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Mechanisms of Stent Failure: Lessons from IVUS and OCT
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Abstract

Purpose of Review Despite significant advances in stent design and procedural technique, stent failure remains the “Achilles’
heel” of percutaneous coronary intervention (PCI). It is important to understand the mechanism of stent failure to prevent major

adverse events and improve clinical outcomes.

Recent Findings Two-dimensional angiography alone is insufficient for elucidating the etiology of stent failure. Intracoronary
imaging modalities, including intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have evolved to guide
optimal stent placement during PCI, and have enabled identification of the etiology behind stent failure.

Summary In this review, we discuss the mechanisms of stent failure, use and limitations of intracoronary imaging (IVUS and
OCT) to assess its etiology, and future directions for its use in patients undergoing coronary stent implantation.

Keywords Stent failure - Percutaneous coronary intervention - Intravascular ultrasound - Optical coherence tomography - In-stent

restenosis - Stent thrombosis

Introduction

Stent failure, comprised of in-stent restenosis (ISR) and stent
thrombosis (ST), is a well-known complication of percutane-
ous stent implantation [1¢]. The factors associated with ISR
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include neointimal hyperplasia, neoatherosclerosis (NA), stent
fracture, and stent underexpansion [2, 3], while risk of ST is
associated with suboptimal stent deployment, including inap-
propriate stent sizing, edge dissection, stent malapposition,
NA, and uncovered stent struts [4, 5] (Fig. 1). Traditionally,
two-dimensional angiography has been used to assess plaque
characteristics, vessel dimensions and adequacy of stent ex-
pansion, but its use is limited to visualization of the coronary
lumen. Intracoronary imaging with IVUS or OCT has evolved
as an effective imaging modality for identifying the mecha-
nism of stent failure and for optimizing acute procedural re-
sults and improving clinical outcomes of percutaneous stent
implantation [6e°].

Mechanism/Pathophysiology of Stent Failure

Percutaneous coronary intervention (PCI) has evolved over
the past 40 years. Bare metal stents (BMS) reduced vessel
recoil associated with balloon angioplasty, but these benefits
were offset by ST [1] and the occurrence of neointimal hy-
perplasia several months after PCI leading to ISR [7]. This led
to the development of first-generation drug-eluting stents
(DES) with a durable polymer and anti-proliferative drug to
reduce ISR [8]. However, there was an increase in late and
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Fig. 1 OCT images showing neointimal hyperplasia (a, b, ¢), stent malapposition (d, e) and distal edge dissection (f)

very late ST due to delayed re-endothelialization [8] second-
ary to chronic inflammation and hypersensitivity reactions
due to the durable polymer [9]. Thus, second-generation
DES with different drugs and release kinetics, more biocom-
patible and bioresorbable polymers, and thinner stent struts
were developed, leading to an incremental decrease in the
rates of ISR and ST. [10, 11] To promote recovery of endo-
thelial function and vascular remodeling and thereby reduce
the risk of late and very late ST caused by DES, bioresorbable
vascular scaffolds were developed [12]. These devices pro-
vide transient mechanical support along with antirestenotic
drug delivery, but ultimately, are completely resorbed.
However, due to late scaffold thrombosis, the first generation
of these devices has not been broadly adopted in clinical prac-
tice, remains investigational, and is not approved by the US
Food and Drug Administration.

In-stent Restenosis

Neointimal hyperplasia and negative vascular remodeling are
the pathophysiological processes underlying ISR [13]. There
are several predictors for ISR including diabetes, small vessel
diameter, longer lesion length, multiple stents, and chronic
total occlusion (CTO) [14, 15]. Final luminal diameter and
degree of stent expansion are major determinants of ISR as
demonstrated by studies involving IVUS and angiography.
Factors such as stent fracture and NA are other notable causes
[16, 17]. However, these factors are underappreciated with
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standard 2-dimensional angiography and typically require
IVUS or OCT for detection [18]. OCT has a 10-fold higher
image resolution than IVUS (OCT 10 pm and IVUS 100 um)
as it uses light that has a shorter wavelength than sound, there-
by increasing its ability to detect differences in tissue compo-
sition, cell density, and orientation [19, 20]. OCT can therefore
more clearly identify certain causes of late stent failure includ-
ing NA and uncovered stent struts, which are associated with
ST. [3, 21]

Stent and Scaffold Thrombosis

Intracoronary imaging studies using IVUS [22-24] and OCT
[4, 25, 26] have identified multiple factors associated with ST
(Table 1). Due to the ability to differentiate thrombus from
other tissue components, OCT is often preferred over IVUS
for evaluation of ST. [6°¢] Therapy for ST can be tailored
towards OCT findings; however, there are no prospective tri-
als to support this strategy [6°¢]. An important consideration to
note is that malapposition, though a common finding after
stent implantation, was not found to be clinically significant
in a large OCT follow-up study [30] and may not require
treatment unless there is associated under expansion [31].
Bioresorbable vascular scaffolds (BVS) with complete-
ly resorbable polymers after drug elution for a year were
developed with the goal of reducing late events secondary
to chronic inflammation and incomplete endothelialization
secondary to permanent polymers of DES [32]. However,



Curr Cardiovasc Imaging Rep (2019) 12: 35

Page30of8 35

Table 1 Selected studies demonstrating the mechanism of stent thrombosis by intracoronary imaging

Study N Intracoronary Type of stent failure Mechanisms of stent thrombosis

imaging

Alfonso, 2004 [22] 50 IvUS Early ST (n=12); BMS Underexpansion, malapposition, edge dissection,
inflow-outflow disease

Choi, 2011 [23] 464 (349 DES, 115 IvuUs Early ST (n=12); all DES™ Minimum lumen area (MLA) < 5 mm2, residual

BMS) Late/V LST ST (n=4) all stenosis, edge dissection, or tissue protrusion
DES”

Lee, 2010 [24] 30 (23 DES, 7BMS)  IVUS VLST (n=30) Malapposition and disease progression more
common with DES, neointimal rupture more
common with BMS

Adriaenssens, 2017 231 (110 BMS, 121) OCT Early ST (n=62, 28.6%)  Uncovered struts (66.7%) were most common

[27] Late/VLST (n=155, finding for acute ST; uncovered struts (61.7%)
71.4%) and underexpansion (25.5%) in subacute ST;
uncovered struts (33.3%), severe restenosis
(19.1%) for late ST; neoatherosclerosis (31.3%)
and uncovered struts (20.2%) for VLST.
Souteyrand, 2016 120 (47 BMS, 71 OCT Early ST (n=5) Malapposition (31%) and neoatherosclerosis (28%)

[26] DES)

Prati, 2015 [4] 63 (48 BMS, 15 DES) OCT

Taniwaki, 2016 [25] 64 (all DES) OCT
Sotomi, 2017 [28] 43 (all BVS) OCT/IVUS
Yamaji, 2017 [29] 36 (all BVS) OCT

Late ST (n=7)
VLST (n=90)

Subacute ST (n=21)

VLST (n=64)

Early ScT (n=17)
Late ScT (n=26)

VLScT

were more common in late and VLST;
malapposition (48%) and underexpansion (26%)
were more common in early ST.

Higher proportion of stent edge dissection (52.4%
vs. 9.5%), underexpansion (42.8% vs. 16.7%)
were more common in subacute ST compared
with controls.

Common causes for VLST included malapposition
(35%), neoatherosclerosis (28%), uncovered
struts (12%), and stent underexpansion (7%).

Early ScT was associated with malapposition
(24%), device underexpansion (12%), incomplete
lesion coverage (18%); late ScT late and VLScT
were associated with malapposition (35%),
scaffold discontinuity (31%), scaffold
underexpansion (15%), peristrut low-intensity
area (19%), uncovered struts (15%), restenosis
(8%), incomplete lesion coverage (12%), and
scaffold recoil (12%).

VLScT was associated with scaffold discontinuity
(42.1%), malapposition (18.4%),
neoatherosclerosis (18.4%), scaffold recoil
(10.5%), uncovered struts (5.3%), and
edge-related disease progression (2.6%)

*Paclitaxel-eluting stents; VLST, very late ST; ScT, scaffold thrombosis; VLScT, very late scaffold thrombosis

scaffold thrombosis remains a problem [33] with
intracoronary imaging trials demonstrating multiple un-
derlying associated factors [[3, 28])] (Table 1). In porcine
models, a complete resorption of the poly(L-lactide)
(PLLA) Absorb scaffold (Abbott, Chicago, IL) occurred
within 3 years [34]. However, very late scaffold thrombo-
sis (ScT) associated with preserved box-shaped appear-
ance was noted to occur as late as 44 months at an ad-
vanced stage of scaffold resorption secondary to scaffold
discontinuity and restenosis during the resorption process
[35]. It is important to note that scaffold discontinuity
related to late resorption has no clinical significance if
scaffold structures are not protruding into the lumen [30,

35]. Protrusion of scaffold structures into the lumen can
occur during implantation due to excessive stretching and
fracture of polymer, or late/very late during resorption due
to excessive biomechanical stress or iatrogenic mechani-
cal causes such as disruption by catheters, thus making
the case for prolonged dual antiplatelet therapy and care-
ful instrumentation of these scaffolds [32, 36]. Since
IVUS is less sensitive than OCT in the detection of strut
disruption or discontinuity, OCT is the imaging modality
of choice for evaluating ScT, particularly when overex-
pansion or oversizing is suspected [30, 37]. Table 1 dem-
onstrates selected studies evaluating the mechanism of
stent failure in bioresorbable vascular scaffolds.
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Intra-procedural Predictors of Stent Failure

Stent Sizing OCT and IVUS use can decrease the incidence of
long-term stent failure. Current data show that post-PCI min-
imal stent area (MSA) is the most reliable predictor of both
ISR and ST. [38, 39] Small post-procedural MSA (smallest <
5.0 mm2 and intermediate 5.0-6.7 mm2), creatinine clear-
ance, prior stroke, CTO, and lesion SYNTAX score were in-
dependent predictors of target lesion revascularization (TLR)
at 2 years in the SYNTAX I trial [40]. A 5.5-mm> MSA cut-
off value for the prediction of angiographic ISR can be used
for sirolimus-eluting stents (sensitivity 72.2% and specificity
66.3%), 5.3 mm? for zotarolimus-eluting stents (sensitivity
56.7% and specificity 61.8%), <5.4 mm? for everolimus-
eluting stents (sensitivity 60.0% and specificity 60.0%), and
5.7 mm? for paclitaxel-eluting stents (PES) [(38, 41]].

During IVUS-guided DES implantation, plaque burden 5-
mm proximal or distal to the stent edge <50%, MLA >
5.0 mmz, or 90% of the MLA at the distal reference segments,
and no edge dissection that involves the media with a length >
3 mm correlate with significantly improved clinical outcome
including reduced target vessel failure (TVF) at 1 year in an
all-comers population [42]. In a RCT, including 1,448 pa-
tients, IVUS guidance for left main PCI also was associated
with a significant reduction in ST (RR, 0.48; P=0.01) com-
pared with angiographic guidance [42].

In an OCT registry, OCT-MSA (< 5 mm? for DES and <
5.6 mm” for BMS) was an independent predictor of TLR,
cardiac death, ST, and myocardial infarction (MI) [39].
OCT-guided stenting showed improved procedural outcomes,
in-hospital events, and long-term survival compared with tra-
ditional angiography-guided stent implantation [43]. This can
be attributed to the ability of OCT to delineate the neointimal
patterns and NA in ISR, which can guide the choice of treat-
ment [44]. OCT imaging revealed that, compared to BMS,
DES are more likely to develop NA with ISR [45].

Post-dilation using the distal lumen as a reference appears
to be an effective way to prevent stent under expansion. IVUS
can detect the external elastic membrane diameter of the ves-
sel wall, while OCT fails to detect the vessel wall accurately.
However, both IVUS and OCT can be used to measure the
vessel wall using the lumen-based approach. Despite the
unique advantages of each modality, the MLA measured by
OCT is about 10% smaller than the MLA measured by IVUS.
In addition, the reference site lumen measurement appears to
be smaller with OCT, which can impact stent sizing. The
OPINION study, a prospective randomized study including
829 patients comparing IVUS vs. OCT, demonstrated a sig-
nificantly higher average stent size when applying lumen-
based stent sizing (2.99+0.39 mm vs. 2.92+0.39 mm, p=
0.0005) [46°]. There was no significant difference in in-stent
(1.6% vs. 1.6%, p = 1.0) or in-segment restenosis rates (6% vs.
6.2%, p =1.0) between both groups at 8-month follow-up
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[46°]. The ILUMIEN III trial compared 450 patients between
IVUS and OCT and demonstrated that the minimum stent area
with OCT was non-inferior to IVUS or angiography
(5.79 mm? vs. 5.89 mm?® vs. 5.49 mm?) respectively [47].
However, data regarding post-PCI OCT measurement to pre-
dict physiological ischemia or clinical outcomes are still lim-
ited pending results from the ongoing large-scale randomized
ILUMIEN IV study (NCT03507777), which is expected to be
completed by July 31, 2022.

Strut apposition refers to the proximity of stent struts to the
arterial wall, while stent malapposition refers to stent under
expansion and lack of contact with the vessel wall. Stent
malapposition can occur immediately following the procedure
or chronically due to vascular inflammation and vessel
remodeling.

OCT-guided PCI using the ILUMIEN III: OPTIMIZE PCI
protocol [47] establishes stent length, diameter, and expan-
sion, resulting in safe and similar MSA to that of IVUS-
guided PCI. Early vascular healing post-DES placement con-
tributes to a reduction in both the presence and severity of
stent malapposition. However, malapposition that exceeds
400 pm is associated with a higher chance of long-term per-
sistent malapposition and impaired vascular remodeling [48].
A meta-analysis by Hassan revealed that the risk of late ac-
quired stent malapposition is strongly increased after DES
implantation compared with BMS and is associated with late
and very late ST. [49]

OCT guidance showed improved strut coverage at
3 months compared with angiography-guided DES implanta-
tion with an average 2.8% absolute reduction in the percent-
age of uncovered struts [48]. The larger the acute incomplete
stent apposition, the greater is the likelihood of persistent stent
malapposition and delayed healing on follow-up [50]. IVUS
and OCT complement each other in the diagnosis and eluci-
dation of incomplete stent apposition mechanisms. OCT-
detected uncovered stent struts and positive vessel remodeling
detected on IVUS were associated with late ST after PCI [51].

Longitudinal stent deformation leads to increased risk of
ST and ISR [52]. The introduction of cobalt-chromium and
platinum-chromium alloys in stents, along with a reduced
number of fixed links between stent cells, are potential risk
for longitudinal stent deformation [52]. IVUS and OCT can
delineate protrusion of struts and affirm malapposition of
struts caused by longitudinal deformation [53].

Longitudinal geographical miss (GM) is defined as an
angioplasty-injured or diseased segment not covered by a
stent. GM is associated with an increased risk of TLR and a
3-fold increase in myocardial infarction at 1 year [54].
Intracoronary imaging using IVUS and OCT can precisely
identify the landing zone and facilitate appropriate length
selection.

Tissue protrusion (TP) defined as extrusion of athero-
thrombotic material beyond the stent margins is hard to
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appreciate on angiography while up to 34% of stented
lesions displayed tissue protrusion on IVUS [55]. While
presence of TP on IVUS did not show a significant dif-
ference in long-term major adverse cardiac events includ-
ing cardiac death, MI, or target vessel revascularization at
1 year [56] or cardiac death, MI, or ST at 2 years [55]
compared to those without, it was an independent predic-
tor of acute and subacute ST. [56, 57] OCT enables more
accurate visualization of tissue protrusion when compared
with IVUS [47]. Irregular but not smooth or disrupted
fibrous tissue protrusion was identified as an independent
OCT predictor of 1-year device-oriented clinical end-
points driven by TLR [39]. Irregular protrusion reflective
of moderate to severe vessel injury can be associated with
thrombus [39] and has a high likelihood of medial disrup-
tion which is known to be associated with increased risk
of occlusive DES restenosis [58].

Edge dissection involves intimal disruption at the stent
margin and can occur in 5-23% of stent implantation.
Edge dissections were associated with increased rates of
in-hospital (11.9 vs. 5.2%, P=0.017) and 1-month
MACE (13.4 vs. 6.0%, P=0.013), with similar 6-month
trends [59]. Following DES implantation, residual edge
dissection, particularly with a smaller effective lumen ar-
ea, was associated with TLR at 1 year [60]. The presence
of large, calcified, and/or attenuated plaques; residual
plaque eccentricity; greater stent expansion; lumen-to-
stent-edge-area ratio; and stent edge symmetry are predic-
tors of edge dissections [61]. Both IVUS and OCT are
excellent tools for identification of edge dissection. Edge
dissection with a lateral extension of > 60° and length of
>2 mm identified by IVUS have been correlated with
adverse events including early ST. [62] OCT has a higher
resolution than IVUS and can identify less extensive edge
dissections as demonstrated in the ILUMIEN III trial,
which showed a two-fold higher identification of edge
dissections compared with IVUS [47].

Intramural hematomas occur due to dissection into the
vessel media with blood accumulation due to lack of re-
entry and can lead to higher rates of NSTEMI, need for repeat
revascularization, and sudden death post PCI [63]. In one
study, intramural hematomas were identified by IVUS in up
to 6.7% of PCIs and a third of [VUS-identified hematomas
were missed on standard angiography [63]. However, OCT
due to its higher resolution may better characterize intramural
hematomas including assessment of the vessel wall and exclu-
sion of atheroma [64].

Slow flow during PCI is another phenomenon that can
occur in up to 16% of PCI and can be transient or perma-
nent. OCT and IVUS can be utilized to decrease the inci-
dence of slow flow by using a ratio of stent diameter to a
vessel diameter of 0.71 or more following stent implanta-
tion PCI [65].

Current Recommendations, Limitations,
and Future Directions for Use of Intracoronary
Imaging In-Stent Failure

Both IVUS and OCT can readily identify stent under expan-
sion and stent fracture, while OCT is preferred for identifying
NA [3] and ST. [6°¢] Where thrombus burden is large, [IVUS
may be preferred since light attenuation may impair OCT
evaluation of stent struts and the outer vessel wall [6+¢]. The
2011 ACCF/AHA/SCALI guidelines for PCI [66] and 2014
ESC guidelines on myocardial revascularization [67] give a
class Ila recommendation for intracoronary imaging using
IVUS/OCT to determine the mechanism of stent failure.
This recommendation is further supported by an expert con-
sensus document of the European Association of
Percutaneous Cardiovascular Interventions that also maintains
a similar class Ila recommendation for identifying the mech-
anism of stent failure [6°¢].

Despite the benefits of IVUS and OCT in establishing the
factors predictive of stent failure and in optimizing stent im-
plantation, there remain limitations to their use. First, although
IVUS has been around for several decades, the use of OCT
has only become prevalent in the past few years.
Interventional cardiologists trained prior to the introduction
of'this technology may not be versatile with its use. The learn-
ing curve associated with image acquisition and interpretation
can be overcome by attending courses and appropriate
mentoring from experts familiar with this technology.
Second, the time and costs involved in the use of intracoronary
imaging must be weighed against the possible benefits of its
use. Currently, there are limited data that stent optimization
using intracoronary imaging improves long-term clinical out-
comes in all comers. However, there is no doubt that this
technology is beneficial in a subset of higher risk patients.
Third, it may be challenging to pass the IVUS or OCT cathe-
ters in coronaries with excessive tortuosity, calcium, and bi-
furcation lesions, where their use may be of the most benefit.
Evolving technology using high-resolution imaging, low-
profile wires and sheaths, micro-OCT catheters, molecular
analysis, and integration with coronary angiography can over-
come this limitation and facilitate widespread use. Finally,
complications with the use of intracoronary imaging can oc-
cur, but these are relatively rare and decrease with operator
experience. Future studies should aim to create catheters that
are more deliverable and cost-effective, and fellowship pro-
grams should ensure that all trainees are proficient with these
devices.

Conclusions

Intracoronary imaging is an important tool in understanding
the factors predictive of stent failure to guide appropriate
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therapy and improve clinical outcomes. The operator must
understand the advantages and limitations of the two imaging
modalities and use them to optimize treatment. Future studies
evaluating the role of intracoronary imaging for stent failure
are necessary.
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