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Abstract
Purpose of Review During the 20 years since the introduction
of intravascular ultrasound (IVUS) to catheterization labora-
tory, there has been growing evidence supporting the role of
IVUS. In this article, we review clinical application of routine
use of IVUS with recent evidences, a dominant strategy even
in the era of drug-eluting stents.
Recent Findings IVUS provides pre-procedural information
to evaluate stenosis severity and plaque characteristics. In ad-
dition, IVUS helps optimal stent deployment, minimizing
underexpansion and geographic miss, which are major mech-
anisms of stent failure. Large-scale clinical trials and meta-
analyses have shown that the clinical benefits of IVUS guid-
ance are maximized in complex lesions (left main coronary
artery, long lesions and chronic total occlusion). Some recent
studies have also supported the cost effectiveness of IVUS-
guided PCI especially when there is a high risk of stent failure.
Summary IVUS provides valuable information about lesion
severity, lumen and vessel size, lesion length, and plaque char-
acteristics. By determining appropriate stent sizes and opti-
mizing stenting procedures, IVUS-guided PCI improves clin-
ical outcomes especially in patients with high-risk coronary
lesions.

Keywords Intravascular ultrasound . Percutaneous coronary
intervention . Stent thrombosis . Restenosis

Abbreviations
AMI Acute myocardial infarction
BMS Bare-metal stent
CTO Chronic total occlusion
DES Drug-eluting stent
FFR Fractional flow reserve
ISR In-stent restenosis
IVUS Intravascular ultrasound
LAD Left anterior descending
LMCA Left main coronary artery
MLA Minimum lumen area
MACE Major adverse cardiac events
MI Myocardial infarction
MSA Minimum stent area
PCI Percutaneous coronary intervention
SES Sirolimus-eluting stent
ST Stent thrombosis
STEMI ST-segment elevation MI

Introduction

Since intravascular ultrasound (IVUS) was introduced in the
early 1990s, it has brought profound scientific insights to the
understanding of the pathophysiology of coronary artery dis-
ease and to clinical decision-making. With a spatial resolution
of >150–200 μm, IVUS provides valuable information about
stenosis severity, lumen and vessel morphology, lesion length,
and plaque characteristics, complementing angiographic im-
ages. Current guidelines recommend the use of IVUS for
assessing indeterminate left main coronary artery disease and
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cardiac allograft vasculopathy after heart transplantation (Class
IIa). In addition, IVUS is useful for determining the mecha-
nism of stent restenosis (Class IIa) [1, 2]. There are abundant
prospective and retrospective data validating the clinical im-
pact of IVUS-guided percutaneous coronary intervention
(PCI) and imaging criteria for PCI optimization. Previously,
clinical application of IVUS was shown in “Standards for the
Acquisition, Measurement, and Reporting of Intravascular
Ultrasound Studies: A Report of the ACC Task Force on
Clinical Expert Consensus Documents” [3]. In this review,
we discuss the role of IVUS in daily practice and its clinical
implications, supported by more recent evidences.

Pre-procedural Lesion Evaluation

Severity of Stenosis

Lesion-specific fractional flow reserve (FFR) is considered to
be the gold standard for assessing the physiologic significance
of coronary artery disease [1, 2, 4–7]. The Fractional Flow
Reserve versus Angiography for Multivessel Evaluation
(FAME) trial, which included 1005 patients with multi-
vessel disease, demonstrated that FFR-guided PCI resulted
in a significantly lower rate of the composite endpoint of
death, myocardial infarction (MI) and repeat revascularization
compared with angiography-guided PCI [7]. With the current
paradigm shift to functional angioplasty, the use of IVUS-
derived minimal lumen area (IVUS-MLA) as a surrogate
marker for ischemia-producing lesions has been under debate.

Non-left Main Coronary Artery

Table 1 summarizes much of the published data validating
IVUS-MLA criteria for predicting an FFR of <0.75–0.80 in
non-left main coronary artery (non-LMCA) lesions. Although
IVUS-MLA thresholds varied from 2.0 to 4.0 mm2, their di-
agnostic accuracies were approximately 70% [8–20]. The
overall mean MLA cutoff value from a recent meta-analysis
was approximately 2.6 mm2 [21, 22]. Recent studies have
attempted to identify subgroup-specific MLA cutoffs accord-
ing to vessel size and lesion location because the FFR value is
influenced by the amount of myocardium subtended to the
post-stenotic segment [12–15, 16••, 19, 20]. For lesions of
the mid left anterior descending (LAD) artery or those with
a reference vessel diameter of <3.0 mm, the IVUS-MLA cut-
off ranges from 2.0 to 2.6 mm2. For lesions of the proximal
LAD artery or those with a reference vessel diameter of
>3.0 mm, the IVUS-MLA cutoff ranges from 2.8 to
3.2 mm2 [10, 12, 15, 16••, 19, 20]. There is also a trend for
theMLA cutoff for LAD artery lesions to have better accuracy
for predicting FFR compared with those of other coronary
vessels [12, 15, 16••]. However, the correlation between

IVUS-MLA and FFR is only modest. In a recent meta-
analysis including 11 clinical trials, the sensitivity and specific-
ity of the IVUS-MLA cutoff of 2.6 mm2 for predicting an FFR
of <0.80 were 79 and 65%, respectively [21]. Functional sig-
nificance is influenced by many compounding factors besides
MLA including plaque characteristics, lesion location and
length, plaque burden, reference vessel size, and the amount
of viable myocardium subtended by the lesion; so, IVUS-
MLA criteria do not accurately predict ischemia-inducing le-
sions [23, 24]. It is therefore not recommended for determining
stenosis severity for revascularization [1, 2, 25].

Nam et al. compared FFR-guided PCI (FFR < 0.8) with
IVUS-guided PCI (MLA < 4.0 mm2) and showed similarly
favorable clinical outcomes at 1-year follow-up [26]. In addi-
tion, de la Torre Herandez et al. reported no significant differ-
ences in 2-year clinical event rates between IVUS-guided PCI
(MLA < 4 mm2 in vessels of >3 mm and MLA < 3.5 mm2 in
vessels of 2.5–3 mm) and FFR-guided PCI (FFR < 0.75) [27].
Although IVUS-MLA has poor diagnostic accuracy and so
cannot replace FFR measurement for assessing the functional
significance of non-LMCA with its high negative predictive
value, an IVUS-MLA larger than the cutoff may be useful for
identifying lesions that can be safely deferred [13, 16••].

Left Main Coronary Artery

Identification of significant stenosis in LMCA is critically
important because mortality benefit from revascularization is
well established [28, 29]. However, coronary angiography
alone has limitations when determining the significance of
LMCA lesions and has considerable inter-observer variability
[30]. Given the limitations of angiography, noninvasive func-
tional tests such as myocardial perfusion imaging have com-
plementary roles for identifying hemodynamic significance,
while it is often non-contributive with balanced ischemia.
Several prospective studies and meta-analyses have shown
favorable clinical outcomes of FFR-guided deferral in inter-
mediate LMCA [31–34]. A study evaluating 354 patients with
LMCA disease showed that it is safe to defer revascularization
with an IVUS-MLA of ≥6 mm2 [35••].

Some studies have correlated IVUS-derived MLA with
FFR in isolated LMCA disease. Jasti et al. showed a strong
correlation between FFR and IVUS-MLA in angiographic
ambiguous LMCA stenosis [36]. The IVUS-MLA cutoff val-
ue used to predict an FFR of <0.75 was 5.9 mm2 (sensitivity,
93%; specificity, 95%). Kang et al. reported an IVUS-MLA of
4.8 mm2 as the best predictor of an FFR of <0.8 (sensitivity,
89%; specificity, 83%) in isolated intermediate LM lesions
[37]. Recently, Park et al. investigated 112 patients with iso-
lated ostial and shaft LCMA stenosis and showed that an
IVUS-MLA of ≤4.5 mm2 was the optimal cutoff for an FFR
of ≤0.8 (sensitivity, 77%; specificity, 82%) [38]. Although the
IVUS-MLA thresholds varied among different ethnic groups,
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the overall diagnostic accuracies for predicting functional sig-
nificance seemed better in LMCA versus non-LMCA, which
might be explained by the simplicity of the morphological
characteristics of LMCA lesions [37]. However, the presence
of concomitant stenosis at the proximal LAD artery or the left
circumflex artery limits the practical use of IVUS-MLA in
making treatment decisions [24, 39, 40].

Plaque Characteristics and Lesion Morphology

The role of grayscale IVUS in plaque characterization is limited
by its poor spatial resolution using 40–45 MHz IVUS transduc-
ers. Ultrasound reflection depends on acoustic impedance of the
tissue, so the grayscale IVUS approach is to compare the “bright-
ness” of the tissue to the surrounding adventitia (Fig. 1).

Attenuated Plaque

Attenuated plaque is an IVUS finding of hypoechoic or mixed
atheromas with ultrasound attenuation but little evidence of

calcium [41]. Virtual histology IVUS studies have shown that
attenuated plaque corresponds to large necrotic cores and thin-
cap fibroatheromas, and histopathologic studies have sug-
gested that echo attenuation is related to microcalcification,
hyalinized fibrous tissue, cholesterol crystals, and lipid pools
[41–44]. Histopathologically, 91.4% of echo-attenuated
plaques in one study corresponded to either fibroatheroma
with a necrotic core or pathological intimal thickening with
a lipid pool. Fibroatheromas were found in 97% of plaques
with superficial IVUS attenuation [44].

Attenuated plaque on grayscale IVUS indicates a high risk
for no-reflow or post-procedural creatine kinase (CK)-MB
elevation. The HORIZONS-AMI trial showed that attenuated
plaque was present in over 70% of patients with acute myo-
cardial infarction (AMI) and the amount of attenuated plaque
correlated with the likelihood of no-reflow after revasculari-
zation [45]. In addition, some studies have shown that atten-
uated plaque is associated with stent thrombosis (ST)-segment
elevation MI (STEMI), peri-procedural myocardial necrosis,
and no-reflow in patients with coronary artery disease

Table 1 IVUS-derived MLA cut-off to predict FFR<0.75-0.80

Reference Number of
patient/lesion

FFR MLA cut off (mm2) Sensitivity
/specificity(%)

Other IVUS predictors of FFR

Takagi et al. [8] 42/51 <0.75 3.0 83/92 area stenosis

Briguori et al. [9] 43/53 <0.75 4.0 92/56 minimal lumen diameter, area
stenosis, lesion length

Lee et al. [10] 94/94 <0.75 2.0 82/81 lesion length, plaque burden

Koo et al. [12] 251/267 <0.80 pLAD : 3.0 75/88 proximal segment, LAD
mLAD: 2.75 73/78

Ben-Dor et al. [11] 84/92 <0.75 2.8 80/80 minimal lumen diameter, area
stenosis, lesion length<0.80 3.2 69/68

Kang et al. [14] 692/784 <0.80 2.4 RLD <2.75 1.9 84/63 plaque burden, area stenosis
RLD 2.75-3.5 2.3

RLD >3.5 3.2

Ben-Dor et al. [13] 185/205 <0.80 3.09 RVD 2.5-3 2.4 69/79 minimal lumen diameter, area
stenosis, lesion lengthRVD 3-3.5 2.7

RVD >3.5 3.6

Chen et al. [15] 323/323 <0.80 2.97 RVD <3.0 2.49 83/63 plaque burden, lesion length, LAD
RVD >3.0 3.02

Waksman et al. [16] 350/367 <0.80 3.07 RVD <3.0 2.4 64/65 LAD
RVD 3.0-3.5 2.7

RVD >3.5 3.6

Han et al. [18] 822/881 <0.80 2.75 Asians 2.75 61/63
Westerners 3.0

Naganuma et al. [19] 109/132 <0.80 2.70 RVD <3.0 2.59 79/76 plaque burden
RVD >3.0 2.84

Yang et al. [20] 206/206 <0.80 pLAD 3.2 85/67 lesion length, percent atheroma
volumemLAD 2.5 65/88

Doh et al. [17] 151/181 <0.80 2.82 84/71

DS(%): diameter stenosis, FFR: fractional flow reserve, MLA(mm2 ): minimal lumen area, RVD(mm): reference vessel diameter, LAD: left anterior
descending artery.
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undergoing PCI [45–47]. A recent meta-analysis of five clin-
ical trials including 3833 patients showed that incidence of a
thrombosis in MI (TIMI) score of 0–2 after PCI was signifi-
cantly higher in patients with attenuated plaque (28.6%) than
in those without attenuated plaque (5.8%) [48]. Endo et al.
reported that peri-procedural no-reflow incidence was 18%
in STEMI patients but was increased (up to 88%) in patients
with long attenuated plaque (>5 mm) and plaque rupture [49].
A recent study demonstrated that large attenuated plaque with
a maximal attenuation angle of ≥30° was related to unstable
atherosclerotic plaque and predicted OCT-defined thin-cap
fibroatheroma (sensitivity, 89%; specificity, 64%) and post-
stenting peak CK-MB elevation [50].

Plaque Rupture

Plaque rupture is the most common type of plaque complica-
tion, accounting for 70% of AMIs [51, 52]. Studies have re-
ported that IVUS-detected infarct-related plaque rupture in
16–56% of patients [53–56]. Hong et al. reported that IVUS
detected plaque rupture in 66% of culprit lesions and 17% of
non-infarct-related arteries in AMI patients [57]. Ruptured
plaques cause symptoms in patients with small MLAs and
thrombus formation, whereas silent plaque rupture is a form
of wound healing that leads to lesion progression [58, 59].
Plaque ruptures without significant stenosis detected second-
arily or incidentally at follow-up have not been shown to

cause events. Plaque rupture is the most common cause of
no-reflow and is associated with the worst clinical outcome
[60–62]. Kusama et al. [63] showed that plaque rupture was
associated with larger infarcts and a higher incidence of no-
reflow after PCI. However, plaque rupture findings in IVUS
do not always reflect the culprit lesion.

Thrombus

The IVUS hallmarks of thrombus (lobulated mass within the
lumen, distinct interface between the presumed thrombus and
underlying plaque, scintillating echoes, and blood flow within
the thrombus) have limited sensitivity and specificity, and ruling
out this diagnosis is only possible if all features are not present.

Positive and Negative Remodeling

Pathology and IVUS studies have demonstrated that coronary
arteries are remodeled in response to plaque growth by expan-
sion (positive remodeling) or constriction (negative remodel-
ing) of the vessel wall [52, 64, 65]. Positive remodeling is
regarded as compensatory enlargement to maintain coronary
blood flow and is associated with a large lipid core, calcifica-
tion, and macrophage infiltration, which might have a role in
arterial cell matrix breakdown [66, 67]. Nakamura et al. [68]
reported that among 125 symptomatic patients, positive re-
modeling at culprit lesions was found in 82% of those with

Fig. 1 Intravascular ultrasound plaque characteristics. a Highly echogenic plaque. b, c Echolucent plaques. d–f Attenuated plaque (white asterisks). g
Plaque rupture with ruptured cavity (red asterisk)
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AMI, 78% of those with unstable angina, and 33% of those
with stable angina. Negative remodeling is suggested to be a
result of an advanced process of atherosclerosis leading to
constricting adventitial fibrosis behind plaque [52, 65–67].
Compared with positive remodeling, negatively remodeled
lesions are longer, more calcified, and more stenosed [69,
70]. Recently, the PROSTECT sub-study [71] showed that
positive and negative remodeling was associated with major
adverse cardiac events related to non-culprit lesions. In addi-
tion, positive remodeling was suggested to be a predictor of
peri-procedural MI and no-reflow [72, 73].

Calcification

IVUS is a more accurate tool for detecting calcium than angi-
ography (Fig. 2). In a study including 1155 native-vessel tar-
get lesions, IVUS detected calcium in 73% of lesions (vs. 38%
by angiography) [74]. However, IVUS did not detect calcium
in 14.8% of the segments with micro-calcium deposits or deep
calcium hidden behind large necrotic cores [44]. Although
calcium is more frequently detected in stable than in unstable
lesions, spotty calcium and calcified nodules are likely to be
associated with vulnerable lesions [61, 75]. Calcium has been

shown to be related to acute procedural complications includ-
ing bleeding, stent thrombosis, target vessel revascularization,
and MI after revascularization [76–79]. Worse outcomes after
PCI in calcified lesions can be explained by the following.
First, stent underexpansion (an important predictor of resteno-
sis and stent thrombosis) occurs frequently in calcified lesions.
Second, using high-pressure balloon inflation and plaque
modification devices in severely calcified lesions is associated
with peri-procedural adverse events including no-reflow, dis-
section, and perforation [78]. Thus, IVUS is indispensable for
plaque evaluation and stent optimization in calcified lesions.

Stent Sizing

Sizing with the IVUS reference lumen dimension is safe and
effective, whereas use of mid-wall or media-to-media dimen-
sions is more aggressive and requires more experience and
caution. Although angiography does not always eliminate
foreshortening projection, IVUS accurately measures lesion
length during motorized pullback, regardless of bend points
or a tortuous or foreshortened lesion. Reference segment iden-
tification and stent length selection with IVUS ensures that

Fig. 2 IVUS-detected calcium. a
Small superficial calcium. b
Superficial calcification with
reverberation artifact (arrow). c
Superficial encircling calcium. d
Calcified nodule
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residual plaques at the proximal and distal ends of a stenosis
will be completely covered by the stent (Fig. 3).

Stent Optimization

An optimally implanted stent has full and symmetrical expan-
sion, complete stent–vessel wall apposition, no plaque pro-
lapse, no dissections or other complications, and no residual
edge plaque. IVUS-guided stent optimization is useful for
minimizing mechanical problems that can lead to stent failure.

Expansion

The common causes of restenosis in both bare-metal stents
(BMSs) and drug-eluting stents (DESs) are intimal hyperpla-
sia and stent underexpansion. Stent underexpansion is correct-
able and preventable, so there has been a consistent effort to
clarify the post-procedural minimal stent area (MSA) neces-
sary to avoid restenosis. For preventing BMS restenosis, stud-
ies have reported a post-stenting MSA threshold of 6.4–
6.5 mm2 [80–82]. For first-generation stents, the post-
procedural MSA cutoff was reported as 5.0–5.5 mm2 with
sirolimus-eluting stents (SESs) and 5.7 mm2 in paclitaxel-
eluting stents [80, 82–85]. For newer generation stents, Song

et al. showed that the optimal cutoff post-stentingMSAvalues
for preventing restenosis were similar between zotarolimus-
eluting stents, everolimus-eluting stents, and SESs (5.3, 5.4,
and 5.5 mm2, respectively) (Table 2) [85].

Although stent optimization using an absolute MSA cutoff
is practical and simple, various vessel sizes should be consid-
ered in real practice. In addition, an MSA of >5.0 mm2 may
not be achievable in small vessels where stent expansion rep-
resented as the MSA/reference lumen area may be a predictor
of an adequate lumen at follow-up [84]. The SIRIUS trial
reported that the MSA threshold for predicting an adequate
follow-up MLA in small coronary arteries (reference vessel
diameter <2.8 mm) was 4.5 mm2 in SESs and 6 mm2 in BMSs
[82]. For newer-generation DESs, Song et al. suggested an
MSA cutoff of 4.9 mm2 in small vessel lesions with reference
diameters of 2.5–3.0 mm [85].

To identify the MSA criteria for LMCA, Kang et al. [86•]
evaluated 403 patients undergoing SES implantation in
LMCA. Based on segmental analysis, the MSA cutoffs for
predicting 9-month in-stent restenosis were 5.0 mm2 for the
left circumflex artery ostium, 6.3 mm2 for the LAD ostium,
7.2 mm2 for the polygon of confluence, and 8.2 mm2 for the
proximal LM, within the corresponding segments. Even in a
two-stent group, lesions with complete expansion at all sites
showed only a 6% restenosis rate; this was similar to that of a

Fig. 3 Stent sizing by intravascular ultrasound. a Coronary stenosis
(arrows) on angiography. b Intravascular ultrasound-measured lesion
length using a longitudinal view. c A large plaque at the minimal lumen

area site. d Measurement of lumen and vessel diameters at the proximal
reference segment. e Measurement of lumen and vessel diameters at the
distal reference segment
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single stent group (6.3%) and non-bifurcation LMCA (4.5%)
lesions. Furthermore, post-stenting underexpansion was an
independent predictor of 2-year major adverse cardiac events
(MACEs).

Residual Plaque Burden

Residual plaque burden is a predictor of late stent thrombosis
and edge restenosis. Fujii et al. reported that the presence of a
significant residual reference segment stenosis (defined as an
edge lumen cross-sectional area of <4 mm2 and a plaque bur-
den of >70%) was more common in the stent thrombosis
group compared with the matched control group (67 vs. 9%,
p < 0.001) [87]. Okabe et al. suggested that DES patients who
developed stent thrombosis had smaller MSAs, more residual
disease at the stent edges and larger plaque burdens [88]. Kang
et al. evaluated newer generation DESs and suggested that 9-
month edge restenosis was predicted by a post-stenting refer-
ence segment plaque burden of approximately >55%, and that
this could be used to determine the optimal landing site. In
addition, the cutoff values of residual plaque burden were
similar for the proximal and distal reference segments (56.4
and 51.9%, respectively) (Table 2) [89•]. Angiographic steno-
sis is poorly correlated with IVUS-measured plaque burden
especially in reference segments, so IVUS is an indispensable
tool for stent optimization in daily practice [90].

Acute Malapposition

Incomplete stent apposition is defined as the separation of
stent struts from the arterial wall with evidence of blood flow
behind the strut, where the strut does not cross a side-branch.
Acute malapposition is a common finding; across several
studies, the prevalence detected by IVUS was 11.5–25% in
stable angina patients [91–94] and 34–40% in STEMI patients
[95, 96]. There is little evidence suggesting an association
between isolated acute malapposition and adverse outcomes.
Most acute stent malapposition resolves over time and does

not affect the incidence of stent thrombosis or in-stent reste-
nosis. Guo et al. [97] reported that 40% of acute malapposition
in STEMI patients was resolved at 1-year follow-up mainly
due to negative remodeling. Hong et al. showed that post-
procedure incomplete stent apposition occurred in 7.2% of
DES-treated lesions and was not associated with MACEs or
even an increased amount of intimal hyperplasia [98, 99].
Similarly, the ADAPT-DES IVUS sub-study showed acute
malapposition in 12.6% lesions, but a very low rate of stent
thrombosis (0.65%) [96]. Most studies have reported no sig-
nificant relationship between acute malapposition and the oc-
currence of MACEs including stent thrombosis [92, 96, 97,
100, 101], and therefore, aggressive additional inflation to
eliminate malapposition is unwarranted. Incomplete apposi-
tion is not a major concern as long as the stent is well expand-
ed, and underexpansion should be corrected even if there is
complete apposition. Large-scale prospective studies are
needed to clarify the natural history and clinical impact of
malapposition in the long term.

Edge Dissection

With an effort to achieve maximal acute gain during PCI, un-
expected vessel dissection can occur at the transition between
the rigid stent struts and the adjacent arterial wall at a site of
compliance mismatch (Fig. 4) [116]. In one study, IVUS de-
tected edge dissections after 9.2% of DES implantations.
Residual plaque eccentricity, lumen-to-stent-edge-area ratio,
and stent edge symmetry predicted coronary stent edge dissec-
tions, and dissections in less diseased reference segments more
often evolved into intramural hematomas [102]. In a
HORIZONS-AMI sub-study, significant stent edge dissection
(more thanmedial dissection with a lumen area of <4mm2 or a
dissection angle of ≥60°) was related to early stent thrombosis
after primary PCI [101]. The ADAPT-DES IVUS sub-study
reported that residual edge dissection was associated with tar-
get lesion revascularization at 1-year follow-up and suggested
additional treatment with stents to produce a smaller effective

Fig. 4 Post-stenting edge
complications. a Edge dissection
(arrows). b Intramural hematoma
within medial space (asterisks)
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lumen area (<5.1mm2) [126]. Other studies have suggested the
predictors of edge dissection as follows: calcified and lipid-rich
plaques at the edges of stents, calcification angle, large plaque
burden at stent edges, vessel over stretching, stent edge asym-
metry, and residual plaque eccentricity [102–105]. In a current
guideline, it is recommended that persistent and high-grade
dissection with flow limitation in angiography is treated with
prolonged balloon inflation or deployment of a second stent
[3]. Conversely, non-flow-limiting minor dissections do not
appear to impact on long-term clinical outcomes unless they
result in lumen compromise. Low-grade and angiographically
silent edge dissections may not be associated with adverse
events [116–118, 121, 125]. However, some studies have re-
ported a link between edge dissection and adverse clinical
outcomes [85, 126, 127].

Intramural Hematoma

As a variant of dissection, intramural hematoma begins as a
dissection of the media and propagates along the medial plane
into more normal arterial segments without re-entering the
lumen [106]. Blood accumulates in the medial space, the
EEM expands outward, and the internal elastic membrane is
pushed inward to cause lumen compromise. When contrast
accumulates within the split media, echolucent contrast can
be seen within the echogenic blood. Maehara et al. reported
that the incidence of intramural hematomas detected by IVUS
was 6.7% after stenting with BMSs [107] and Liu et al. re-
ported the incidence as 3.2% after stenting with DESs [102].
Among IVUS-identified hematomas, 29% were not detected
by angiography and 11% appeared as new angiographic ste-
nosis. Moreover, intramural hematoma was associated with a
high rate of MI, need for repeat revascularization, and sudden
death. Therefore, IVUS has a pivotal role in detecting edge
complications and helps with making clinical decisions.

Tissue Protrusion

In the HORIZONS-AMI sub-study, significant tissue protru-
sion with a lumen area of <4 mm2 was more prevalent in
patients with early stent thrombosis after primary PCI [108].
In another study, tissue protrusion was associated with more
stent thrombosis and no-reflow in patients with AMI, but was
not associated with worse long-term outcomes after stent im-
plantation for infarct-related arteries [109].

Clinical Impact of IVUS-Guided DES Implantation

While early randomized trials with DESs failed to prove su-
perior clinical outcomes in IVUS-guided PCI [110–112], re-
cent large-scale registries, randomized trials, and meta-
analyses showed that IVUS guidance was associated with a

lower rate of MACEs and of the hard endpoints of cardiovas-
cular mortality, MI, and stent thrombosis (ST), compared with
angiography-guided PCI [113–118]. In the sub-study of
ADAPT-DES [119•], the largest prospective registry of 8583
patients (39% of patients treated with IVUS-guided PCI), the
IVUS-guided group had lower rates of ST (0.6 vs. 1.0%), MI
(2.5 vs. 3.7%), andMACEs (3.1 vs. 4.7%) at 1-year follow-up
compared with the angiography-guided group, particularly in
patients with acute coronary syndrome and complex lesions.

Table 3 summarizes randomized clinical trials comparing
the clinical impact of IVUS- and angiography-guided PCI in
the DES era [110–112, 116, 120–122]. A recent randomized
multicenter trial, the Impact of Intravascular Ultrasound
Guidance on Outcomes of Xience Prime Stents in Long
Lesions (IVUS-XPL), evaluated 1400 patients with long cor-
onary lesions (≥28mm in stent length). This study proved that
IVUS guidance was superior to angiography guidance in
terms of improving long-term clinical outcomes [116].
IVUS-guided everolimus-eluting stent implantation signifi-
cantly reduced the rate of 1-year MACEs (2.9 vs. 5.8%),
which was mainly driven by a lower risk of target lesion re-
vascularization (2.5 vs. 5.0%). In a meta-analysis conducted
by Elgendy et al., IVUS-guided PCI was beneficial in reduc-
ing the rates ofMACEs (6.5 vs.10.3%), ischemia-driven target
lesion revascularization (4.1 vs. 6.6%), cardiac death (0.5
vs.1.2%), and stent thrombosis (0.6 vs.1.3%) compared with
angiography-guided PCI [113]. Zhang et al. conducted a
meta-analysis of 29,068 patients undergoing DES implanta-
tion and emphasized the benefit of IVUS guidance in reducing
ST and MACEs [118].

In lesions with chronic total occlusion (CTO), IVUS can
help resolve proximal cap ambiguity by identifying the posi-
tion of the main branch and clarifying the guidewire position
(in true or false lumens) during both antegrade and retrograde
CTO crossing attempts. The AIR-CTO randomized controlled
trials showed comparable rates of clinical events between
IVUS- and angiography-guided PCI [112], whereas the pro-
spective, randomized, multicenter CTO-IVUS trial showed a
reduction in 1-year MACE rate after new-generation DES
implantation with IVUS guidance [121].

A subgroup analysis from the MAIN-COMPARE registry
showed that the 3-year mortality rate was reduced with IVUS
compared with angiography guidance (6.3 vs. 13.6%) during
LMCA stenting. In particular, the 3-year mortality rates for the
145 matched pairs of patients undergoing DES implantation
were significantly lower with IVUS than with angiography
guidance (4.7 vs. 16.0%) [123].

Even in the era of DESs, most studies have validated the
superiority of IVUS-guided PCI (vs. angiography-guided
PCI) to improve clinical outcomes [80–83, 85, 86•, 87, 89•,
101, 108, 124–130] by minimizing underexpansion and geo-
graphic miss and by treating PCI complications. In the
ADAPT-DES study, longer stent lengths, higher inflation
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pressure, frequent post-dilatation, and larger stent sizes/
balloons were used in the IVUS-guided group [119•].
Previous meta-analyses also reported a larger stent size and
minimal lumen diameter in the IVUS-guided group (vs. the
angiography-guided group) and supported the recommenda-
tion to expand the routine use of IVUS guidance [113, 117].

A recent economic analysis showed that IVUS-guided PCI
is cost-effective especially in high-risk patients with diabetes,
renal insufficiency, and acute coronary syndrome [131]. The
incremental cost-effectiveness ratio remained lower than the
implicit willingness-to-pay threshold at 1 year, and a negative
incremental cost-effectiveness ratio was produced when the
IVUS benefit covered full life expectancy. Further random-
ized trials with cost-effectiveness analyses are necessary to
evaluate clinical and cost efficacy of IVUS-guided PCI in
routine practice.

Assessment of Stent Failure

IVUS provides insight into the precise mechanisms of in-stent
restenosis by giving detailed information about stent
underexpansion, the extent and distribution of intimal tissue,

plaque progression at the edges of stents, and vascular remod-
eling (Fig. 5). In a study evaluating lesions with DESs and in-
stent restenosis, underexpansion (minimal stent area <5 mm2)
and significant intimal hyperplasia (intimal area >50% of stent)
were seen in 42 and 93%, respectively [132]. Although intimal
hyperplasia is the predominant mechanism of in-stent resteno-
sis, interventionists should focus on correction of stent
underexpansion as a preventative mechanism during the pro-
cedure. A larger stent can provide more room for future intimal
growth, so IVUS guidance may be helpful to avoid
underexpansion especially in long lesions, small vessels, and
other complex lesions. There is emerging evidence suggesting
that chronic inflammation and/or incompetent endothelial
function induces in-stent neoatherosclerosis, which is an im-
portant mechanism of in-stent restenosis and stent thrombosis
in the late phase [133–136]. IVUS-documented causes of very
late stent thrombosis have included in-stent plaque rupture,
presumably the consequence of in-stent vulnerable neointima,
another manifestation of in-stent neoatherosclerosis [137].
Although the low resolution of IVUS limits identifying mac-
rophage and lipid infiltration within neointima, in-stent intimal
rupture and calcified neointima may suggest the presence of
advanced neoatherosclerosis.

Fig. 5 Intravascular ultrasound
mechanism of visualizing in-stent
restenosis. a Stent
underexpansion. b Intimal
hyperplasia with echogenic
neointima (red asterisks). c In-
stent echolucent neointima (white
asterisks). d Calcified neointima
(arrows) inside stent

Curr Cardiovasc Imaging Rep (2017) 10: 28 Page 11 of 17 28



Conclusion

For planning treatment strategies, IVUS provides valuable
information about lesion severity, lumen and vessel size, le-
sion length, and plaque characteristics. By determining appro-
priate stent sizes and optimizing stenting procedures, IVUS-
guided PCI improves clinical outcomes especially in patients
with high-risk coronary lesions.
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