
POSITION PAPER

Effectual application development on digital platforms

Alan Hevner1 & Onkar Malgonde2

Received: 20 February 2018 /Accepted: 8 January 2019 /Published online: 7 February 2019
Institute of Applied Informatics at University of Leipzig 2019

Abstract
The development of novel software applications on digital platforms differs radically from traditional software development. In
this position paper, we posit that software development managers and teams face unique challenges in platform environments and
require new development approaches to be successful. While traditional software development approaches have focused on
achieving application-market match, platform-based applications must also achieve application-platform match, application-
market match, value propositions exceeding platform’s core value propositions, and novelty. We argue that these desired
properties support a new vision of the software development team as entrepreneurs. To support this positioning insight, we
discuss the limitations of existing software development approaches and introduce an innovative approach for application
development on digital platforms that is grounded in the theory of effectuation from the field of entrepreneurship. We investigate
an existing application development environment (Apache Cordova) on digital platforms to see if the concepts of effectuation are
present. The preliminary findings provide support for the promise of effectual development methods. We conclude with a call for
innovative effectual methods of software development on digital platforms and an accompanying research agenda.

Keywords Digital platforms . Software application development . Effectuation . Novelty

JEL classification M15

Digital platforms

Digital innovations are new combinations of digital and physical
components characterized by reprogrammability, homogeniza-
tion of data, and use of digital technology (Yoo et al. 2010).
The digital platform,1 as shown in Fig. 1, is becoming a

pervasive technology that is rapidly transforming the ways in
which products and services are produced and consumed in our
market economy (Parker et al. 2016). Digital platforms represent
complex electronic markets that facilitate value-creating interac-
tions between disparate producers and consumers spanning dif-
ferent industries and geographies (see: Alt and Zimmermann
2014, 2015). These electronicmarkets provide new opportunities
and challenges to participating organizations due to the ease of
interactions between multiple stakeholders.

The platform ecosystem consists of the platform and the
applications that are available via the platform or connect to
the platform via the interfaces offered by the platform, in a
contextual environment of regulations and competitors
(Tiwana 2013; Tiwana et al. 2010). Platforms enable value-
creating interactions among organizations with disparate re-
sources and specializations. This transfers the locus of inno-
vation, which traditionally has beenwithin the organization, to
a diverse set of external organizations that collaborate to de-
velop applications available via the platform. A platform
owner is the organization or group of organizations that deter-
mine the architecture, governance, and curation mechanisms
for the platform. Producers are the organizations that develop

1 We adopt the definition of digital platform given by Tiwana et al. (2010) and
extended by Ghazawneh and Henfridsson (2015, p. 199) as Bsoftware-based
external platforms consisting of the extensible codebase of a software-based
system that provides core functionality shared by the modules that interoperate
with it and the interfaces through which they interoperate.^ For reviews of
digital platforms and their components, the reader is referred to de Reuver et al.
(2017), Tiwana (2013), and Parker et al. (2016).

This article is part of the Topical Collection on Design Science Research
in the Networked Economy

Responsible Editor: Alexander Mädche

* Alan Hevner
ahevner@usf.edu

1 Department of Information Systems and Decision Sciences,
University of South Florida, Tampa, Florida, USA

2 Department of Operations Management and Information Systems,
College of Business, Northern Illinois University, Illinois, USA

Electronic Markets (2019) 29:407–421
https://doi.org/10.1007/s12525-019-00334-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s12525-019-00334-1&domain=pdf
http://orcid.org/0000-0003-4953-3900
mailto:ahevner@usf.edu

applications (extensions to the core functionality offered by
the platform) that are available via the platform. Consumers
are the organizations that use applications offered via the plat-
form. Further, consumers can mix-and-match applications
available via the platform to satisfy their needs. Examples of
software platforms include Apple’s iTunes, Google’s Play,
Salesforce’s appexchange, SAP’s HANA, Valve’s Steam,
Microsoft’s Azure, and Instructure’s Canvas, among others.

The development of novel software applications on a dig-
ital platform differs radically from traditional software devel-
opment. Motivations of this position paper are to understand
these key differences and to discuss the limited applicability of
existing software development approaches for digital platform
environments. The paper draws on entrepreneurship theories
to propose a novel effectual approach for software develop-
ment on digital platforms. The following digital platform char-
acteristics illustrate the challenges faced:

& Aplatform offers a compelling set of core value propositions
to its consumers (Parker et al. 2016). Applications on the
platform play off the core values and add novel extensions
to the platform’s capabilities (Koch and Bierbamer 2016).

& Over time, the platform core values evolve based on consum-
er demands and goals (Haile and Altmann 2016) and, as a
result, platform applications are added, updated, and dropped.

& As the number of similar applications on a software platform
increases, investment incentives for individual producers are
crowded out (Boudreau 2012). Similarity of applications
available via a platform limits the platform’s value proposi-
tion and incentivizes the platform to assimilate those features
into the core value proposition of the platform.
Consequently, applications whose value proposition is as-
similated into the core offering of the platform are
discontinued.

& All applications must adhere to connection specifica-
tions and development procedures determined by the
platform (Tiwana 2013). Platforms provide standard
connection interfaces2 in the form of application

programming interfaces (API’s) that are used by ap-
plications to access common features within the plat-
form. Thus, platform owners and user groups often
require that application producers follow certain best
practices such as ‘look and feel’ interactions. In
many cases, the platform owners evaluate and ap-
prove (i.e. curate) new applications before they are
offered to consumers via the platform.

& Application developers may request changes in plat-
form interfaces and protocols based on environmen-
tal changes or new customer demands. For example,
popular digital platforms such as Android, Azure,
HANA, among others encourage community input
to request new features.

& Platforms exhibit different levels of maturity over
time. Changes to platform architecture, governance,
and curation mechanisms requires application pro-
ducers to adapt their applications and routines to
comply with updated platform regulations. For ex-
ample, Microsoft Azure3 platform releases multiple
new and updated features every week. As features
are introduced and updated, platform’s maturity im-
proves which impacts application development
teams’ decisions (e.g. upgrade, obsolete) about their
application.

To manage these unique challenges and provide value-
added applications, producers must achieve four key
goals (a) application-platform match, (b) application-
market match, (c) value propositions exceeding plat-
form’s core value propositions, and (d) novelty. An ap-
plication is valuable to platform consumers if it provides
features and extensions that can enable consumers to
perform activities that the platform does not provide.
Further, an application is novel if it provides features
and extensions that the platform and other applications
do not provide.4

2 Updates to a platform’s connection interfaces are typically focused on the
data available via the interface. For example, an update to a platform’s core
may allow the sharing of additional data. The connection interfacemay use the
same technology and standard (e.g. XML or JSON).

3 https://azure.microsoft.com/en-us/updates/ (accessed 07/11/2018)
4 These follow the accepted definitions of value and novelty in software de-
velopment context as used by Austin and Devin (2009) who builds on extant
literature related to new product development in the fields of information
systems, business, and psychology.

Fig. 1 The digital platform
ecosystem

408 A. Hevner, O. Malgonde

https://azure.microsoft.com/en-us/updates/

Prior research in software application development largely
focuses on the desired properties of application-market match
(Harris et al. 2009) and project performance (Weiner et al.
2016). However, the success criteria for software applications
on digital platforms5 significantly exceeds these traditional prop-
erties since the environment provided by digital platforms is
more integrated and complex (McKelvey et al. 2015).
Similarly, Bygstad (2016) highlights the emergence of knowl-
edge regimes which focus on connectedness, innovation, and
experimentation in the emerging world of consumerization and
Internet of Things. These desired properties of application-
platform match, application-market match, value propositions
exceeding platform’s core value propositions, and novelty for
an application on digital platform support a new vision of the
software development team as entrepreneurs.

In this position paper, we propose an effectual approach for
development of novel applications on digital platforms. Our
arguments are structured concisely as follows. First, we re-
view the theory of effectuation and develop a research model
for representing the key constructs of effectual software de-
velopment. A qualitative data analysis is performed to garner
support for the presence of effectual concepts in the develop-
ment of systems in the Apache Cordova environment—an
open source software development environment that supports
multiple digital platforms. We conclude with a discussion of
implications of this study for application development on dig-
ital platforms along with research agenda for future research.

Effectual software development

The consumer demand for new and interesting applications on
digital platforms has energized the software development
world to greater requirements for delivery speed and higher
quality user experiences. Existing software development ap-
proaches often fail to provide the knowledge, constructs, and
processes to address fully the challenges of digital platform
application development. Thus, we propose a new, theory-
based approach of effectual software development.

Effectuation

Sarasvathy (2001) conceptualizes effectuation as the opposite
of causation.6 Unlike causation, effectuation does not focus

on finding causes that explain or achieve a given (intended)
effect, but considers available actions through given means
and their spectrum of possible effects. Effectuation therefore
is about designing and evaluating alternatives with differing
effects (and choosing one of them) instead of choosing among
given alternatives which all lead to the same effect. Thus,
effectuation logic constitutes a logic of controls; specifically
controlling the future by actively shaping one’s environment
within one’s possibilities (e.g. digital platforms).

In effectuation, the choice of action depends on the three
given means of (a) the actors (effectuators) themselves and
their traits (Bwho I am^), (b) their knowledge (Bwhat I
know^), and (c) their social connections (Bwhom I know^).
It also depends on what the effectuators can imagine to be
possible effects and what they perceive the corresponding
risks or potential losses of those effects to be. These risks
and losses are matched with effectuator’s set of aspirations,
leading to the eventual choice of action. Neither the means nor
the aspirations are treated as invariant, leading to a concept
that embraces flexibility and dynamism, allowing the exploi-
tation of emerging contingencies (Sarasvathy 2001). Figure 2
illustrates the basic concepts of effectuation.

Two decision heuristics are employed when the entrepre-
neur pursues possible actions: acceptable risk/affordable loss
and logic of control. Acceptable risk/affordable loss favors
those actions which carry a degree of risk that is acceptable
to the entrepreneur. It avoids actions that carry undue existen-
tial risk to the enterprise. This contrasts with causation where
decisionmaking is based on expected returns of the alternative
actions. Logic of control involves decision making based on
factors that the entrepreneur can control as opposed to the
prediction of future events. As the iterative process of effec-
tuation evolves, the entrepreneur accumulates new means and
goals, and converges to a set of effects resulting in an artifact
that embodies the desired aspirations. Before we apply effec-
tuation to software development context, we present the
framework of control and prediction to understand the need
for effectuation and its positioning in the spectrum of software
development approaches. This framework of control and pre-
diction allows us to understand the underlying theoretical un-
derpinnings of the different software development ap-
proaches. Aligning these approaches with the characteristics
of digital platforms will allow us to evaluate the applicability
of different software development approaches.

Prediction vs. control in software development

The proposed effectual software development process can be
contrasted to more traditional approaches for developing soft-
ware such as plan-driven, controlled-flexible, and ad-hoc
(Harris et al. 2009) by considering (as seen in Fig. 3) the
dimensions of control (x-axis) and prediction (y-axis)
(Wiltbank et al. 2006). Increasing prediction posits that a

5 Extant work (e.g. Weiner et al. (2016) and Harris et al. (2009)) has consid-
ered software development for technological platforms (e.g. JAVA or .NET
environment which define specific framework requirements for the develop-
ment team). However, the platform considered in prior work does not include
the uncertainty and risk characterized by third-party ownership of the platform,
competing firms on the platform, and focus on novelty of the application.
6 BEffectuation processes take a set of means as given and focus on selecting
between possible effects that can be created with that set of means. Causation
processes take a particular effect as given and focus on selecting between
means to create that effect.^ (Sarasvathy 2001, p. 245)

Effectual application development on digital platforms 409

development organization can predict the exogenous environ-
ment and position itself to be relevant in the future via plan-
ning. Increasing control focuses on the ability of an organiza-
tion to control and shape its own endogenous environment to
be relevant in the future via adaptation.

The two dimensions characterize two different entrepreneurial
strategies: planning and adaptation. They differ on how to handle
uncertainty in the exogenous environment. First, the planning
approach advocates predicting the exogenous environment and
positioning accordingly. Applying the framework to software
development, this approach defines the underlying logic of a
plan-driven development approach. Thus, software project plans
are devised, and resources are identified and acquired, at the start,
with an understanding that the software product will be relevant
(and profitable) upon its completion.

A predominately adaptive approach suggests positioning for
future relevance via bounded goals and on-going feedback
from the environment. With few controls in place (i.e. trial
and error), this approach leads to an ad-hoc approach to soft-
ware development, where the development team is constantly
calibrating its course by reacting to changes in the environment.
Spanning the planning and adaptive approach is the controlled-
flexible7 approach in software development, where planned
control mechanisms are inherently prediction-based while
emergent control mechanisms introduce flexibility to adapt to

uncertain environments (Harris et al. 2009). Discussion on the
differences and similarities between plan-driven, controlled-
flexible, ad-hoc, and effectual approaches is presented in next
subsection and summarized in Appendix 2.

With increasing emphasis on control, a development strat-
egy involves actively shaping the environment by making it
endogenous rather than navigating and positioning in an ex-
ogenous environment. In the visionary strategy, the firm em-
phasizes construction by considering possible alternatives and
proactively working to realize their potential. Consideration

Fig. 3 Framework of prediction and control (adapted fromWiltbank et al.
(2006))

7 We use the term controlled-flexible in preference to the term agile. The term
‘controlled-flexible’ is identified formally by Harris et al. (2009) with a
Control Theory foundation. The term ‘agile software development’ is used
informally in common parlance and can identify a broad range of flexible
software development practices (Baskerville et al. 2011).

Fig. 2 Theory of effectuation (Sarasvathy 2001)

410 A. Hevner, O. Malgonde

and analysis of possible alternatives includes predicting the
future possibilities and the alternatives’ potential to be rele-
vant. However, proactively working to realize the alternatives
includes treating the environment as endogenous and achiev-
ing goals by gathering required resources.

A transformative strategy focuses on controlling its
environment with minimal prediction. Unlike a visionary
approach, a transformative approach does not emphasize
consideration and analysis of alternatives. Instead, a
transformative strategy focuses on existing means to
derive possible alternatives and selects alternatives
which allow the firm to embrace future contingencies.
Focusing on existing means, transformative approaches
can enhance their understanding of goals and means
with intermediate artefacts. Wiltbank et al. (2006) argue
that effectuation is applicable in environments which
can be classified in the transformative quadrant.

We note that similar control-based directions are under-
way in other areas of research where prediction-based ap-
proaches have limited applicability (Hevner 2018). For ex-
ample, Stanley and Lehman (2015) discuss artificial intelli-
gence algorithms and their design approaches to solve
problems like finding a way out of a room. They find
that an algorithm which focuses on exploring its solution
space is better positioned to find solutions than another
algorithm that is focused on the task and attempts to
predict possible solution avenues. Also, in strategic
management literature, Hayes (1985) and Kim and
Mauborgne (1997) argue the limited applicability of objec-
tive and prediction driven approaches to projects that are
increasingly in uncertain and risky environments. Here, we
propose that novel software development on digital plat-
forms demands more adaptable approaches that emphasize
controls over predictions. We now discuss the applicability
of effectuation theory to the practice of software develop-
ment on digital platforms.

Applying effectuation to software
development practice

The development of novel software applications requires
human creativity and innovative design activities. For
example, Drechsler and Hevner (2015) provide guidance
for incorporating the concepts of effectuation into the
design science research (DSR) paradigm. They argue
that effectuation-oriented DSR may provide a superior
lens to examine problem spaces that are characterized
with uncertainty and dynamic evolution. In our research,
we make a practical application of this conceptualization
to propose an effectual process to develop novel appli-
cations on software-based platforms.

Why effectuation?

Effectuation aligns with software development on digital plat-
forms due to the limitations of causation-based approaches in
the literature (Harris et al. 2009) and the challenges offered by
digital platforms. Causation-based approaches to software de-
velopment identify a particular goal and realize it through a
linear and/or iterative development process. These are predic-
tion based approaches, where the application’s ultimate fit and
utility in the platform context is identified a priori. Such a
priori identification of application’s utility is possible in envi-
ronments that are characterized by greater degrees of certainty
and stability (Gill and Hevner 2013).

However, software development on digital platforms must
navigate uncertain, resource constrained, and high-risk envi-
ronments. Such settings render software development ap-
proaches from the traditional realm of prediction largely in-
feasible. We contend that current software development pro-
cesses and methods do not effectively address the challenges
of digital platforms for the following reasons:

& They focus on product-market match. The emphasis is on
iterative development toward the goal of a single product.
Each cycle/iteration allows the team to evaluate the market
match of a predicted product and realign, if needed. While
the effectual approach also emphasizes iterative develop-
ment, it focuses on building and assimilating the new
knowledge to expand its resources and attenuate its aspi-
rations. The team’s aspirations (generalized end goals)
form the key evaluation criteria before the application is
deployed.

& They perform actions based on expected returns. In other
words, action alternatives are favored if they provide the
greatest return to achieve the success criteria. The effectual
approach evaluates alternatives based on their risk and
controllable aspects. Action alternatives are chosen if the
risk associated with those actions are acceptable to the
team and if all the aspects of the action alternative are
controllable to the team.

& They focus on the development of an end product with
little attention to the intermediate design products along
the way. In effectual approach, rapid effectual cycles iden-
tify design artifacts (documentation, code, prototypes,
proof of concepts, among others) as intermediate effects
to provide feedback to subsequent iterations. The effectual
approach treats the uncertain environment as endogenous
and shapes it via these intermediate effects.

Digital platforms represent socio-technical, dynamic, and
challenging contexts for software development teams. Using
the effectual perspective allows software development teams
to identify multiple possible effects based on their available
means. Through market and stakeholder feedback, the

Effectual application development on digital platforms 411

development team can iteratively attenuate their aspirations
and identify appropriate effects that embody their aspirations,
fit the application context, and provide the greatest amount of
utility to its users. This approach is in contrast to the causal
approach since the team does not identify a particular goal;
rather they iteratively attenuate their aspirations to arrive at the
desired effects which will include the final product but also
multiple intermediate artefacts throughout the development
process.

A model of effectual software development

The development of a practical representation of effectual
software development begins with a fuller understanding of
components of the process and their relationships as presented
in Fig. 4. The theory of effectuation provides the theoretical
lens to identify constructs and relationships which are adapted
and extended for the software development context. To begin,
we note that the nature of application influences the overall
process enacted by the software development team. Nature of
application may be diverse across multiple dimensions—
functionality, scale, interoperability, data, stakeholders, de-
pendencies, technologies, among others. These factors pro-
vide context and guidance for the definition of the effectual
software development process.

As resources to the software development project, the ef-
fectual model considers three key, independent components:

& Means for the project manager and development team are
the existing resources that are available to them. Means
consist of technology and skills (programming language,
API’s, tools), market knowledge (customer orientation,

seasonal trends, patterns from archival data), platform
knowledge (connection interface, tools and technology,
best practices, available API’s on the platform), control
mechanisms (scope boundaries, stakeholder feedback),
the social capital that the development team can draw
upon, and team’s culture which may provide routines
and communication channels.

& The software platform provides a set of resources and
constraints. For example, the connection interfaces to the
platform, development guidelines, tutorials, and develop-
ment standards that provide resources for the project to
draw upon while constraining them to those specific alter-
natives. The platform also shows different levels of com-
plexity and maturity for the development team to consider.

& Four aspirations for the project team are identified –
application-platform match, application-market match,
value proposition of the application should exceed
the core value proposition of the platform, and nov-
elty of the application. These aspirations for software
development on platforms are in addition to the more
traditional entrepreneurial aspirations of human, so-
cial, and economic goals.

For the development team, means, platform, and aspira-
tions exist a priori to the development process. Drawing on
these resources, the software development team evaluates and
selects action alternatives that are feasible and will move the
project forward. An action may encompass identification of
new application feature, fixing an existing issue, or revising a
design feature. Identification of actions draws on a subset of
means and aspirations. Thus, an identified actionmay draw on
technological means to satisfy application-platform match

Fig. 4 Research model of effectual software development

412 A. Hevner, O. Malgonde

while another action may draw on market and platform
knowledge to accomplish novelty. Pervasive in the identifica-
tion of actions is the platform’s capabilities and constraints
that the team must consider.

The mechanism to select appropriate actions from identi-
fied action alternatives is provided by two heuristics: accept-
able risk and logic of control. According to classical decision
theory, risk associated with an alternative is the variation in its
possible outcomes (March and Shapira 1987). The larger the
variation in possible outcomes, the larger is the risk associated
with the alternative. Thus, evaluation of potential actions is
based on the trade-off between its expected return and associ-
ated risk. An action is said to possess acceptable risk if the
development team can perform corrective actions in case the
alternative does not satisfy the team’s aspirations.

Further, the managerial perspective notes that risk is
controllable and modifiable through skills and information
(MacCrimmon and Wehrung 1986). The logic of control em-
phasizes controllable aspects of future events i.e., a focus on
aspirations that can be controlled by the project team
(Sarasvathy 2001), favouring actions that can be controlled
by the team given its current resources. For example, imple-
mentation of a feature is not favoured if it requires API’s from
the platform which are not yet available. The project team
conducts a risk analysis (Benaroch et al. 2006; Flyvbjerg
and Budzier 2011; Lyytinen et al. 1998) on the set of possible
actions. Actions that have an acceptable risk are identified.
Platform state, existing portfolio of controls (Harris et al.
2009; Kirsch 1997), and aspirations of the project team iden-
tify the controllable aspects of the possible actions.

Together, actions selected via the mechanism discussed
above give rise to an effect. An effect is the operationalization
of abstract aspirations (Sarasvathy 2001). Specifically, effects
encompass the growing set of intermediate artifacts that in-
clude the features and operational specifications of the appli-
cation being developed by the team. In software engineering
terminology, effects may include software specifications,
nightly or weekly builds, documentation, demos, design doc-
uments, user interface mock-ups, proof of concepts, backlog
items, and so on. The current set of project effects allows the
team to identify new avenues (features, improvements, bugs)
and attenuate aspirations. The effects are ‘intermediate’ be-
cause they represent artifacts which are in the state of devel-
opment. Effects embody the current understanding of the soft-
ware application development team. Effects also serve as a
point of reference to validate ideas and decisions. We term
this iterative approach to identify and grow the set of interme-
diate artifacts as the effectual design cycle.

This effectual design cycle allows the software development
team to grow system artifacts which represent the knowledge
base of the team. The team evaluates its aspirations with this

knowledge base and identifies new resources. This mechanism
gives rise to new means and constraints for the development
team – expanding cycle of resources. New means stem from an
improved understanding of the problem space. Similarly, new
constraints are identified that help retain appropriate and promis-
ing aspects of the aspirations – converging cycle of constraints.
Finally, the final system Artifact (application product or service)
is the realization of team’s aspirations and is developed, imple-
mented, and deployed on the platform by the team.

Applications developed on digital platforms have numerous
‘releases’ to the platform. These releases represent on-going
outcomes of iterative effectual design processes. Each release
may include minor and/or major improvements, bug fixes, and
enhancements. A common understanding in the team should be
that the next release of the software application is not the last or
concluding release for the application. We see three primary
reasons for this continual need for releases. First, the applica-
tion development team prioritizes issues based on contextual
needs. Second,market-driven needs require frequent releases to
the platform as competitors update their applications and users’
requirements evolve. Thus, the application needs to be updated
in accordance with market forces. Finally, changes to the digital
platform require frequent releases to ensure that the application
is compatible with the platform. These changes are often in the
form of changes to APIs—add, update, or deprecate.
Consequently, the development team has to ensure that every
release uses the platform’s updated APIs.

We propose the model of effectual software development
as a radically new approach for planning and executing appli-
cation development on digital platforms. The following sec-
tion provides some initial evidence of effectuation found in
current platform projects.

Evidence of effectuation in platform
development projects

To investigate the new ideas of effectual software development
on digital platforms, we perform a qualitative study of open-
source application development projects. This analysis is not
designed to provide a rigorous test of the presented research
model. Instead, it provides evidence for the effectuation ideas
as found in existing software development projects on digital
platforms.

Research method

Three key selection criteria are established to identify appropriate
samples for data collection and analysis: (a) the application
should not be developed by an individual only, (b) the digital
platform should be owned by a different organization, and (c)

Effectual application development on digital platforms 413

application users should have alternative options other than the
application under investigation. We identified Apache Cordova
as an open-source mobile application development framework
(Fig. 5). The application is developed by a distributed team of
contributors. The digital platform on which the application is
built is controlled by disparate organizations. Finally, rival appli-
cations for Apache Cordova are available to its users.

Following the mantra of Apache Software Foundation (ASF),
the Cordova application framework is used by numerous appli-
cation developers to develop platform-based applications and
provides tools and interfaces that can be readily used by devel-
opers. Apache Cordova provides all the interfaces and plugins
that the development team needs to develop an applicationwhich
can then be published across multiple platforms. Cordova8 sup-
ports seven platforms—Android, iOS, Windows, Ubuntu,
Blackberry 10, WP8, and OS X. Web View provides user inter-
face capabilities, Web App provides configurational settings for
the application, and Cordova Plugins allow seamless communi-
cation within application components and the platform. The
Mobile OS platform provides standardized plugins, which are
regularly updated by the platform owner.

All Apache projects are required to store and host program-
ming activities, decisions, and status of the project. Projects
adhere to these requirements using mailing lists, project man-
agement and version control tools, and/or messaging

platforms. In our study, we extract data from the project man-
agement tool. Specifically, we focus on this dataset because
(a) all data are available, (b) the dataset consists of issues
raised by active contributors, and (c) the dataset includes re-
quests for information, bug fixes, feature requests, sugges-
tions, and discussions. We focus on completed user stories
that describe a specific feature request and/or issue with the
application and/or platform. User stories often include very
technical descriptions of requested features and supporting
details. Completed user stories are suitable for this research
since they provide the issue and its description addressed in
the story, typically, with a solution that is provided and imple-
mented in the application. Some stories have additional dis-
cussions on the viability of alternative solutions to the issue
being discussed. Story descriptions and related comments for
over 1000 stories were extracted and analysed. The data anal-
ysis is supported with documents from proposals, board re-
ports, and project documentation. The unit of analysis is the
issue reported in the story.

We analyse the data as follows. First, inspecting all stories in
the database, we remove unclear or non-descriptive stories.
These include stories that do not discuss any specific issue in
depth, provide a link or non-conclusive short description, and/or
provide a blob of program code without accompanying discus-
sion. The user story needs to clearly present the issue at hand. As
the initial inspection retained clear and descriptive stories, they
were subjected to qualitative analyses. These analyses include
coding the data with identification of relevant terms and defini-
tions. Finally, inferences were derived from selected stories and
triangulated from multiple sources. Through these rigorous fil-
ters, we refined the initial set of 1051 stories in order to identify

8 The Apache Cordova application supports application development digital
platforms on mobile operating systems. Application developers use the
Apache Cordova framework to develop their applications as Cordova abstracts
the complexity of developing specific components for different platforms.
Therefore, this empirical study considers Apache Cordova as the application
and mobile operating systems as platforms.

Fig. 5 Apache cordova
architecture (From https://
cordova.apache.org/docs/en/
latest/guide/overview/)

414 A. Hevner, O. Malgonde

https://cordova.apache.org/docs/en/latest/guide/overview/
https://cordova.apache.org/docs/en/latest/guide/overview/
https://cordova.apache.org/docs/en/latest/guide/overview/

42 complete user stories with sufficient detail for full analysis.
We useAtlas.ti qualitative data analysis software for our analysis.
To aid our coding procedure, we developed a qualitative code-
book that identifies sub-codes and operational definitions
(Table 1) for each construct in our model (Fig. 4).

The sub-codes are identified from the research con-
text, theoretical constructs, and conceptual research

model. Operational definitions are identified based on
the research context and prior empirical studies on ef-
fectuation (Chandler et al. 2011; Perry et al. 2012).
Further, the coding scheme is flexible to add new sub-
codes as they emerge from the data. The codebook
guided our first-order coding. Using descriptive coding
technique (Miles et al. 2013), sub-codes from the

Table 1 Research method constructs, codes, and definitions

Construct First Cycle Code Operational Definition

Means (existing resources
at hand)

Technology Existing technological capability within the team (in this case, the
community) – programming languages, tools, configuration,
testing, documentation, etc.

Market knowledge Existing knowledge about the platform market (alternatives,
competitors)

Platform knowledge Existing knowledge about the technological state of the platform

Social Capital Capital that the team can draw upon to append existing means

Platform (resources and
constraints provided
by the platform)

Technology (API) Technological resources and constraints provided by the platform
(APIs, programming language, setup, features)

Market Existing offerings on the platform market

Value Existing value offered by the platform to its customer (in terms of
features that the users can use – tangible)

Aspirations Product-market match The features to be built in the product shouldmatch the requirement of
the market

Product-platform match The product should be technologically compatible and functional on
the platform

Exceed Platform Value The features being built in the application should help exceed the
application the core set of value provided by the platform

Novelty Technological or feature based novelty of the application that the
existing applications and platform do not cover.

Acceptable Risk Commit limited resource Commit limited technological and people resources to any given
feature.

Application recoverable after
failure

If implementation of the given feature results in failure, it should not
jeopardize entire application.

Risk Analysis Risk portfolio of an alternative are determined before
decision-making.

Logic of Control Logic of Control Decision making based on factors that the team can control as
opposed to prediction of future events.

Actions Fixed bugs The issues that were identified based on means and fixed.

Completed Tasks Feature requests which were identified and completed using means
and acceptable risk.

Effects NA Collective documentation and understanding of which features and
issues are to be addressed in the project.

Expanding Cycle
of Resources

New technological knowledge Identify new API’s, tools, and configurations that can be used by the
application.

New market knowledge Identify new requirements that the market needs.

New platform knowledge Identify new API’s, tools, and configurations that are provided by the
platform.

Converging Cycle
of Constraints

Converging technological (means)
constraints

Identify specific API, tool, or configuration for the application from
competing alternatives.

Converging feature constraints Identify specific feature for the application from competing
alternatives.

Converging platform constraints Identify specific API, tool, feature, or configurations competing
alternatives provided by the platform.

Effectual application development on digital platforms 415

codebook were applied to each story where applicable.
To illustrate the coding, Appendix 1 provides several
sample stories from our database and the codes that
are assigned to them. To address construct validity, mul-
tiple sources of data—stories, documentation, contribu-
tor comments, board reports, and proposals—are tapped
to ensure that the findings converge. Reliability of the
study is addressed with (a) programmatically retrieving
and storing analysed stories locally from the project
management tool, (b) maintaining the qualitative code-
book of codes and operational definitions, and (c) de-
veloping matrices from the labelled data.

Results

The results of the analyses of the Apache Cordova projects are
presented in Table 2 including the first cycle codes (and
related constructs identified in Fig. 4) and the frequency of
the codes. As the secondary data used for this analysis consist
of contributors’ descriptions of issues and feature requests for
the Cordova applications, the data are characteristically tech-
nical in nature. This readily translates into identification of
technological means available to the application development

team that is specific to the application and platform. We iden-
tified 40 stories that show technological means for the devel-
opment team. Available means include knowledge about mar-
ket needs (feature requests), value propositions provided by
the platforms, and new features that are introduced by plat-
forms or competing applications (through developer confer-
ences or official press releases). Similarly, the technological
opportunities and limitations by platforms are discussed by
contributors. Current working of API’s and the value they
provide to the user are discussed and coded in 23 stories.
This leads to identification of limitations and opportunities
that serve as value additions to the current value proposition
of the platform and serve the market need. This evidence
points to the nascent application market of the project.
Building on existing technological and market knowledge,
possible alternatives are identified. Further, these stories do
not predict potential changes to the market and platform.
Instead, the focus is to build the application based on current
understanding of the technology, platform, and market.

The analysis also leads to identification of aspirations in the
team’s decision making and actions. Specifically, the
application-platform match is one of the central driving forces
across these stories since contributors focus on technical

Table 2 Constructs and their
frequency in the data Construct First Cycle Code Frequency

Means Technology 40

Market knowledge 5

Platform knowledge 20

Social Capital 2

Platform Technology 23

Market 7

Value 8

Aspirations Product-market match 8

Product-platform match 24

Exceed Platform Value 14

Novelty 15

Acceptable Risk Commit limited resource 33

Application recoverable after failure 5

Risk Analysis 21

Logic of Control Logic of Control 32

Actions Fixed bugs 20

Completed Tasks 11

Expanding Cycle of Resources New technological knowledge 37

New market knowledge 5

New platform knowledge 21

Converging Cycle of Constraints Converging technological constraints 24

Converging feature constraints 9

Converging platform constraints 11

416 A. Hevner, O. Malgonde

aspects that lead to seamless operation between the applica-
tion and platform. 24 stories are coded to identify application-
platform match. Further, the analysis finds support for the
aspiration of introducing novelty to the application (15 stories)
and ultimately adding value to the existing value proposition
provided by the platforms (14 stories). The common theme in
these aspirations is identification of opportunities (limitations
and/or enhancements) for value addition through existing
means and platform knowledge, and introducing novel fea-
tures that take advantage of the platform’s opportunities.

The heuristics of acceptable risk and logic of control also
find strong support in our analysis. Each story is identified and
addressed by (typically) one contributor. Thus, the team is
devoting limited resources for each issue and feature, and 33
stories are coded for this sub-code. Alternatives identified—
do feature A or B or C—accompany risk analyses that discuss
technological implications on the application and platform,
novelty, and extending the platform’s value proposition. 21
stories are coded to show risk analysis and identify alterna-
tives that have acceptable risk associated with them. Further,
actions identified by the team embody the logic of control and
are coded in 32 stories. These include decisions based on the
current means, platform knowledge, and the aspirations of the
team, rather than predicting which actions would enhance the
application. Finally, the application is already in use by an
array of users which provide feedback to the development
team. This represents a control driven approach rather than
prediction based approach that would identify the goals of
an application a priori.

Actions (32 stories coded) lead to intermediate effects,
which are the operationalization of team aspirations. Each
iteration of the Cordova application resulted in an intermedi-
ate effect that, in turn, expanded means and attenuated aspira-
tions. Specifically, intermediate effects help identify techno-
logical avenues, tools, limitations, and features, that increase
the fit and utility of the artifact. 37 stories are coded to identify
expanding technological knowledge. In addition, intermediate
effects improve the platform knowledge for the overall team,
as new features are implemented that connect to the platform
and add new value to its existing value proposition. Note that
we did not code the ‘effect’ construct since this is a new
concept in our proposed model that current development pro-
jects do not consider. Our interpretation of an effect as an
intermediate software development artifact advanced during
our analysis.

Overall, the frequency of sub-codes identified in our anal-
yses justifies the conjecture that software development teams
developing novel applications on digital platforms employ the
constructs of effectuation even when the terms used in the
processes may not exactly align with those used in effectua-
tion context. Also, these stories span across multiple

iterations. For every iteration, a set of stories represents the
growing set of intermediate effects that are developed and
tested. This provides feedback to the development team that
expands its resources and attenuates its aspirations.

Conclusion

Our goal is to propose an innovative and disruptive
effectual approach for the development of software ap-
plications on digital platforms. Development teams must
break from traditional, prediction-based methods and be-
come more entrepreneurial as they design, implement,
and deploy new applications. In this position paper,
we identify the unique challenges and desired properties
for the development of software applications on digital
platforms which surpass the traditional conceptualiza-
tions of product-market match and project performance
as key success criteria for software applications. To ad-
dress these challenges, an effectual approach to software
development has been proposed that is developed
through lens of the theory of effectuation. Empirical
analysis using qualitative secondary data from open-
source projects provide evidence of its efficacy.

This study has important contributions and implica-
tions for research and practice. Building on the chal-
lenges identified for the development of novel applica-
tions on software platforms, we advance an innovative
vision of software development where the software de-
velopment project is seen as an entrepreneurial endeav-
our with the project manager and development team as
entrepreneurs. An effectual approach to development of
novel applications on software platforms is proposed
and described. Grounded in the theory of effectuation,
the approach introduces context specific constructs
(platform) and theorizes and adapts existing effectuation
constructs to the software development context. The ef-
fectual approach to software development introduces
new constructs and feedback processes in software de-
velopment research – aspirations, focus on existing re-
sources, decision heuristics, and expanding and converg-
ing cycles. These effectual processes provide improved
explanations for novel application development on soft-
ware platforms where existing development approaches
lack resonance with important constructs from Fig. 4,
such as means, actions, and aspirations.

The effectual approach proposed in this paper contributes
to practice. First, we draw attention to the development ap-
proach for novel applications on software platforms which has
received limited attention in the information systems litera-
ture. Attention to development approaches on software

Effectual application development on digital platforms 417

platforms is particularly important and timely, given the pro-
liferation of platforms (Parker et al. 2016). Second, applica-
tion producers have a direct interest in development ap-
proaches that specifically address the unique challenges of-
fered by platform ecosystems. These interests include devel-
opment of novel applications and maintenance of existing
applications. Third, platform owners also benefit from the
introduction of novel applications on software platforms. As
the locus of innovation shifts fromwithin the organization to a
heterogeneous base of application producers, introduction of
novel applications allows the platform to serve diverse con-
sumer segments and introduces new demand within the user
group.

In our discussions so far, we have refrained from exploring
specific software developmentmethods (e.g. Scrum or Kanban)
in use today because the focus of this research is the broader
software development approaches and the underlying theoreti-
cal underpinning adopted by these approaches. While specific
agile software development methods have been shown to pro-
vide innovation (Highsmith and Cockburn 2001) in fast-paced
environments, we contend that the unique, resource-
constrained, challenging, and dynamic environment provided
by platform ecosystems are radically different from the fast-
paced environments that are of interest in prior work. An in-
triguing future research direction could apply the framework of
effectuation theory to practice-inspired agile methods. The ef-
fectual focus on emerging control portfolios could provide a
promising theory-based structure for defining and
distinguishing different agile approaches to software
development.

The focus of the qualitative data analyses in this paper is to
identify evidence that supports the current (perhaps, uncon-
scious) use of effectuation in open-source development pro-
jects in the Apache Cordova environment. A limitation of this
study is that our data analysis is limited to qualitative second-
ary data (42 user stories) for available open source projects.
Specifically, the software development projects studied did
not use effectual concepts and terms directly. Thus, the select-
ed user stories required subjective coding and interpretation
via an effectual lens. In order to address these limitations, we
developed operational definitions for effectuation constructs
in the software development context and updated them as the
data analyses progressed. Also, stories selected for analyses
provided extended discussion on the issue at hand. Based on
these analyses, we did find considerable evidence that dem-
onstrates the wide-spread use of effectuation thinking in the
Apache Cordova projects. Future studies may adopt a case
study-based approach for more in-depth study of effectual
software development projects.

Future research directions will study how best to build
software development methods that incorporate aspects of

effectual thinking. We propose three potential areas of future
research:

– A clear focus on novelty is essential for entrepreneurial
application success on platforms. The effectual approach
to software development supports a new way to think
about novelty with a focus on existing means and aspira-
tions of the software development team.

– The proposed effectuation design cycles found in the
Fig. 4 research model will require considerable thought
and development to transform into practical use. We
envision that software development teams will perform
tight effectuation design cycles that allow the project’s
actions and deliverables to emerge in rapid but con-
trolled ways. We expect commonalities and differ-
ences with current agile methods to be identified
and studied.

– We discuss and analyze the theoretical underpinning of
software development approaches using the framework
of control and prediction in Fig. 3. On-going research in
the management of software development projects has
considered pros and cons of different approaches and
their suitability to specific environments. Across these
studies, the assumption is that all team members follow
a single approach throughout a project. However, based
on our inferences from the framework of control and pre-
diction and results from the qualitative study, we find that
teammembers may adhere to different control techniques
at different stages in the development project. Based on
the application’s current state of development, teammem-
bers may alter their adherence to different software devel-
opment approaches. Future research can study avenues
and implications of balancing control and prediction dur-
ing the progress of a project.

In conclusion, as organizations find themselves operating in
uncertain, risky, and dynamic environments like digital plat-
forms, existing approaches to software development have lim-
ited applicability due to their theoretical underpinning of
prediction-based approach. Effectual approaches hold promise
to address this gap by accepting, in fact, welcoming the uncer-
tainty and risky environment, and incorporating its unique char-
acteristics in its control-based approaches. This study provides
the foundation for future work that explores control-based ap-
proaches and methods in software development and other areas
of research pertinent for electronic markets.

Acknowledgements We gladly acknowledge the contributions made to
this research by Rosann Webb Collins, Diana Hechavarria, Matthew
Mullarkey, Richard Will, and Balaji Padanabhan. Partial funding was
received from the Gaiennie endowment in the Muma College of
Business at the University of South Florida.

418 A. Hevner, O. Malgonde

Appendix 1

The sample stories in the table provide examples of the coding performed in the qualitative data analyses

Story description Codes

with cordova-plugin-contacts 1.1.0 “Contacts”
When I get the whole list of contacts It’s working but when I choose:

navigator.contacts.fieldType.phoneNumbers in the
options.desiredFields

I get properly some first contacts, then (maybe because one of my contact
phoneNumber value), I get this error:

Error in Success callbackId: Contacts598408154:
SyntaxError: Unexpected token u cordova.js:312
Cordova plugin contacts - PhoneNumbers error

Acceptable Risk - Commit limited resources
Action – Fixed bugs
Expanding cycle of resources – new technical knowledge
Means – Technology

Add the file plugin and browser platform (edge, from github or local repo)
then cordova run browser gives the following in the console:

Error: exec proxy not found for:: File:: requestFileSystem
File plugin on browser platform causes “proxy not found” error on

Chrome

Action – Fixed bugs
Expanding cycle of resources – new technical knowledge
Platform - Technology

Most of automatic geolocation tests were pended on Android because we
didn’t have the tool to detect if the tests are running on a simulator or on
a real device. Now we have device.isVirtual and can use it to pend the
tests only on an emulator. Make geolocation tests use device plugin to
properly detect Android suimulator

Means, Action, Aspiration – Novelty, application-platform
match, Logic of Control

I came back from the Android Dev Summit, and sure enough, I forgot
about the “Do not show me again” box on permissions. We need to
handle this somehow and send a different exception. We should allow
developers to tell users why they need the permission, otherwise their
application experience will suffer. This will be an API addtion, not a
change. I don’t believe we need to go up a major version for this.
Cordova does not handle use case where we need to show rationale
about permissions

Acceptable Risk, Aspirations, Expanding cycle of resources,
converging cycle of constraints, means, platform

Under Adobe AIR, you can open a connection to a SQLite db and point to
an existing file. The benefit of this is that your application can ship a
database seeded with data. Without this support, your application has to
initialize the db via scripting. While not difficult, it does increase the
application’s first run time and also complicates the code unnecessarily.
I understand that this isn’t per the Web SQL spec, http://dev.w3.
org/html5/webdatabase, but it could certainly be useful. Support
opening a database that connects to an existing file

Acceptable Risk, Aspirations, Expanding cycle of resources,
converging cycle of constraints, means, platform

The ALAssetsLibrary framework has been deprecated in iOS 9, replaced
by the Photos.framework. Once our minimum dependency is iOS 9,
move to it.

Usage:
1. iOS (CDVURLProtocol)
2. Camera plugin
3. File plugin
4. File Transfer plugin
5. Local-Webserver plugin (cordova-plugins)
Update deprecated ALAssetsLibrary usage in plugins

Acceptable Risk, Aspirations, Expanding cycle of resources,
converging cycle of constraints, means, platform, Logic of
Control

MediaFile.getFormatData result data was empty (filled with default “0”
values) for all types of capture: image, video audio. Problem
encountered on Android iOS.

I solved this by changing the url passed to native code from localURL to
fullPath.

Tested with two different Android phones (5.1 4.4) one iPhone 5 (iOS 9).
The fix works! MediaFile.getFormatData does not work with
localURL; changed with fullPath

Acceptable Risk, Action, Expanding cycle of resources,
converging cycle of constraints, means, Logic of Control

Effectual application development on digital platforms 419

http://dev.w3.org/html5/webdatabase
http://dev.w3.org/html5/webdatabase

Appendix 2

This appendix summarizes key aspects of software development approaches considered in this position paper

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

Alt, R., & Zimmermann, H. (2014). Electronic markets and general re-
search. Electronic Markets, 24(3), 161–164.

Alt, R., & Zimmermann, H. (2015). Electronic markets on ecosystems
and tourism. Electronic Markets, 25(3), 169–174.

Austin, R., & Devin, L. (2009). Weighing the benefits and costs of flex-
ibility in making software: Toward a contingency theory of the de-
terminants of development process design. Information Systems
Research, 20(3), 462–477.

Baskerville, R., Heje-Pries, J., & Madsen, S. (2011). Post-agility: What
follows a decade of agility? Information and Software Technology,
53(5), 543–555.

Benaroch, M., Lichtenstein, Y., & Robinson, K. (2006). Real options in
information technology risk management: An empirical validation
of risk-option relationships. MIS Quarterly, 30(4), 827–864.

Boudreau, K. (2012). Let a thousand flowers bloom? An early look at
large numbers of software app developers and patterns of innova-
tion. Organization Science, 23(5), 1409–1427.

Bygstad, B. (2016). Generative innovation: A comparison of lightweight
and heavyweight IT. Journal of Information Technology, 32(2),
180–193.

Chandler, G. N., DeTienne, D. R., McKelvie, A., & Mumford, T. V.
(2011). Causation and effectuation processes: A validation study.
Journal of Business Venturing, 26(3), 375–390.

Plan-driven Controlled-Flexible Ad-hoc Effectual

Assumption
(Environment)

Stable, well-defined mar-
ket boundaries, known
competitors

Dynamic, Uncertain,
ambiguous, blurred market
boundaries and competitors

Dynamic, Uncertain,
ambiguous, blurred market
boundaries and competitors

Dynamic, Uncertain, Risky,
Resource constrained,
blurred market boundaries
and competitors

Assumption (Market) Mature market Mature but fast evolving
market

Mature but fast evolving
market

Nascent market, mature but
fast evolving

Project Execution Linear Iterative Iterative Iterative (effectual cycles)

Key Concepts Prediction, resource
gathering, milestones

Partial prediction, resource
gathering, scope
boundaries, ongoing
feedback

constant calibration of its
course by reacting to
changes in the environment

Existing means, aspirations,
acceptable risk, control,
effects

Underlying Logic Causation Causation and adaptability Rapid Adaptation Effectuation

Process Define outcome
(specification) based
on consumer needs,
gather required
resources, plan
milestones, execute to
realize the outcome

Define partial outcome based
on consumer needs, gather
required resources, set
scope boundaries, monitor
development with feedback

Development follows changes
in consumer needs

Define partial outcome using
aspirations, existing means,
and consumer needs,
identify multiple effects
from existing resources,
select effect that is
controllable and has
acceptable risk, monitor the
development based on
feedback from consumer
needs, aspirations, and
platform

Decision making Systematic information
gathering and analysis,
expected return of the
alternative

Systematic information
gathering and analysis,
expected return of the
alternative, feedback

Expected return Acceptable risk and logic of
control

Outcome Product-specification
match

Product-market match Working product Product-market match,
product-platform match,
value exceeding platform’s
core proposition, novelty

Use of Knowledge Rely on existing
knowledge base

Synthesize existing and new
knowledge (created with
every iteration)

Act on new situational
knowledge

Synthesize existing and new
knowledge (created with
every effect)

420 A. Hevner, O. Malgonde

de Reuver, M., Sørensen, C., & Basole, R. (2017). The digital platform: A
research agenda. Journal of Information Technology, 33(2), 124–
135.

Drechsler, A., and Hevner, A.R. 2015. "Effectuation and its implications
for socio-technical design science research in information systems,"
in: DESRIST. Dublin.

Flyvbjerg, B., and Budzier, A. 2011. "Why your IT project may be riskier
than you think," Harvard Business Review).

Ghazawneh, A., & Henfridsson, O. (2015). A paradigmatic analysis of
digital application marketplaces. Journal of Information
Technology, 30(3), 198–208.

Gill, T.G., and Hevner, A.R. 2013. "A fitness-utility model for design
science research," ACM Transactions on Management Information
Systems (4:2).

Haile, N., & Altmann, J. (2016). Structural analysis of value creation in
software service platforms. Electronic Markets, 26(2), 129–142.

Harris, M. L., Collins, R. W., & Hevner, A. R. (2009). Control of flexible
software development under uncertainty. Information Systems
Research, 20(3), 400–419.

Hayes, R.H. 1985. "Strategic planning-forward in reverse," Harvard
Business Review (63:6).

Hevner, A. (2018). BIntellectual control of complexity in design science
research,^ in A. Rai, BEditor’s comments: Diversity of design sci-
ence research,^. Management Information Systems Quarterly, (41:
1), March 2017), iii–xviii.

Highsmith, J., & Cockburn, A. (2001). Agile software development: The
business of innovation. Computer, 34(9), 120–127.

Kim, W.C., and Mauborgne, R. 1997. Value innovation: The strategic
logic of high growth. Harvard Business School.

Kirsch, L. J. (1997). Portfolios of control modes and IS project manage-
ment. Information Systems Research, 8(3), 215–239.

Koch, S., & Bierbamer, M. (2016). Opening your product: Impact of user
innovations and their distribution platform on video game success.
Electronic Markets, 26(4), 357–368.

Lyytinen, K., Mathiassen, L., & Ropponen, J. (1998). Attention shaping
and software risk— A categorical analysis of four classical risk.
Information Systems Research, 9(3), 233–255.

MacCrimmon, K., & Wehrung, D. (1986). Taking risks: The
Management of Uncertainty. New York: Free Press.

March, J., & Shapira, Z. (1987). Managerial perspectives on risk and risk
taking. Management Science, 33(11), 1404–1418.

McKelvey, B., Tanriverdi, H., & Yoo, Y. (2015). Complexity and infor-
mation systems research in the emerging digital world. MIS
Quarterly.

Miles, M., Huberman, A.M., and Saldana, J. 2013.Qualitative data anal-
ysis: A methods sourcebook. SAGE Publications.

Parker, G.G., Van Alstyne, M.W., and Choudary, S.P. 2016. Platform
revolution. W. W. Norton & company.

Perry, J. T., Chandler, G. N., & Markova, G. (2012). Entrepreneurial
effectuation: A review and suggestions for future research.
Entrepreneurship Theory and Practice, 36(4), 837–861.

Sarasvathy, S. (2001). Causation and effectuation: Toward a theoretical
shift from economic inevitability to entrepreneurial contingency.
The Academy of Management Review, 26(2), 243–263.

Stanley, K.O., and Lehman, J. 2015. Why greatness cannot be planned.
Springer International Publishing.

Tiwana, A. (2013). Platform ecosystems. Morgan Kaufmann.
Tiwana, A., Konsynski, B., & Bush, A. A. (2010). Platform evolution:

Coevolution of platform architecture, governance, and environmen-
tal dynamics. Information Systems Research, 21(4), 675–687.

Weiner, M., Mähring, M., Remus, U., & Saunders, C. (2016). Control
configuration and control enactment in information systems pro-
jects: Review and expanded theoretical framework. MIS Quarterly,
40(3), 741–774.

Wiltbank, R., Dew, N., Read, S., & Sarasvathy, S. (2006). What to do
next? The case for non-predictive strategy. Strategic Management
Journal, 27, 981–998.

Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). The new organizing
logic of digital innovation: An agenda for information systems re-
search. Information Systems Research, 21(4), 724–735.

Effectual application development on digital platforms 421

	Effectual application development on digital platforms
	Abstract
	Digital platforms
	Effectual software development
	Effectuation
	Prediction vs. control in software development

	Applying effectuation to software development practice
	Why effectuation?
	A model of effectual software development

	Evidence of effectuation in platform development projects
	Research method
	Results

	Conclusion
	Appendix 1
	Appendix 2
	References

