario to find the optimal ICA algorithm to sep-
arate NBS from FC and CC, inserted in both the IP and EP of
the respiratory cycle. The results show that our methodology
is efficient in terms of detection and characterization of IC
with the presence of crackles. Similarly, we demonstrated that
it is possible to determine the components containing crackles
as well as the phase of the respiratory cycle in which they
appear by calculating kurtosis and skewness values. The spec-
tral power in the frequency bands of FC and CC provided a
viable method for differentiating crackle types. Also, the en-
velope of the spectral power of the crackle type enabled us to
calculate the number of existent crackles in the IC by
obtaining local maxima. As future work, we plan to validate
the methodology with both a larger number of simulated sce-
narios and BS recordings from pulmonary patients. Similarly,
notice that real crackles may have different temporal morphol-
ogy if compared to the ones simulated in this research work
which is particularly due to the variations of the crackle gen-
erator mechanism with respect to mechanical and dynamical
characteristics of airways. Finally, different time-frequency
representations will be further assessed to improve temporal
and frequency crackle localization.

Power/frequency (dB/Hz)

3.25 3.3 3.35 3.4 345
Seconds
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5 Conclusions

Infomax achieved a good source separation of the simulated
crackles and the NBS in both scenarios, which allowed the
methodology to properly identify the IC containing crackles,
the phase of the respiratory cycle in which they appear, crackle
type, and number of existent crackles. Obtaining this informa-
tion by an automated process allows a quantitative analysis
that may provide relevant clinical information on lung condi-
tions in patients.
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