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Abstract

Purpose of Review The purpose of this article is to review the basic principles of near-infrared spectroscopy (NIRS) and its
contemporary role in intracoronary imaging.

Recent Findings NIRS has been demonstrated to effectively detect culprit lesions in acute coronary syndromes (ACS) and to
potentially identify vulnerable plaque. Lipid-rich plaques detected by NIRS are also associated with higher incidence of future
adverse cardiac events. Plaques with high lipid content detected by NIRS have been shown to predict periprocedural myocardial
infarction during percutaneous coronary intervention (PCI). The beneficial effects of high-intensity statin therapy in terms of
plaque regression and plaque stabilization have also been demonstrated using NIRS.

Summary NIRS is a valuable intracoronary imaging tool to assess lipid burden in atherosclerotic plaques and has been validated
against histopathologic data. The commercially available dual-modality NIRS-intravascular ultrasound (IVUS) catheter further
provides complementary data regarding lesion and vessel characteristics, thereby facilitating planning and optimization of PCI.
Finally, the ability of NIRS to detect vulnerable plaque opens up potential new opportunities for risk stratification and intensi-
fication of secondary preventive measures.

Keywords Near-infrared spectroscopy (NIRS) - Intracoronary imaging - Lipid core plaque (LCP) - Lipid core burden index (LCBI)

Introduction

Although coronary angiography provides valuable infor-
mation regarding coronary anatomy and may grossly es-
timate the degree of stenoses, it fails to reliably assess the
size of the vessel and nature of atherosclerotic burden. It
provides no information about the composition and sever-
ity of the atherosclerotic plaque and provides little infor-
mation regarding optimal stent expansion and apposition

This article is part of the Topical Collection on Intravascular Imaging

P4 Aditya S. Bharadwaj
adityadoc @ gmail.com

Pooja M. Swamy
pswamy @llu.edu

Mamas A. Mamas
mamasmamas | @yahoo.co.uk

Division of Cardiology, Loma Linda University, 11234 Anderson
Street, Suite 2422, Loma Linda, CA 92354, USA

Keele Cardiovascular Research Group, Centre for Prognosis
Research, Institutes of Primary Care and Health Sciences, Keele
University, Newcastle, UK

post-percutaneous coronary intervention (PCI). For these
reasons, intracoronary imaging modalities such as optical
coherence tomography (OCT), intravascular ultrasound
(IVUS), and near-infrared spectroscopy (NIRS) are valu-
able supplemental tools to coronary angiography for diag-
nostic evaluation and optimization of intervention.
Intravascular imaging with IVUS has been shown to im-
prove clinical outcomes post-PCI, particularly in complex
groups of patients such as those undergoing PCI of left
main coronary artery [1, 2]. Figure 1 shows a coronary
lesion in the left anterior descending artery and its assess-
ment by multiple modalities of intracoronary imaging.
NIRS has been demonstrated to accurately identify the
presence of lipid core inside atherosclerotic plaques [4]. It
has also been used to evaluate the morphologic differ-
ences in coronary atherosclerotic plaque based on sex
[5] and clinical presentation [6—9]. NIRS has additionally
been evaluated for prediction of periprocedural myocardi-
al infraction (MI) during PCI [10, 11], detection of vul-
nerable plaque [12], demonstrating the effect of statin
therapy [13, 14], and for predicting the prognosis of cor-
onary lesions [15, 16]. In this review article, we describe
the principle of near-infrared spectroscopy and elaborate
on its application in intracoronary imaging. Table 1
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Fig. 1 Coronary angiography and
multimodality imaging of a single
coronary lesion. (A) Coronary
angiography demonstrating a
hazy focal lesion in the left
anterior descending artery. (B)
NIRS demonstrating a high lipid
burden in the lesion (maxLCBI
(4 mm) of 482). (C) Optical
coherence tomography (OCT)
demonstrating a lipid arc of 159°
with thin cap fibroatheroma. (D)
Intravascular ultrasound (IVUS)
demonstrating a plaque burden of
78% (reprinted with permission
from Kini et al. [3] with
permission from Elsevier)
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Summarizes the prominent studies utilizing NIRS in hu-
man subjects to demonstrate its application as an
intracoronary imaging tool.

Basic Principles of NIRS

Spectroscopy involves the measurement of the wavelength-
dependent interaction of electromagnetic radiation with matter.
In its application as an intracoronary imaging tool, near-infrared
light is emitted on the atheroma in the vessel wall and its mo-
lecular interactions with the light are probed. NIRS has been
used to assess the lipid content of plaques by identifying the
presence of cholesterol monohydrate and cholesterol ester. This
has been validated in histopathological studies [4] and in com-
parison to OCT [17]. There are several characteristics of NIRS
that make it an attractive intracoronary imaging tool. It has the
ability to penetrate blood and several millimeters into the tissue.
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It uses an ultrafast scanning laser to acquire thousands of spatial
measurements required to create an image of an artery, thereby
overcoming the problem of cardiac motion. The specific utility
of NIRS in assessing lipid core plaque (LCP) stems from the
fact that cholesterol has prominent features in the near-infrared
region. This property helps differentiate cholesterol from other
tissue constituents such as collagen [20e¢].

NIRS Catheter System

The first NIRS catheter system (Lipiscan™) was originally
developed by InfraRedx Inc. (Burlington, MA, USA) for in-
vasive detection of LCP. In order to provide multimodality
imaging, a combined NIRS-IVUS catheter was subsequently
developed (TVC Imaging System™, InfraRedx Inc.). This
provides simultaneous, co-registered data with the two imag-
ing modalities complementing each other. This NIRS-IVUS
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system is similar in characteristics to a traditional IVUS cath-
eter and is compatible with 6F guiding catheters with an entry
profile of 2.4F and a shaft profile of 3.6F [20e°]. The
Dualpro™ IVUS+NIRS catheter and its accompanying
Makoto™ Intravascular Imaging System are current state-of-
the-art FDA-approved dual-modality catheter and imaging
system indicated for the detection of LCP. This catheter ac-
quires approximately 1300 NIRS spectra per millimeter of
vessel scanned. The acquired NIRS signals are then analyzed
and each spectrum is assigned a probability score from O to 1,
depending on the presence of LCP. All probability scores are
mapped on a continuous color scale from red to yellow [21]. A
chemogram is a two-dimensional map of the vessel with its x-
axis representing millimeters of pullback in the artery and the
y-axis representing degrees of rotation (0° to 360°). A proba-
bility score is used to indicate the presence of LCP and is
represented by a color scale from red to yellow. The “block
chemogram” provides a summary of the results for each 2-mm
section of artery. The color-coding scheme is as follows:

* Red denotes the probability of LCP is <0.57

* Orange denotes the probability of LCP is 0.57-0.83

* Tan denotes the probability of LCP is 0.84-0.97

* Yellow denotes the probability of LCP is 0.98 or greater

The lipid core burden index (LCBI) is used to provide a
quantitative measure of the LCP present in the entire scanned
segment of the artery. LCBI is calculated as the fraction of
valid pixels within the scanned segment that exceed an LCP
probability of 0.6, multiplied by 1000 [11].

Clinical Applications of NIRS
Prediction of Periprocedural Myocardial Infraction

Periprocedural MI complicates nearly 3 to 15% of all PClIs [22].
One of the most common causes of periprocedural MI is distal
embolization of lipid-rich material from the target lesion during
angioplasty and stenting, resulting in microvascular obstruction.
Intraprocedurally, this can result in angiographic slow flow or
no-reflow with resultant chest pain and EKG changes [11, 23].
In a subgroup of the COLOR (Chemometric Observation of
Lipid Core Plaques of Interest in Native Coronary Arteries) reg-
istry, 62 patients undergoing coronary stenting were evaluated
for periprocedural MI. A large lipid core plaque (defined as a
maxLCBI (4 mm) >500) was present in 14 of 62 lesions.
Periprocedural MI occurred in 7 of these 14 patients (50%) with
a maxLCBI (4 mm) >500, compared with 2 of 48 patients
(4.2%) with a lower maxLCBI (4 mm) (P=0.0002) [11]. The
CANARY (Coronary Assessment by NIR of Atherosclerotic
Rupture-prone Yellow) study was a multicenter trial, which eval-
uated 85 patients with stable angina who underwent NIRS and
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IVUS to assess the lipid burden prior to PCI. Of the 21 patients
who had periprocedural MI, maxLCBI (4 mm) was significantly
higher compared to those who did not suffer periprocedural MI
(481.5 versus 371.5, P=0.05) [10]. Similar findings were re-
ported in yet another study where creatine kinase-MB increase >
3 times the upper limit of normal was observed in 27% of pa-
tients with > 1 yellow block versus in none of the patients with-
out a yellow block within the stented lesion [18].

In an attempt to prevent periprocedural M1, NIRS has been
used to identify lesions with large LCPs for the potential use
of embolic protection devices. Brilakis et al. reported that use
of embolic protection devices frequently resulted in embolized
material retrieval after stenting of native coronary artery le-
sions with large LCPs [24]. However, in a subgroup of the
CANARY study undertaken in 31 randomized lesions with
maxLCBI (4 mm) > 600, there was no difference in the rates
of periprocedural MI irrespective of the use of a distal protec-
tion filter, although the modest sample may have made the
study underpowered to detect small effect sizes [10].

Guiding PCl Procedure

Intracoronary imaging with NIRS has also been shown to detect
the presence of significant atheroma beyond the length of the
target lesion identified by angiography. Dixon et al. in their
analysis of 75 lesions reported that LCP extended beyond the
margin of angiographically defined target lesion in 16% of
cases [25]. However, when NIRS-IVUS dual-modality imaging
was used in addition to angiography, atheroma (defined as the
presence of LCP by NIRS or a plaque burden of >40% by
IVUS) extending beyond the margin of angiographically de-
fined target lesion was reported in 90% of cases [26]. In this
study, LCP extending beyond the angiographic margin was
found in 52% of the lesions. NIRS-IVUS guidance during
PCIwill help land the stent edge in a relatively healthy segment
of the artery, thereby potentially preventing stent edge dissec-
tions and future adverse clinical outcomes [27¢].

Identification of Culprit Lesion in Acute Coronary
Syndrome

Studies utilizing NIRS have demonstrated that high lipid
burden exists in plaques that result in acute coronary syn-
dromes [6-9]. A study by Madder et al. evaluated the
composition of culprit lesions in ACS versus stable angina
by identifying LCP. LCPs were defined as a 2-mm seg-
ment on the NIRS block chemogram having a strongly
positive reading denoted by a bright-yellow color. They
reported that while culprit lesions in patients with ACS
were more often composed of LCP than culprits in pa-
tients with stable angina (84.4% versus 52.8%, P =
0.004), approximately one half of culprit lesions in pa-
tients with stable angina also contained LCP [9]. A study



Curr Cardiovasc Imaging Rep (2019) 12: 34

Page50f9 34

of 20 patients who presented with STEMI demonstrated
in vivo that a maxLCBI (4 mm) >400, as detected by
NIRS, was characteristic of the culprit ruptured plaques
that contributed to STEMI [6]. These findings were later
confirmed in a larger study of 75 patients who were en-
rolled at two centers in the USA and Sweden. These pa-
tients underwent NIRS intracoronary imaging after estab-
lishment of thrombolysis in myocardial infarction 3 flow
but before stent deployment. The culprit segment was de-
fined as the 10-mm segment distal to the proximal angio-
graphic culprit margin. The remainder of the vessel was
divided into contiguous 10-mm non-culprit segments. The
maxLCBI (4 mm) of culprit segments was 4.4-fold greater
than non-culprit segments (P <0.001). The study validat-
ed the ability of NIRS to accurately differentiate STEMI
culprit from non-culprit segments and confirmed the
threshold of maxLCBI (4 mm) >400 to be a predictor of
STEMI lesion [8]. Similarly, large lipid cores have also
been reported in plaques causing NSTEMI and unstable
angina. In a study including 81 patients, NSTEMI culprit
lesions had a 3.4-fold greater maxLCBI (4 mm) than non-
culprits (P <0.001) and unstable angina lesions had a 2.6-
fold higher maxLCBI (4 mm) than non-culprits
(P<0.001). NIRS detected a maxLCBI (4 mm)>400 in
63.6% of culprit lesions in NSTEMI and in 38.5% of
culprit lesions in unstable angina [7]. Figure 2 depicts
the NIRS findings in various types of ACS presentations.

Detection of Vulnerable Plaque

Retrospective autopsy studies of patients who suffered
fatal myocardial infarction have been used to derive infor-
mation on the histopathologic characteristics of culprit
lesions [28]. The presence of a large necrotic core with
either a non-existent cap or a thin fibrous cap (<65 pm)
and enzymatically active macrophages near the fibrous
cap has been described as the characteristic histopatholog-
ic appearance of “vulnerable plaques” [28, 29]. Figure 3
depicts the correlation between NIRS imaging and histo-
pathologic findings in a coronary artery by autopsy of a
patient who suffered fatal myocardial infarction. In a pro-
spective animal study, intracoronary imaging with NIRS
and IVUS has been used to elucidate the characteristics
and predict future development of unstable fibroatheromas
as confirmed by subsequent histopathologic data.
Histology confirmed that NIRS-positive lesions (yellow,
tan, or orange coregistered chemograms) were significant-
ly more likely to be a high-risk fibroatheroma containing
larger plaque and necrotic core areas and thinner fibrous
caps. Additionally, NIRS positivity also correlated with a
higher concentration of inflammatory cells exhibiting pro-
tease activity as well as proliferating and apoptotic cells
within the fibrous cap [30].

As described above, several human in vivo studies have
demonstrated that culprit lesions causing ACS have a
lipid-rich core as defined by a maxLCBI (4 mm)>400
[7, 8]. The LRP (Lipid Rich Plaque) Study evaluated the
role of NIRS in identifying vulnerable plaque. This study
enrolled 1563 patients from 44 centers in the USA and
Europe with suspected CAD who underwent cardiac cath-
eterization with PCI [12]. Intracoronary imaging with
NIRS-IVUS was performed in two or more arteries and
patient- and plaque-level events were monitored for
2 years. Patient-level analysis after adjustment revealed
that the risk of experiencing non-culprit major adverse
cardiovascular events within 24 months was 18% higher
with each 100 unit increase in maxLCBI (4 mm).
Specifically, a patient with maxLCBI (4 mm)>400 was
at 87% higher risk than a patient with <400 maxLCBI
(4 mm). With respect to vulnerable plaque-level analysis,
the risk of experiencing an event in a coronary segment
within 24 months was 45% higher with each 100 unit
increase in maxLCBI (4 mm).

Prognostication of Coronary Lesions

Data obtained from NIRS imaging of coronary lesions has
been shown to predict cardiovascular outcomes. In a pro-
spective, observational study of 203 patients who
underwent coronary angiogram for stable angina or ACS,
NIRS was performed in the non-culprit coronary artery and
found that at 1 year follow-up, patients with an LCBI equal
to or above the median in a non-culprit coronary artery
were at a 4-fold higher risk of adverse cardiovascular
events [19]. Similarly, a recent study by Schuurman et al.
also evaluated LCBI as a prognostic indicator in 275 pa-
tients during a median follow-up of 4.1 years. The study
revealed a statistically significant and independent contin-
uous relationship between higher maxLCBI (4 mm) values
and a higher risk of MACE. Each 100 unit increase of
maxLCBI (4 mm) was associated with a 19% increase in
MACE. Even after exclusion of target lesion-related events
and exclusion of adverse events related to the NIRS-
imaged coronary segment, continuous maxLCBI (4 mm)
remained independently associated with MACE [15]. The
ORACLE-NIRS registry analyzed outcomes in 239 pa-
tients who presented with stable angina and ACS. In this
cohort of patients, non-target vessel LCBI of 77 was deter-
mined using receiver operating characteristic curve analy-
sis to be a threshold for prediction of MACE. The adjusted
hazard ratio for non-target vessel LCBI >77 was 14.05
(95% confidence interval 2.47-133.51, P=0.002). The 5-
year cumulative incidence of events in the above-threshold
group was 58.0% versus 13.1% in the below-threshold
group. The investigators concluded that at long-term
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a
Lipid Rich Plaque
(LRP) causing
STEMI

b Calcified Nodule

causing STEMI
(no lipid)

Stent Thrombosis
(no lipid)

Lipid rich plaque in
veingraft causing
STEMI

STEMI with “normal”
angio. NIRS reveals
a LRP as culprit

Fig. 2 Cases demonstrating the ability of near-infrared spectroscopy
combined with intravascular ultrasound (NIRS-IVUS) to identify the
culprit plaque and to discriminate between different causes of ACS. a A
typical case of ST-elevation myocardial infarction (STEMI) with a
circular lipid-rich plaque (LPR) in the proximal right coronary artery
causing thrombotic occlusion. b A calcified nodule causing STEMI
(approximately 5% of STEMI cases). No lipid is detected at the culprit
segment. ¢ A stent thrombosis caused by an under-expanded stent. This is
a purely thrombotic occlusion, and as expected, the NIRS-IVUS
chemogram is red (no LRP). d A STEMI caused by neoatherosclerosis
in a vein graft with a circular LRP with a high maximum lipid core burden
index demonstrating novel lipid accumulation in the graft. e An inferior
STEMI with typical acute chest pain that disappeared during transport to
the percutaneous coronary intervention center. Normal angiography, but a

follow-up, high LCBI in a non-PCI target vessel was asso-
ciated with a higher incidence of MACE [16].

Demonstration of the Effect of Statins

NIRS has been used to demonstrate the beneficial effect
of statins in terms of reduction of free and esterified

@ Springer

Cardiac arrest caused
by LRP in proximal LAD

Neoatherosclerosis
inside old stent

Stress cardiomyopathy
(Takotsubo) with minimal
or no LRP

Embolus in RPD from
LRP in proximal right
coronary artery

Dissection in young
woman causing STEMI
(no lipid)

circular ulcerated plaque rich in lipid was detected in the proximal right
coronary artery (RCA), which probably caused a thrombotic occlusion
that was later dissolved by spontaneous thrombolysis. f A patient with
cardiac arrest and STEMI with normal angiogram but LRP in the
proximal left anterior descending artery (LAD), which may explain his
cardiac arrest. g Stent neoatherosclerosis causing restenosis and non-ST-
elevation myocardial infarction. h A case of Takotsubo cardiomyopathy.
As expected, no major LRPs are detected. i An embolic thrombus was
detected in RPD and PLA and aspirated with no residual stenosis. NIRS-
IVUS revealed LRP in the proximal RCA as the probable source of the
embolus. j A 36-year-old woman with a dissection of the LAD. As
expected, no LRP was detected (reprinted from Erlinge [27] with
permission from Wiley)

cholesterol within atheromatous plaque. The YELLOW
trial by Kini et al. enrolled patients with multivessel
CAD undergoing PCI. A baseline assessment was per-
formed using NIRS and IVUS imaging and patients were
randomized to a treatment of either rosuvastatin 40 mg
daily or the standard-of-care lipid-lowering therapy. After
6 to 8 weeks of intensive statin therapy, a significant
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CHEMOGRAM

BLOCK CHEMOGRAM

HISTOLOGY GOLD STANDARD

HISTOLOGY MAGES

LIPID CORE BURDEN INDEX: 67

E F High Prob

Low Prob

m | . i
*  ~Low Prob
10 0

Fig. 3 A NIRS scan correlates well with histologic findings in coronary
artery from an 85-year-old male with a history of MI. a Chemogram
image indicating artery wall lipid content (x-axis = pullback in
millimeters; y-axis = rotation in degrees). Each pixel is marked with red
for low probability and yellow for high probability of lipid core plaque of
interest (LCP). The lipid core burden index (top right) indicates amount of
lipid in scanned artery on a 0 to 1000 scale. b Summary (block
chemogram) of LCP presence at 2-mm intervals in 4 probability
categories. ¢ Map of histologic classifications (yellow = LCP; light

reduction in the plaque lipid content was demonstrated by
NIRS [13]. In the YELLOW II Trial, NIRS was used to
select lesions (maxLCBI (4 mm)>150) to demonstrate
the plaque stabilization afforded by high-intensity statin
therapy utilizing optical coherence tomography imaging
[14].

Conclusions

The different modalities of intracoronary imaging have
their own relative merits and limitations. While OCT
provides high-definition imaging of vessel wall and
plaque morphology, NIRS by itself only assesses lipid
content. The combined NIRS-IVUS system overcomes
this limitation and the two modalities act complementa-
ry to each other. Assessment of lipid burden in coronary
atherosclerotic plaques by utilizing NIRS has several
clinical implications. For example, the ability of NIRS

orange = small or thick-capped fibroatheroma; dark orange = intimal
xanthoma and pathologic intimal thickening; red = all other types). d
Movat cross-sections from locations along the artery (dotted lines).
Black bars denote 1 mm. Image interpretation: the chemogram shows
prominent lipid core signal at 2 to 16 mm, occupying 180°. The block
chemogram shows that the strongest LCP signals extend 5 to 11 mm. The
NIRS signals at 18 and 42 mm correctly indicate absence of LCP
(reprinted from Gardner et al. [4] with permission from Elsevier)

to predict distal embolization and intraprocedural MI in
lesions with high lipid burden may guide decisions dur-
ing PCI. Given that embolic protection devices have not
shown clear benefit at this point [10], the operator may
choose other strategies such as direct stenting and pre-
emptive use of coronary vasodilators to prepare the dis-
tal vascular bed in an attempt to minimize distal embo-
lization and prevent no-reflow phenomenon.
Additionally, stenting “red to red” based on NIRS to
cover the entire length of the lipid plaque may poten-
tially prevent stent edge dissection and improve short-
and long-term outcomes [27]. The information obtained
from NIRS imaging in the YELLOW Trials [13, 14]
underscores the importance of high-intensity statin ther-
apy in patients with known coronary artery disease.
Lastly, the ability of NIRS to detect vulnerable plaques
and predict prognosis of coronary lesions opens up
promising new frontiers for secondary prevention of ad-
verse cardiac events.
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