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Abstract Cardiovascular disease (CVD) remains the leading
cause of death in Western countries despite improvements in
prevention, diagnosis and treatment. Atherosclerosis is a
chronic inflammatory disease that remains clinically silent
for many decades. Sudden rupture of “high-risk/vulnerable”
plaques has been shown to be responsible for the majority of
acute cardiovascular events, including myocardial infarction
and stroke. Therefore, early detection of biological processes
associated with atherosclerosis progression and plaque insta-
bility may improve diagnosis and treatment and help to better
monitor the effectiveness of therapeutic interventions. Molec-
ular magnetic resonance imaging (MRI) is a promising tool to
detect molecular and cellular changes in the carotid, aortic and
coronary vessel wall including endothelial dysfunction, in-
flammation, vascular remodelling, enzymatic activity,
intraplaque haemorrhage and fibrin deposition and thus may
allow early detection of unstable lesions and improve the
prediction of future coronary events. Evaluation of atheroscle-
rosis at both, the preclinical and clinical level includes non-
contrast-enhanced (NCE) and contrast-enhanced (CE) MRI
with and without the use of MR contrast agents. To increase
the biological information obtained by MRI a variety of
targeted-specific molecular probes have been developed for

the non-invasive visualization of particular biological process-
es at the molecular and cellular level. This review will discuss
the recent advances in molecular MRI of atherosclerosis,
covering both pulse sequence development and also the de-
sign of novel contrast agents, for imaging atherosclerotic
disease in vivo.
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Introduction

Cardiovascular disease (CVD) remains the leading cause of
death worldwide despite improvements in prevention (e.g.
blood pressure control, cholesterol lowering and smoking
cessation), and advances in diagnosis and treatment. Coronary
artery disease (CAD) and myocardial infarction account for
more than 50 % of CVD deaths and are the result of athero-
sclerosis and plaque rupture with subsequent thrombosis. A
major challenge of CAD diagnosis is that 50 % of men and
64 % of women who die suddenly of CVD have no previous
symptoms according to the 2013 AHA statistics [1]. The
clinical challenge is that the majority of these plaques do not
lead to coronary narrowing and/or ischemia but are character-
ized by outward remodelling and increased biological activity.

Currently used clinical imaging modalities such as x-ray
and computed tomography (CT) angiography allow the de-
tection and grading of luminal narrowing. However, they do
not provide information on plaque composition and vulnera-
bility [2–4]. Therefore, new non-invasive approaches to detect
potentially unstable plaque are urgently needed.

Molecular magnetic resonance imaging (MRI) using target
specific imaging agents is an emerging and promising tool to
provide more accurate information about plaque composition
and biology including endothelial dysfunction, inflammation
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and positive remodelling. Molecular MRI thus may improve
the prediction of future coronary events, allow earlier and
more aggressive medical treatment, monitor the effectiveness
of medical and/or interventional treatment in patients and may
provide novel data on the pathogenesis of atherosclerosis
in vivo.

Pathophysiology of Atherosclerosis

Atherosclerosis is an inflammatory disease that affects medi-
um and large size arteries and usually remains asymptomatic
until late stage disease when plaques enlarge and reduce
arterial blood flow or suddenly rupture thereby causing throm-
botic occlusion and ultimately ischemic events [5, 6] (Fig. 1).
It is widely accepted that vascular inflammation is the result of
endothelial damage and the subsequent accumulation of low
density lipoproteins (LDL) that initiate a complex signalling
cascade leading to the recruitment of monocytes and macro-
phages and the deposition of extracellular matrix (ECM)
proteins in the inner layer of the vessel wall [5, 7]. Recent
studies have also reported a role of the adventitia [8–10].

Atherosclerosis usually occurs at predilection sites with dis-
turbed laminar flow, such as branch points or at sites with
oscillating shear stress [11]. The initial phase is characterized
by endothelial dysfunction with structural and molecular al-
terations, including increasing width of the tight junctions [12,
13] and the activation of cell adhesion molecules, such as
intercellular and vascular cell adhesion molecule-1 (ICAM-1
and VCAM-1) and E- and P-selectins [5]. Overexpression of
ICAM-1 and VCAM-1 molecules is directly related with an
increase in monocyte infiltration in the vessel wall where they
differentiate into tissue resident macrophages [14]. Recruit-
ment of immune cells into the artery wall plays a central role
in all stages of atherosclerosis. Macrophages uptake oxidized
LDL using the scavenger receptors. As a result of continued
intra cellular LDL accumulation in macrophages (cytosolic
droplets), they transform into foam cells [5, 7]. Subsequent
steps include secretion of inflammatory cytokines, activation
of platelets, smooth muscle cell proliferation, accumulation of
apoptotic cells and deposition of ECM proteins such as colla-
gen and elastin that collectively contribute to the formation of
complex plaque including a necrotic lipid core due to foam
cell apoptosis at advanced stages [15]. Alteration and

Fig. 1 Pathogenesis of atherosclerotic plaque development. Endothelial
dysfunction initiates inflammatory processes and leads to the migration of
immune cells and LDL into the vessel wall where monocytes differentiate
into macrophages that transform into foam cells with accumulation of

lipids and cholesterol. Subsequently, atherosclerotic plaques develop and
are characterized by activation of platelets and smooth muscle cells,
followed by deposition of extracellular matrix components, endothelial
proliferation and necrotic core formation
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degradation of the ECM by the release of matrix metallopro-
teinases (MMPs) from macrophages can lead to the progres-
sion and destabilization of the plaque [16•]. Clinically, the aim
is to divide atherosclerotic lesions into low risk (stable
plaques) and high risk (vulnerable plaques). Post mortem
studies have demonstrated that vulnerable plaques are charac-
terized by a large plaque volume and large necrotic core, low
amount of fibrous tissue, accumulation of macrophages and a
thin fibrous cap. At advanced disease stages, the enlargement
of the plaque results in intraplaque hypoxia that triggers
additional inflammatory cell infiltration and promotes local
neovascularization. Stable plaques are characterized by a thick
fibrous cap, high amounts of fibrous tissues and a small
number of macrophages [17, 18].

Contrast Agents for Molecular Magnetic Resonance
Imaging

Principles

Cardiac MRI has become a clinically accepted imaging mo-
dality for myocardial tissue characterization and due to tech-
nical advances in MR acquisition and reconstruction and
contrast agent development coronary MRI and vessel wall
imaging is an emerging non-invasive imaging technique for
comprehensive coronary assessment. Compared to other clin-
ical imaging modalities such as single-photon emission com-
puted tomography (SPECT) and position emission tomogra-
phy computed tomography (PET/CT), MRI provides high
spatial and temporal resolution allowing for a comprehensive
cardiac evaluation including morphology, function, perfusion
and myocardial tissue characterization [19, 20]. The develop-
ment of novel plaque specific MR contrast agents also allows
imaging of biological processes in the vessel wall without
exposure of the patient to harmful ionizing radiation.

MRI is based on the nuclear magnetic properties of atoms
(mainly hydrogen) and involves the interplay of three compo-
nents to generate tomographic images: the main magnetic
field of the scanner (static magnetic field) which generates a
net magnetization along the scanner axis, the gradient fields
which are used for spatial localization, and the oscillating
magnetic field of the radio frequency (RF) pulses. RF pulses
are used to change the orientation of the magnetisation, in-
ducing excitation of the water protons. Following the RF pulse
excitation, protons return to their equilibrium stage and spe-
cific receiver coils detect the energy emitted during this relax-
ation. The most important proton properties used by MRI are
the proton density and two characteristic relaxation times
called spin-lattice relaxation time and spin-spin relaxation
time, denoted as T1 and T2 respectively. Signal intensity
primarily depends on the local values of R1 (1/T1) and R2

(1/T2) relaxation rate of water protons [21]. Considering the

relatively low sensitivity of MRI, the use of specific contrast
agents aid the detection of differences between pathological
and normal surrounding tissues. For that, local concentrations
of a contrast agent are needed to alter the relaxation rate of
water protons sufficiently for detectable signal effects. An
important consideration to take into account during vessel
wall imaging is the distribution of the contrast agent in non-
targeted regions and the adjacent blood pool. In some cases, to
distinguish between the luminal area and the vessel wall
contrast uptake it might be necessary to wait for the contrast
agent to clear sufficiently from the blood.

Technical Considerations

Vessel wall MRI can be achieved without contrast agents by
exploiting the ability of MRI to suppress signal from adjacent
tissues which mainly include luminal blood and epicardial fat.
Fat suppression is commonly performed using spectrally se-
lective inversion magnetization preparation pulses, where the
image acquisition is timed to coincide with the nulling point of
the fat signal (Fig. 2). Alternatively, signal from fat can be
minimized using water selective RF pulses for imaging [22].
To suppress blood signal (so called black-blood MRI), tradi-
tionally, flow-dependent techniques have been employed such
as double inversion recovery (DIR) [23, 24]. However, DIR is
typically limited to two-dimensional cross-sectional imaging
of the vessel wall or requires local inversion pulses for three-
dimensional coronary vessel wall imaging [25]. More recent-
ly, motion-sensitized driven equilibrium (MSDE) [26] and
delay altering with nutation for tailored excitation (DANTE)
[27] have been proposed to allow for flow-dependent three-
dimensional coverage. Such volumetric coverage is desirable
due to the long and tortuous geometry of the coronary arteries,
and simplifies MRI scan planning compared to DIR. Blood
signal suppression can also be achieved using flow-

Fig. 2 Generic black-blood vessel wall MRI pulse sequence. Cardiac
motion is compensated for by synchronizing the image acquisition
(ACQ) with an electrocardiogram (ECG) and using a trigger delay from
the R-wave to time ACQ to mid-diastole. Respiratory motion compensa-
tion can be performed using respiratory navigation (NAV) which typical-
ly precedes ACQ. Fat suppression is performed prior to ACQ using a fat-
selective RF pulse to null the fat signal. Black-blood contrast can be
achieved either with inversion preparation (IP) where an inversion delay
is used to null signal from the blood, or alternatively using flow prepara-
tion (FP) where signal from flowing blood is destroyed using de-phasing
gradients or a combination of small RF pulses and gradients
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independent techniques which typically rely on the difference
in T2 between vessel wall and blood [28] or a combination of
T2 and T1 [29]. Flow-independence overcomes the problem of
inadequate blood suppression in the case of slow laminar flow
and facilitates volumetric whole-heart coverage. Vessel wall
MRI can also be performed using contrast agents, either with
T1-shortening gadolinium based agents or T2/T2* shortening
iron based agents, which will be described in detail in follow-
ing sections.

An important requirement for coronary vessel wall
visualization is high spatial resolution. Although suffi-
cient spatial resolution can be achieved with the use of
dedicated multi-channel cardiac receiver coils, coronary
vessel wall imaging is challenging due to the slow
acquisition speed of MRI relative to the physiological
motion. This includes both cardiac and respiratory mo-
tion, which are both one order of magnitude larger than
the achievable spatial resolution. However, to mitigate
the effects of motion, which include image blurring and
ghosting, cardiac and respiratory motion compensation
methods have been introduced. Cardiac motion can be
effectively minimized by synchronizing the MRI scanner
with an electrocardiogram (ECG) and limit the data
acquisition to the most quiescent cardiac phase. Al-
though the timing and duration of the cardiac rest peri-
od is subject and heart-rate dependent, time resolved
MRI cine scans can be used to identify the most suit-
able acquisition window. For respiratory motion com-
pensation, a so called respiratory navigator can be used.
Conventional respiratory navigator techniques involve
measuring the displacement of the lung-liver interface
in feet-head direction and only accept data acquired
within a narrow ‘gating window’, typically defined
around end-expiration. Furthermore the measured navi-
gator position can be used to update the MRI image in
real-time based on a motion model which is often
assumed to be a linear relationship of 0.6. A drawback
of this approach is that the scan time is prolonged
because a large portion of the data falls outside the
gating window and has to be re-measured (typically
only 20-50 % is inside the window), as well as the
indirect motion measurement. Recently, technical ad-
vances has allowed for direct measurement of respirato-
ry induced motion using self-gating or image navigators,
which directly measure the respiratory motion of the
heart which and thus obviate the need for a gating
window and reduce scan time [22].

T1 Contrast Agents

The most commonly used contrast agents are based on gado-
linium (Gd) complexes that lead to positive contrast detected
as a local increase in MRI signal intensity or brightness [30].

Gd(III) is a metallic element with seven symmetrical, unpaired
electrons characterized by a strong paramagnetic suscep-
tibility, which produces a slow electron spin relaxation
rate that significantly affects the surrounding water pro-
tons. Therefore, it has the effect of shortening T1 relax-
ation time in tissues where it accumulates, enhancing
the signal in post-contrast T1-weighted images. Follow-
ing Gd(III) administration, they rapidly distribute into
the extracellular fluid space. Subsequently, they are then
gradually excreted via the kidneys with a 60-90 min
half-life for most small molecular weight agents
(~1000 Da) in patients with normal renal function and
completely eliminated after 24 h [30]. Due to its toxic-
ity Gd(III) must be chelated for in vivo application.
Several chelating approaches have been published with
cyclic chelates (DOTA) demonstrating better metabolic
stability than linear chelates (DTPA) [31]. Another im-
portant aspect is the optimization of the relaxivity prop-
erties of these Gd(III) complexes to improve signal
enhancement and therefore the sensitivity of these im-
aging agents. For protein or cell specific imaging
targeting moieties have been attached to Gd(III)-chelates
to allow the evaluation of molecular or cellular changes
associated with different disease stages. The relaxivity
of gadolinium chelates is dependent on several parame-
ters such as, molecular motion and water exchange [30].
A good example of the impact of these two parameters
on relaxivity is the Gd-DTPA analog Gadofosveset
trisodium, Ablavar (Lantheus Medical Imaging, North
Billerica, USA) which binds to human serum albumin
and increases its relaxivity by fivefold compared to the
unbound fraction [32]. This effect is known as receptor-
induced magnetization enhancement (RIME) [33] and
has been exploited for other protein binding imaging
agents including the elastin-binding contrast agent
(ESMA) [34] or a fibrin binding contrast agent, EP-
2104R [35•]. Other approaches to improve r1 relaxivity
is the use of lipid-perfluorocarbon emulsions that allow
increasing the number of Gd(III) atoms per probe. A
good example of these lipid-perfluorocarbon emulsions
is a fibrin specific contrast agent where multiple Gd(III)
atoms were targeted with biotin that can bind to avidin
derivatized with an antibody to recognize fibrin (present
in the clot) [36]. Another approach is the use of a lipid
tail to increase the number of Gd(III) per molecule. A
contrast agent that detects angiogenesis by αvβ3-
targeting is an example of this design [37].

T2 and T2* Contrast Agents

Although Gd(III) based contrast agents usually increase 1/T1

and 1/T2 (R1 and R2, respectively) in similar amounts [38–40],
it is well established that iron particle-based contrast agents
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have a much stronger effect on increasing R2 [41]. The para-
magnetic properties of iron particles usually disturb the sur-
rounding magnetic field causing a negative contrast effect
detected as a decrease of signal intensity or darkness. This
effect can be accurately detected with T2- and T2*-weighted
imaging sequences. Moreover, it has also been demonstrated
that iron-based particles can provide higher sensitivity in
target detection compared to gadolinium-based contrast
agents [42]. Depending on the size range of these particles
they can be divided in: micron-sized iron oxide particles
(MPIO)≈10 μm in diameter, monocrystalline iron oxide par-
t i c l e s (MION) ≈ 3 nm in d i ame t e r , u l t r a sma l l
superparamagnetic iron oxide particles (USPIO)≈15-30 nm
and superparamagnetic particles iron oxide particles (SPIO)≈
60-180 nm. SPIOs have an iron oxide core that is stabilized
with a monomer- or polymer-coating. SPIOs are characterized
by good suspensibility, uniform particle size distribution,
highly reactive surface and the possibility of coating modifi-
cations to attach specific ligands for biomedical applications.
The size and surface properties (in particular charge) have a
decisive influence on the elimination, cell response and tox-
icity. The maximum effect of SPIO in tissue is usually detect-
ed 24-48 hours after administration [43]. The non-specific
uptake of SPIOs by the mononuclear phagocyte system after
intravenous administration is well stablished. This process
allows the use of SPIOs in both to image organs, in particular,
the liver, spleen, lymph nodes and bone marrow [44]. One of
the major drawbacks of iron-containing particles due to the
non-specific uptake by mononuclear phagocytes is the short
blood half-life that limits their application in MRI. In order to
increase the blood half-life of these particles, several ap-
proaches have been implemented, of which modifying the
probe-coating and decreasing their hydrodynamic diameter
(e.g. USPIO) are the most frequent. USPIOs are iron oxide
nanoparticles composed of Fe2O3 and Fe3O4 stabilized by
different coating agents. USPIOs are predominantly used for
molecular imaging of atherosclerosis [45], myocardial infarc-
tion [46] and cancer [47]. Various studies have demonstrated
the possibility to identify carotid plaque inflammation non-
invasively using USPIOs in both, animals and human
[48–51]. The use of USPIO particles has allowed the direct
visualization of macrophage infiltration in carotid atheroma
in vivo [52]. Additionally, USPIOs have a high r1, which
produces an increase in signal intensity using T1-weighted
sequences. At low USPIO concentrations, a T1-enhancing
effect can be observed, whereas at higher doses, the suscepti-
bility phenomenon balances the T1 effect (nonlinearity in the
signal-concentration relationship). Thus, according to the se-
quence and the local concentration of USPIO, T1, T2, and T2*
enhancing effects can be observed independently. In this
regard, USPIOs can also be used for T1-weighted imaging to
acquire angiograms of the coronary arteries, carotid arteries
and aorta.

Contrast Agents

Endothelial Dysfunction

During the first stages of atherosclerosis, the endotheli-
um develops several functional alterations due to car-
diovascular risk factors such as smoking, diabetes, hy-
percholesterolemia and obesity, a condition known as
endothelial dysfunction [12]. Under these circumstances,
endothelial cells are characterized by a reduction in the
net production of nitric oxide (NO), leading to impaired
vasodilation and an increase in endothelial permeability
that allows the influx of LDL and inflammatory cells
into the vessel wall [5]. Additionally, endothelial cells
increase the expression of surface specific adhesion
molecules such as VCAM-1, ICAM-1 and E- and P-
selectins that contribute to the adhesion and infiltration
of immune cells into the vessel wall [5]. Several studies
have observed a correlation between endothelial dys-
function and plaque burden, representing an interesting
imaging target [53]. Gadofosveset is a clinically ap-
proved contrast agent with a long blood half-life time
due to binding to human serum albumin and thus ide-
ally suited for MR angiography [32, 40]. Recent studies
by our group have demonstrated the ability of
gadofosveset to detect changes in endothelial permeabil-
ity in the brachiocephalic artery of atherosclerotic
ApoE-/- mice [54•] (Fig. 3) and for monitoring effec-
tiveness of interventions in retarding plaque progression
[55]. Gadofosveset enhancement has also been correlat-
ed with leaky neovessels in atherosclerotic rabbits [56],
stent-induced coronary injury in swine [57] and patients
with carotid artery disease [58]. Endothelial adhesion
molecules are highly expressed in the early stages of
atherosclerosis and therefore different approaches have
been developed to specifically image those molecules.
In vivo imaging of atherosclerotic plaque has been
successfully performed in ApoE-/- mice using VCAM-
1-specific nanoparticles [59, 60].

Hypoxia: Angiogenesis and Apoptosis

During the progression of atherosclerosis, the size and com-
position of the vessel wall changes and local hypoxic areas
can contribute to the generation of new vessels, a process
known as angiogenesis [61]. This process plays a central role
in plaque enlargement and disease progression and the density
of neovessels has been linked with vulnerable or unstable
plaques [62]. Gadofosveset has been successfully used to
image neovessel rich-areas in different animal models and
patients [58, 63, 64]. In contrast to healthy tissues, endothelial
cells of immature neovessels are activated and express the
surface marker αvβ3 in significant amounts [65, 66]. It has
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been demonstrated that αvβ3 targeted paramagnetic nanopar-
ticles allow the non-invasive assessment of αvβ3-integrin
expression in the aortic wall of hyperlipidemic rabbits during
the first stages of atherosclerosis [37]. Alternative approaches
include the use of dynamic contrast enhanced T1-weighted
MR imaging using clinically approved contrast agents such as
gadopentetate dimeglumine [67].

Hypoxic conditions can also lead to the apoptosis of
immune cells which has been described as another
marker of plaque instability [68]. During apoptosis, cells
express specific surface markers like Annexin-5 or
caspases [69]. An Annexin A5-functionalized micellar
contrast agent has been successfully used to image
apoptosis in atherosclerotic ApoE-/- mice [70]. More-
over, a novel caspase-3/7-activatable Gd-based probe

(C-SNAM) has been successfully used to image apopto-
sis in experimental mouse tumour models [71].

Macrophages

During the progression of atherosclerosis there is a
constant influx of immune cells into the vessel wall.
The most prominent immune cells that invade these
lesions are monocytes that differentiate into plaque res-
ident macrophages where they uptake large amounts of
cholesterol to generate so-called foam cells filled with
numerous cholesterol ester droplets [5]. Macrophages
can alter their phenotype and function in response to
the local microenvironment also known as macrophage
polarization [72]. In this regard, there is evidence

Fig. 3 Uptake of gadofosveset correlates with endothelial permeability
and plaque progression. (A1 through F1) and (A2 through F2), Cross-
sectional delayed-enhancement magnetic resonance imaging (DE-MRI)
and DE-MRI fused with magnetic resonance angiography images of the
brachiocephalic artery. Apolipoprotein E–deficient mice on a high-fat diet
(HFD) show a gradual increase of vessel wall enhancement correspond-
ing to plaque progression, whereas statin-treated apolipoprotein E–defi-
cient mice show less enhancement. Wild-type mice injected with

Russell’s viper venom also show increase enhancement compared with
non-injected WT mice. (A3 through F3), Corresponding relaxation rate
(R1) maps quantify the amount of gadofosveset within the vessel wall.
Intense yellow signal indicates increased gadofosveset concentration. (A4
through F4), In situ Evans blue staining shows increased endothelial
leakage in regions of DE-MRI with the use of gadofosveset. N=8 per
group for theMRI experiments and n=3 per group for the Evans blue dye
staining. Adapted from [54•]
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suggesting that different stages of atherosclerosis are
associated with distinct macrophage subtypes, M1,
classically-activated or pro-inflammatory macrophages
and M2, alternatively-activated or resolving macro-
phages [72]. Although different strategies have been
developed to target monocytes, none of them has had
the ability to distinguish between macrophage subtypes.
Thus, the development of an M1 or M2 specific probe
remains an interesting challenge. The phagocytic prop-
erties of macrophages have been used for the passive
targeting using different types of iron particles in both,
animal models [50, 73–78] and humans [51, 79–81]
(Fig. 4). An alternative to non-specific nanoparticles
are receptor specific probes. The scavenger receptors
are macrophage specific surface proteins that are signif-
icantly overexpressed on activated macrophages and
foam cells, but not expressed on other cells [49]. With
the use of gadolinium immunomicelles targeted to the
macrophage scavenger receptor CD206 activated macro-
phages have been successfully imaged in atherosclerotic

plaque of ApoE-/- mice [49]. An alternative approach
for macrophage imaging has been developed using
gadolinium-loaded LDL-based nanoparticles and modi-
fied HDL nanoparticles. Fluorine-containing nanoparti-
cles are avidly taken up by macrophages and therefore
can be used to quantify the recruitment of inflammatory
cells into atherosclerotic lesions. Since fluorine is absent
in the human body, the measurement of fluorine uptake
offers a unique possibility to directly detect and quanti-
fy the temporal and spatial evolution of the inflamma-
tory response. In vivo imaging of cardiac and cerebral
ischemia has been successfully performed in mice using
this approach [82] (Fig. 5).

Lipids

Uptake of lipids into the vessel wall is one of the processes
present throughout the development of atherosclerosis [5, 72].
There is a strong relationship between high serum lipid levels,
especially of low-density lipoproteins (LDL), and coronary

Fig. 4 In vivo imaging of the brachiocephalic artery in ApoE-/- mice on
an HFD. Bright-blood imaging was performed such that a 2D slice was
obtained perpendicular through the brachiocephalic artery (A1–2, B1–2,
C1–2 and D1–2). SGM-positive contrast images were derived and
merged with the bright-blood images (A3–4, B3–4, C3–4 and D3–4).
Representative images after the injection of the iron oxide agent from
control as well as mice on the HFD for 4, 8 and 12 weeks and

corresponding elastica–van Giesson stain, Perls stain, and immunohisto-
chemical analysis for Mac-2 (macrophage marker). Contiguous histolog-
ical sections were taken in a similar orientation as the in vivo MRI of the
brachiocephalic artery. Perls staining was used to demonstrate
colocalization of iron-positive areas (A6, B6, C6 and D6) with Mac-2-
positive (A7, B7, C7 and D7) (M indicates media; Pl, plaque; and L,
lumen). Adapted from [78]
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risk [83]. Since oxidized LDL is one of the drivers of vessel
wall inflammation it represents an interesting imaging target.
Gadofluorine M is a gadolinium-based contrast agent that has
been successfully used to image increased neovascularization
in advanced lipid-rich atherosclerotic lesions in rabbits [84].
Moreover, the incorporation of an ApoE-derived lipopeptide
(P2fA2) into the lipid layer of HDL nanoparticles (rHDL–
P2A2) has been developed as a platform for molecular MRI of
macrophages in atherosclerotic plaques in vivo [85].

Extracellular Plaque Components and Proteolytic Enzymes

Another approach to non-invasive image atherosclerosis is
targeting extracellular plaque components. The extracellular
matrix is a protein and carbohydrate based lattice. In athero-
sclerotic vessels, smooth muscle cells and macrophages in-
crease the synthesis and secretion of ECM components such
as collagen and elastin and this turnover is related with vas-
cular wall remodelling [86]. To detect the alteration of the
ECM under pathological conditions a small molecular weight
elastin specific gadolinium based contrast agent (ESMA) has
been developed. The ability of ESMA to detect plaque burden
and ECM remodelling has been demonstrated at different
stages of atherosclerosis in a murine model and in a porcine
model of coronary injury [34, 87, 88] (Fig. 6). In addition to
quantifying the plaque burden using the ESMA, a study using
a rabbit model of experimentally induced thrombosis allowed
in vivo classification of vascular remodelling in negative,
intermediate, and positive for the detection of “high
risk/vulnerable” plaque [89•] (Fig. 7). Similarto prospective
clinical studies in humans with coronary artery disease [17,

90, 91], the rabbit study showed that positive remodelling
measured after administration of ESMAwas associated with
plaque instability.

An alternative to directly imaging the ECM is to target
proteolytic enzymes that are implicated in the degradation of
ECM components such as collagen and elastin [86, 92]. These
enzymes are mainly secreted by macrophages and are known
as matrix metalloproteinases or MMPs. MMPs have been
linked to plaque instability [92]. Noninvasive imaging of
MMPs has been successfully performed using a gadolinium
chelate targeted to a MMP inhibitor (P947) in murine and
rabbit experimental models [93, 94]. Moreover, the enzyme
myeloperoxidase (MPO) has been used as an emerging bio-
marker of plaque instability and future acute events [95]. The
feasibility of a specific gadolinium-based probe that targets
MPO-Gd to image atherosclerosis in hyperlipidemic rabbits
has also been demonstrated [96]. In addition, MPO-Gd en-
hancement colocalizes with plaque areas rich in infiltrated
macrophages [97].

Fibrin and Thrombus Formation

Fibrin plays a central role in thrombus formation but it has
also been identified in atherosclerotic lesions of the aorta and
coronary arteries [98]. Fibrin I and II are present in several
types of atherosclerotic plaque, with fibrin II predominating in
later stages and usually colocalizes with macrophages [98].
Although fibrin may enter the intima after mural thrombi
originating from plaque rupture or erosion, fragile newly
formed vessels may also provide a site of entry [99]. Different
fibrin-specific contrast agents have been evaluated in different

Fig. 5 Infiltration of perfluorocarbons (PFCs) after myocardial infarction
as detected by in vivo 19 F MRI. A, Anatomically corresponding 1H and
19 F images from the mouse thorax recorded 4 days after ligation of the
LAD showing accumulation of 19 F signal near the infarcted region (I)
and at the location of surgery where the thorax was opened (T). PFCs
were injected at day 0 (2 hours after infarction) via the tail vein. B,

Sections of 1H images superimposed with the matching 19 F images
(red) acquired 1, 3, and 6 days after surgery (post OP) indicate a time-
dependent infiltration of PFCs into injured areas of the heart and the
adjacent region of the chest affected by thoracotomy. Note that at day 4,
an additional bolus of PFCs had been injected to compensate for clear-
ance of the particles from the bloodstream after 3 days. Adapted from [82]
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Fig. 7 Positive vascular remodelling in disrupted plaques. (a–d), DEMR
images obtained after administration of elastin-specific contrast agent
show positive remodelling, as defined by enlargement of vessel area
(yellow contours). (e), Corresponding en face photograph verifies pres-
ence of positive vascular remodelling. (f), En face photograph of longi-
tudinally open vessel shows thrombus (arrow) attached to vessel wall at
proximal end of positive remodelling. (g), Scatterplot shows change in

vessel area measured on consecutive slices along aorta, starting from left
renal branch (0 mm) to iliac bifurcation (86 mm). Two regions of the
vessel wall underwent positive remodelling, with vessel areas falling
above the mean +2 SD margin. Both plaques disrupted after triggering.
Four of seven sections covering the vulnerable region 2 are illustrated in
(a–d). Adapted from [89•]

Fig. 6 Elastin imaging of coronary remodelling. Comparison of coro-
nary MRA (a), delayed-enhancement MRI (b), and positron-emission
CT–like fusion of A and B (c) of stented and control coronary vessel
segments and corresponding histology (d and e). Strong enhancement can
be observed at the stent location (dotted white arrow), whereas little to no
enhancement is visible in the normal noninjured left anterior descending
artery segment (b and c). Elastic von Gieson stain of noninjured coronary

vessel segment (d) shows intact internal elastic lamina (IEL) and circular
arranged elastin fibers (black) in the media. Elastic von Gieson of stented
vessel segment (e) demonstrates disruption of IEL and neointima forma-
tion with diffuse elastin deposition (black dots). (f) Scatterplot showing
correlation between volume of enhancement after administration of
BMS-753951 and volume of combined intima+media by histology.
Adapted from [87]
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vascular beds. Gadolinium-based nanoparticles and small
peptides (EP-2104R) targeted to fibrin have been successfully
used to image atherosclerosis in both, animal models and
humans [35•, 100–102]. The ability of EP-2104R to detect
coronary thrombosis has been first demonstrated in a swine
model of intra stent thrombus and has been subsequently
successfully translated in a small clinically feasible study of
aortic and carotid thrombosis [103••] (Fig. 8).

Conclusions

Molecular MR imaging is a promising approach to
evaluate biological processes involved in coronary artery
disease. This methodology has been successfully vali-
dated to image cellular and structural changes in the
vessel wall during atherosclerosis progression in animal

models and humans. Coronary vessel wall NCE-MR and
CE-MR in patients after myocardial infarction has
shown potential for the non-invasive characterization of
coronary artery plaque (e.g. endothelial dysfunction,
haemorrhage and fibrosis) without the use of ionizing
radiation. For additional characterization of atheroscle-
rotic lesions, target-specific imaging probes have been
developed, which allowed successful imaging of extra-
cellular matrix remodelling and coronary thrombosis. In
the future, visualization of both early and late biological
changes of coronary lesions may allow a more accurate
assessment of disease burden and monitoring of the
effectiveness of interventions.
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