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Abstract
Image registration is an important task in medical imaging, capable of finding displacement fields to align two images of the
same anatomic structure under different conditions (e.g. acquisition time and body position). Specifically, multimodal image
registration is the process of aligning two or more images of the same scene using different image acquisition techniques. In
fact, most of the current image registration approaches are based on Mutual Information (MI) as a similarity metric for image
comparison; however, the cost function used in MI methods is difficult to optimize due to complex relationships between
variables and pixels intensities. This work presents an Expectation Maximization (EM) 3D multimodal rigid registration
approach, which introduces a low computational cost alternative with a linear optimization strategy and an intuitive relation
among the free variables. Our approach was validated against a state-of-the-art MI-based technique with synthetic T1 MRI
brain volumes. The EM 3D achieved a global average DICE index of 96.68 % with a computational time of 22.72 seconds,
whereas the MI methodology reported 96.11 % and 35.13 seconds, respectively.
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1 Introduction

Each medical image acquisition technique provides a
visually different perspective of the same body structure;
however, variations in intensity and positions make it
necessary to bring the anatomy details acquired with each
of these techniques into a common understanding. In this
sense, the goal of multimodal image registration in medical
imaging is to find a geometrical transformation that properly
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combines information from two views of the same structure
to support specific medical decisions (e.g. disease diagnosis,
treatment planning, treatment follow up).

The state of the art in multimodal medical image registra-
tion is predominated by Mutual Information (MI) methods
[4, 7–9, 13–15]; however, MI cost functions lack an intu-
itive relationship among the free variables. Moreover, they
usually require complex optimization methods with local
optima and intensive numerical calculations. Consequently,
the images and cost functions are continuously subsampled.
In this sense, the Expectation Maximization (EM) technique
is a viable alternative to compare multimodal information at
a low computational cost and considering the comprehen-
sive relationship between pixels intensities and variables.
From this perspective, the goal of this work is to propose a
multimodal 3D rigid registration approach based on the EM
strategy to be used in medical imaging.

The rest of the work is organized as follows. In Section 2,
we propose the cost function of our EM registration
method. Similarly, we describe the scenario for the synthetic
comparison between an MI-based approach and our EM
strategy, using images from the BrainWeb database [6].
Section 3 introduces the comparison results and their
discussion in terms of time and precision. Finally, in
Section 4, we present our research conclusions.
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Fig. 1 Block diagram of the EM
rigid registration method, where
k index represents the iteration
number

2Methods

2.1 EM cost function

In medical imaging, a given body structure can show
different tonalities or intensity variations, depending on

the image acquisition technique that is used. Therefore,
selecting the right similarity metric in multimodal image
registration is a crucial task [10].

The EM algorithm provides a multimodal similarity
between two images with different intensity distributions
each, as follows in [1]. Let I1 and I2 be two volume images

Fig. 2 Examples of the 2D slices of the transformed volumes: original image, γ = 0.25, γ = 4 and noise 9%, from left to right

Health Technol. (2020) 10:429–435430



Fig. 3 Examples of anatomical structure used for DICE index: white matter, gray matter, cerebrospinal fluid and skull, from left to right

to be compared in terms of their pixels intensities. For a
given intensity value in I1, the spatial related distribution
of intensities in I2 is calculated and assumed as Gaussian.
In the i-th voxel, the mean intensity (yi) is used as the
comparable value between images I1 and I2, and variance
(σ i) gives a confidence weight for the cost function in Eq. 1
introduced by [2]:

Q(M(θ)) = 1

2

∑

i∈L

[yi − I2(M(θ)i)]2

σ 2
i

(1)

where θ = [α, β, γ, dx, dy, dz]T is the parameters vector in
the 3D rigid transformation (three rotation angles and three
displacements), i = [x, y, z, 1]T the voxel homogeneous
coordinates, L is the voxel coordinates lattice, and M is the
rigid transformation matrix.

Using the first-order Taylor approximation formula in the
transformed image, we have:

I2(Mi) ≈ I2(i) − ∇I2(i)
T i + ∇I2(i)

T Mi, (2)

and with �I (i) = yi − I2(i) + ∇I2(i)
T i, the cost function

in Eq. 1 is then transformed into:

Q(M(θ)) =
∑

i∈L

1

2σ 2
i

[�I (i) − ∇I2(i)
T Mi]2 (3)

In the EM algorithm, the M rigid transformation matrix is
represented by a parametric structure as follows:

M = M0 +
n∑

p=1

θpMp (4)

with n = 6 as the number of free parameters, M0 as a
fixed matrix, and Mp as a constant matrix representing the
contribution of each parameter to the rigid transformation
M . Assuming small rotation angles (α, β, γ ) around the
axis (x, y, z), the rigid transformation matrix M can be
represented as follows:

M =

⎛

⎜⎜⎝

1 −γ β dx

γ 1 −α dy

−β α 1 dz

0 0 0 1

⎞

⎟⎟⎠ (5)

Finally, the optimal conditions for the cost function Q in (3)
are derived by ∂Q

∂θp
= 0, ∀p ∈ {1, ..., n} as indicated below:

∑

i∈L

[
∇I2(i)

T

{
M0 +

n∑

l=1

θlM l

}
i − �I (i)

]
∇I2(i)

T Mpi

σ 2
i

= 0

(6)

which is equivalent to the following simplified representa-
tion:
n∑

l=1

θlcp,l = bp (7)

where cp,l and bp mean the following:

cp,l =
∑

i∈L

1

σ 2
yi

∇I2(i)
T M li∇I2(i)

T Mpi

bp =
∑

i∈L

1

σ 2
yi

[
�I (i) − ∇I2(i)

T M0i
]
∇I2(i)

T Mpi

thus resulting in a system of linear equations as follows:
⎡

⎢⎣
c1,1 c1,2 · · · c1,n

...
...

. . .
...

cn,1 cn,2 · · · cn,n

⎤

⎥⎦

︸ ︷︷ ︸
A

⎡

⎢⎣
θ1
...
θn

⎤

⎥⎦

︸ ︷︷ ︸
θ

=
⎡

⎢⎣
b1
...

bn

⎤

⎥⎦

︸ ︷︷ ︸
b

. (8)

2.2 EM registration algorithm

In [2], the EM methodology was applied for 2D registration;
however, in this work, we propose a 3D extension. The
cost function approximation in Eq. 2 motivates the use of
an iterative scheme to reach for the optimal parameters,

Table 1 DICE index by anatomical structure (mean ± variance) for
the two registration techniques

WM GM CSF S

EM 98.21 ± 0.55 97.49 ± 0.77 95.82 ± 1.30 95.22 ± 1.80

MI 97.80 ± 0.92 96.94 ± 1.30 94.97 ± 2.10 94.74 ± 2.10
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Fig. 4 Global DICE index
comparison
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similar to a nonlinear least squares strategy. Hence, at each
iteration, a 6 × 6 system of linear equations has to be
solved. In addition, the ∇I2 gradient must be determined at
each iteration; however, using a reverse registration method
[3], the gradient is only calculated once by transforming I1

instead of I2.

Furthermore, the EM registration methodology is per-
formed in a pyramid scale to reach larger transformation
ranges and reduce computational time [5] mainly using
only the xy plane, since for some volume values, the z
plane has limited information. Finally, the stopping criterion
(each pyramid level vs precision target) is set to the relative

Fig. 5 Global computational
time comparison
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change in the parameters during the iterative process; this
value was set up to 7 × 10−4 by trial and error. The com-
plete block diagram of our EM rigid registration approach
is presented in Fig. 1.

2.3 Synthetic evaluation

We performed a synthetic comparison between an MI-
based registration algorithm from Elastix [11] and our EM
methodology using T1 MRI volumes from the BrainWeb
database [6]. Considering that in a real medical scenario the
transformations to be recovered usually present a limited

range of angles and displacements, the next transformations
were generated:

– Rigid: considering rotation angles in ranges 5◦, 10◦,
15◦, 20◦, and 25◦, and displacements of 5, 10, 15, and
20 mm for each axis.

– Intensity: a nonlinear gamma transformation is applied
to normalized intensities iE by iS = i

γ

E , and finally re-
scaled to the original range, with γ = 1, 2, 4, 0.5 and
0.25, considering that values above 1 darken the image,
whereas those below 1 lighten it.

– Gaussian noise: emulating the noise levels used in the
BrainWeb database [6], so Gaussian noise was added

Fig. 6 DICE index against
gamma intensity transformation,
rotation angle in rigid
transformation, and noise level
in the synthetic transformations
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with variances of 0%, 3%, 7% and 9% of the peak
intensity in the image.

In total, we generated 400 random transformations to test
each registration method. Some examples of the 2D slices
of these transformed volumes are depicted in Fig. 2.

Once the registration process was completed by both
methods, we used the ground-truth image to compute the
DICE index [12]. Similarly, we calculated computational
time to evaluate the performance of each method. The ana-
tomical structures used to obtain the DICE index included:
white matter (WM), gray matter (GM), cerebrospinal fluid

(CSF), and skull (S). Figure 3 illustrates an example of each
of these structures.

3 Results and discussion

Table 1 describes the statistical results (mean ± variance) of
the DICE index for each anatomical structure. Notice that a
DICE index close to one highlights better registration capa-
bilities. In this sense, the EM methodology outperformed
the MI-based methodology during the synthetic evaluation.

Fig. 7 Computational time
against gamma intensity
transformation, rotation angle in
rigid transformation, and noise
level in the synthetic
transformations
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That is, our approach reported the highest index value and
the smallest variance. The box-plot results for the four
anatomical structures are introduced in Fig. 4.

With respect to computational time, the EM methodology
required shorter execution time than the MI methodology
during the synthetic evaluation. Such results are detailed in
Fig. 5. Nonetheless, the EM methodology was implemented
in MATLAB (a high-level programming language), whereas
the MI-based technique from Elastix [11] was executed
using C++.

Finally, a marginal analysis (i.e. gamma intensity
transformation, rotation angle in rigid transformation, and
noise level) was performed with respect to both DICE
index and computational time for two methodologies. The
results of this analysis are introduced in Figs. 6 and 7. As
depicted in Fig. 6, DICE index values decreased as the
variation ranges decreased. Meanwhile, as Fig. 7 shows,
the computational time remained stable across intensity
variations, rotation angles, and noise levels. Furthermore,
notice that the EM methodology was computationally faster
than the MI-based methodology in all the experiments (i.e.
lower computational times, as shown in Fig. 7).

4 Conclusion

During the synthetic evaluation, our EM methodology
outperformed the MI-based scheme, achieving a global
DICE index of 96.68 % with a computational time of
22.72 seconds —if compared to 96.11 % and 35.13
seconds, respectively, obtained by the MI methodology.
As an important advantage, our 3D registration method is
independent on volume size by the pyramidal reduction
step. Furthermore, to extend the 3D registration scheme,
an affine implementation is possible by using a two-
step algorithm to keep the transformation matrix as a
linear mapping. As future work, a more comprehensive
comparison will be pursued over the same programming
platform. Nonetheless, the main advantage of our EM
technique could be seen in terms of computational time.
That is, even though our methodology was implemented
in a high-level programming language (i.e. MATLAB), its
processing time was shorter than that of the MI-based
registration technique, programmed in C++.
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