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Abstract
This article describes the fundamentals and importance of the yield surface vertex effects in plastic flow localization pre-
dictions. The yield surface vertex effects are inherent in crystal plasticity based on Schmid law and have been elaborated 
in phenomenological corner plasticity theories. First, the theoretical importance, experimental evidence and modeling 
strategies of the yield surface vertices are presented. Next, plastic flow localization analyses using the yield surface vertex 
effects in previous studies are reviewed. Both full-field analyses by the finite element method and simplified analyses (i.e., 
Marciniak–Kuczynski-type of approach) are considered. It is also to be noted that conventional plasticity theories (including 
both phenomenological and crystal plasticity theories) do not involve any intrinsic material length-scale effects. This could 
lead to drawbacks in applications and plastic flow localization analyses, because these theories do not enable to predict shear 
bands with width of finite size. We conclude with the presentation and review of recent developments of gradient-enhanced 
vertex-type plasticity and crystal plasticity theories.

Keywords  Yield surface vertex · Crystal plasticity · Corner theory of plasticity · Imperfection · Bifurcation · Strain gradient 
plasticity

Introduction

With material models involving classical smooth yield sur-
faces, there are difficulties in predicting plastic flow locali-
zation particularly in the form of shear bands in materials 
in bulk form or in predicting necking for biaxially stretched 
sheets. Plastic flow localization is possibly induced by (i) 
the yield surface vertex effect [1, 2], (ii) dilatational plastic 
flow accompanying macroscopic softening due to evolving 
damage (nucleation and growth of voids) [3, 4], (iii) thermal 
softening in adiabatic or high-speed deformation [5], and 
(iv) deviations from the normality rule for plastic flow aris-
ing, for example, in a material exhibiting a hydrostatic stress 
dependence [6]. Although each of these mechanisms have a 

significant destabilizing effect independently, combinations 
of these mechanisms play a dominant role in causing plastic 
flow localization, depending on the material, and for a given 
material, on the stress state. Generally, plastic flow localiza-
tion suddenly appears from a nearly uniform straining state 
at a certain stage of overall deformation under isothermal 
conditions even with neither clear indication of damage 
evolution nor hydrostatic dependence of yielding. This is a 
consequence of the vertex effect inherently existing in crys-
talline materials, which makes possible the situation where 
two or more modes of strain rate exist under a fixed stress 
state. In this regard, the vertex effect is the most fundamen-
tal and important among the four factors described above 
in plastic flow localization problems. The crystal plasticity 
model [7] innately equips this effect [2, 8, 9]. To mimic the 
vertex effect, various phenomenological corner theories of 
plasticity have been proposed (e.g., [10–17]). The present 
article focuses on the fundamentals, modeling and applica-
tions of the vertex effect.
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Fig. 1   Schematic illustrations of corners on the yield surface: (a) single crystal; (b) polycrystal or phenomenological corner theory of plasticity; 
(c) phenomenological pseudo-corner theory of plasticity. Dp , �′ and �̌′ are the plastic strain rate, deviatoric stress and stress rate, respectively

Vertices on the yield surface

The question of the existence of corners (or vertices) on 
the yield surface had long been of particular interest in 
the field of the mechanics of inelastic materials. Whether 
or not a vertex forms on the yield surface is very impor-
tant in cases where deviations from proportional loading 
occur, e.g., predictions of plastic instability, e.g., [10, 18]. 
The conventional normality flow rule does not account 
for sheet necking in biaxial tension at realistic stress and 
strain levels without the introduction of a large geometri-
cal imperfection, while incorporating the corner concept 
results in a realistic sheet necking behavior that is in agree-
ment with general experimental observations [10]. The 
standard normality flow rule never predicts shear band for-
mation in a bulk material having a positive strain harden-
ing modulus [19, 20], while the introduction of the corner 
concept naturally leads to predictions of shear band devel-
opment [21]. A flow rule with corners predicts much lower 
buckling loads (in agreement with general experimental 
observations) than those computed using conventional the-
ories with smooth yield loci [22] (see also discussion by 
Hutchinson [23]). In general, plastic flow localization sud-
denly appears from a uniform straining state at a certain 
stage of deformation. This means that two or more modes 
of the plastic strain rate may possibly appear for a fixed 
stress state. To establish this peculiar situation, the exist-
ence of a vertex at the loading point on the yield surface 
is conceptually necessary. In the case of rate-independent 
elastoplasticity, the sudden change in the plastic strain rate 
mode without any change in the stress state corresponds to 

bifurcation. When the material has a rate dependence, the 
vertex is considered not to be an actual sharp vertex, but 
to be a portion of the yield surface with a high curvature, 
the so-called rounded vertex.

The existence of corners is plainly explained for single crys-
tals [8]. Figure 1(a) schematically shows corners on the yield 
surface of a single crystal. If the material deforms by a single 
slip, a normality flow occurs since a standard associated flow 
rule is assumed for a yield plane of a single slip system. Once 
a double- or multislip state is established, the stress point must 
be on a line of intersection between two yield planes or on a 
corner of the hyper-polyhedron consisting of the yield planes 
for the crystallographic slip systems. Thus, it is theoretically 
obvious that single crystals have corners on their yield surface. 
Asaro [8] pointed out that the corners on the yield surface can 
promote localized shearing even for slip hardening materials. 
When the material rate dependence is considered [24], all the 
slip systems are potentially active. In this case, the vertex is 
not sharp, but is a portion of the yield surface with a high cur-
vature. From an engineering point of view, particular interest 
had been on whether or not corners exist in general polycrys-
talline metals. Hutchinson [2] illustrated yield surfaces of a 
face-centered cubic (FCC) polycrystal by self-consistent [1, 
25] computations and showed that a corner develops at the 
stress point on a shear stress–normal stress cross section of 
the yield surface after tensile loading. However, most experi-
mentally determined yield surfaces did not exhibit corners, 
but they were observed to be smooth or rounded. Hecker 
[26] surveyed 54 experimental studies on attempts to detect 
corners on the yield surface, and summarized that only five 
detected sharp corners, 16 observed rounded corners, and 
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the remainder saw smooth yield surfaces. Kuwabara et al. 
[27] directly detected, for the first time, corners on the yield 
surfaces of actual polycrystalline metal sheets (an aluminum 
alloy and a mild steel) using a method proposed by Kuroda 
and Tvergaard [9], in which first, a specimen is loaded into 
plastic range, second, at an arbitrary moment, the direction 
of strain rate is abruptly changed to a significantly different 
direction (to the extent that elastic unloading is not reached), 
and then the stress point automatically traces the current yield 
surface. By this method, we can know the shape of the cur-
rent yield surface in the vicinity of the loading point without 
elastic unloading. The effects of the corners, whose existence 
is obvious in single crystals, persistently remain in polycrystals 
[1, 2, 27]. Figure 1(b) illustrates schematically a corner on the 
yield surface of a polycrystal, and this also illustrates a concep-
tual picture of a phenomenological corner theory of plasticity. 
Figure 1(c) illustrates a concept of a pseudo-corner theory in 
which modeling of a realistic corner is omitted for simplic-
ity, but a corner-like behavior is described by a non-normality 
flow rule on a smooth yield surface [13, 16]. The most marked 
difference between the real corner [11, 12] and pseudo-cor-
ner [13, 16, 17] theories is the direction of the stress rate at a 
neutral loading state. In the full-scale corner theories, plastic 
straining continues to occur for the stress rate direction beyond 
90˚ to the full loading direction. The mathematical represen-
tation of this behavior tends to be complex [11, 12]. Kuroda 
and Tvergaard [28] showed that the pseudo-corner theory [16] 
predicts shear band development similar to that predicted by 
the corner theory [11] depending on the parameters chosen. 
Furthermore, phenomenological corner theories (including 
the pseudo-corner ones) are classified into two groups from 
another point of view, i.e., the stress rate direction-dependent 
type [10–12, 14] and strain rate direction-dependent type [13, 
16, 17]. When we consider a nonhardening material, the stress 
rate direction is always oriented at a direction tangential to 
the yield surface regardless of the directions of the strain rate 
and plastic strain rate. In this regard, the strain rate direction-
dependent-type formulation seems to be more reasonable and 
flexible than the stress rate direction-dependent one.

Most corner theories (including the pseudo-corner ones) 
[11–13, 15] are extensions of J2 plasticity in which isotropy 
is premised. As demonstrated in [16, 29, 30], plastic anisot-
ropy could easily be introduced at least into pseudo-corner 
theories.

Plastic flow localization analysis

Finite element analysis

Shear band formation in single crystals under plane strain 
tension was first simulated for a rate-independent material 
[31] and for a rate-dependent material [24] employing an 

idealized planar double slip model. Zikry and Nemat-Nasser 
[32] investigated shear band formation in an FCC single 
crystal subjected to plane-strain tension at high strain rates. 
Harren et al. [33] studied shear band formation in plane-
strain compression of single crystals and polycrystals. 
Watanabe et al. [34] carried out computations of shear band 
development in polycrystals numerically generated with a 
Voronoi tessellation technique using different types of finite 
element. Inal et al. [35, 36] presented plastic flow localiza-
tion in FCC polycrystals (described by the Taylor model [7]) 
subjected to tension both under plane strain [35] and plane 
stress [36] conditions. Kuroda and Tvergaard [28] simu-
lated shear band development in FCC and BCC polycrystals 
subjected to plane strain tension. In the examples referred 
above, natural consequences of the vertex effect with respect 
to plastic flow localization were well documented.

Another attractive characteristic inherent in the crystal 
plasticity model is the capability for natural description of 
initial anisotropy and its subsequent evolution. Kuroda and 
Tvergaard [37] investigated shear band formation in textured 
FCC polycrystalline sheets subjected to tension/compression 
and pure bending under plane strain conditions and showed 
that the cube texture has extremely high resistance to shear 
band formation. Ikawa et al. [38] compared FE and experi-
mental results of bending tests on aluminum alloy (A6061-T4) 
sheets having Goss and cube orientations. Figure 2 shows 
shear band developments in bent specimens [38]. The finite 
element results well reproduced the experimental results with 
particular focus on the extremely low resistance to shear band 
formation of Goss texture in transvers direction (TD) bend-
ing (Φ = 90°). The Goss texture is known to have marked 
anisotropy, which shows almost no indication of shear band 
formation in rolling direction (RD) bending (Φ = 0°).

The capability of the phenomenological corner theory 
[11] to predict plastic flow localization was demonstrated 
for plane strain tension [21] and pure bending [39]. In [40], 
severely nonuniform deformation near a blunted crack tip 
under the mode I loading condition was predicted. In [28], 
it was demonstrated that computations with the pseudo-cor-
ner theory [16] well reproduce the shear band development 
behavior predicted by polycrystal plasticity computations. In 
[30], shear band development in anisotropic bent specimens 
was analyzed using the pseudo-corner theory [16] combined 
with Hill’s yield function [41]. In [42], the pseudo-corner 
theory [16] was extended to incorporate hydrostatic stress 
sensitivity and showed that the hydrostatic stress sensitiv-
ity hastens the development of diffuse neck and shear band 
formation in plane strain tension. Recently, Yoshida [17] 
simulated shear band development in plane strain tension 
and bending using his newly proposed pseudo-corner theory.

Regarding finite elements, constant strain triangular ele-
ments in the form of ‘crossed triangles’ were frequently 
used in early plastic flow localization analyses, which 
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require a proper design with respect to mesh orientation 
[21]. In [43], it was shown that the serendipity quadratic 
element with reduced integration provides relatively 
favorable solutions for strain localization problems.

Simplified analysis

One of the most important engineering applications of 
plastic flow localization analysis is the quantitative evalu-
ation of the limits to the ductility of sheet metals sub-
jected to biaxial stretching, i.e., the depiction of forming 
limit diagrams (FLDs). For this purpose, full-field analy-
ses with the direct use of the finite element method have 
not been widely used. The Marciniak–Kuczynski (MK) 
[44] technique has been the most popular method for the 
evaluation of sheet metal formability. In this approach, two 
homogeneously deforming regions (elements) are consid-
ered. One region is assumed to have an initial thickness 
slightly smaller than that of the other. This thickness dif-
ference acts as a geometrical imperfection that progres-
sively evolves until plastic flow localization (i.e., sheet 
necking) occurs in the thinner region accompanying the 
occurrence of elastic unloading in the thicker region. The 
MK approach is fairly simple, but is very efficient for 
industrial applications.

In the MK approach, the equilibrium and compatibility 
of the two elements are described by

Here, n is the current unit normal vector to the interface 
between the two elements, � is the Cauchy stress, L is the 
velocity gradient, h is thickness, superscripts ‘b’ and ‘o’ rep-
resent the places where the corresponding quantity is defined 
(that is, the thinner region is denoted by ‘b’ because it is 
often also referred to as the imperfection band region and 
the thicker region is denoted by ‘o’ because it is often also 
referred to as the region outside the band) and ċ is the vector 
quantity to be determined. Equations (1) and (2) together 
with the constitutive model employed result in the following 
form of simple algebraic equations for the vector quantity 
ċ (e.g., [45]):

where D11 is the strain rate component in the major strain 
direction. Strictly speaking, plastic flow localization is said 
to occur when elastic unloading (strain rate reversal) takes 
place in the thicker region causing the plastic flow to con-
centrate in the thinner region. In the literature, however, D11 
is mostly used as a prescribed quantity [46] so that elastic 
unloading in the thicker region never occurs. The onset of 
sheet necking is approximated by the occurrence of a much 

(1)n ∙ �
bhb = n ∙ �

oho,

(2)Lb
= Lo

+ ċ⊗ n.

(3)
(

a11 a12
a21 a22

){

ċ1
ċ2

}

=

{

b1
b2

}

D11,

Fig. 2   Shear band development in bent specimens. Results of crystal 
plasticity finite element computations and corresponding experiments 
on an A6061-T4 aluminum alloy sheet [38] with cube and Goss ori-
entations. Φ denotes an angle of the cutting direction of bending 
specimens relative to RD. In finite element analysis, an initially rec-
tangular block under plane strain conditions, which models a part 

of a long sheet, was subjected to pure bending. Crystal orientations 
randomly selected from ODF (orientation distribution function) data 
determined with measured pole figures were allocated for Gaussian 
integration points. Color contours represent distribution of maximum 
principal logarithmic strain
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higher strain rate in the thinner region than in the thicker 
region. In order to detect precisely the occurrence of elastic 
unloading in the thicker region (i.e., detection of the moment 
at which D11 changes its sign), the prescribed quantity must 
be switched from D11 to ċ1 or ċ2 at a certain stage of deforma-
tion. In this way, we are able to know the exact point of the 
onset of sheet necking and continue the computation into the 
post-localization region. This technique may be needed in 
cases where strain path changes, which often cause pseudo-
localization behavior followed by the reappearance of a sta-
ble deformation state, are considered [45]. In order to judge 
whether the real localization that never ceases occurs or not, 
precise detection of the change in the sign of D11 is required. 
The detailed procedure is described in [45].

If we consider no imperfection, the MK approach coin-
cides with a bifurcation analysis. In this case, the right-hand 
side of Eq. (3) becomes a zero vector, and thus, the condi-
tion det[a] = 0 is the condition for a nontrivial solution of 
ċ . The prediction of forming limit strains by the bifurcation 
approach is extremely sensitive to the constitutive model 
employed, particularly in the biaxial stretching range. Classi-
cal theories of plasticity based on a smooth yield surface and 
the normality flow rule give bifurcation solutions at an unre-
alistic stress level as large as the order of the elastic modulus, 
whereas the J2-deformation theory [10], which is the basis of 
the J2-corner theory [11], predicts a bifurcation solution at 
realistic stress and strain levels. The crystal plasticity theory 
also predicts realistic bifurcation solutions, as shown in [47, 
48]. It has been shown in [48] that a geometrical imperfec-
tion �

I
 of 10−4 gives a FLD indistinguishable from that pre-

dicted by the bifurcation analysis for both the cases of the 
J2-deformation theory and crystal plasticity theory, where 
�
I
= 1 − hb

I
∕ho

I
 with hb

I
 and ho

I
 being the initial thicknesses in 

the thin and thick regions, respectively. Figure 3(a) shows 
FLDs computed with the MK and bifurcation approaches 
for the J2-deformaiton theory and J2-flow (normality) theory, 
and Fig. 3(b) shows FLDs for the crystal plasticity theory. 

Note that the J2 flow (normality) theory exhibits a strong 
dependence on the imperfection, and an imperfection �

I
 of 

10
−4 gives unrealistically high limit strains. Tvergaard [49] 

showed that the introduction of a kinematic hardening rule 
results in much smaller limit strains than those predicted 
by the isotropic hardening J2-flow theory (employed in 
Fig. 3(a)), and this might be interpreted as representing a 
smooth yield surface that develops a sort of rounded vertex 
on the loading point with a local curvature equal to that of 
the initial yield surface.

It is emphasized that the bifurcation approach has a seri-
ous limitation preventing its practical application to engi-
neering materials. When the material rate dependence (i.e., 
viscosity) is introduced in the constitutive model, the bifur-
cation solution is solely governed by the elastic moduli. In 
general, all real materials have a rate dependence that has 
significant effects on limit strains and plastic flow locali-
zation behavior [16, 50]. In this regard, the imperfection 
(MK) approach has much wider applicability than the 
bifurcation approach, bearing in mind that the constitutive 
model employed should involve the corner (or pseudo-cor-
ner) effects; otherwise, MK solutions highly depend on the 
imperfection value assumed and this may not be physically 
acceptable.

In using crystal plasticity model in the MK approach, an 
important issue is what type of homogenization method is 
efficient and accurate for representing the overall behavior 
of the polycrystalline aggregate under consideration. There 
are mainly three choices: (i) the classical Taylor model 
in which strains in each crystal grain are uniform and are 
assumed to be identical to the overall strain of the aggre-
gate [7], (ii) the self-consistent approach [2, 25, 51–54], 
and (iii) the homogenization-based polycrystal finite ele-
ment method [55]. The accuracy of the prediction of sheet 
necking in the MK approach, as well as in the bifurcation 
approach, depends on the accuracy of the predicted values 
of overall (homogenized) stress and hardening modulus. In 

Fig. 3   Effects of geometrical 
imperfection on forming limit 
strains [48]: (a) J2-deformation 
and J2-flow theories; (b) 
rate-independent crystal 
plasticity model with random 
texture (the Taylor model 
was adopted for represent-
ing homogenized polycrystal 
behavior). In all the computa-
tions, power-law hardening with 
an exponent of 0.35 is assumed
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[56], the geometrical hardening behavior owing to texture 
evolution in FCC polycrystals was investigated, and it was 
shown that the classical Taylor model exhibits almost the 
same macroscopic hardening behavior as those predicted 
by the homogenization-based polycrystal finite element 
method, at least for a cube texture material and for a mate-
rial with a particular texture that leads to very high geo-
metrical hardening. A quantitative reexamination of the 
Taylor model for FCC polycrystals via the homogenization-
based polycrystal finite element method was reported in 
[57]. The Taylor model was used in MK analyses in [16, 48, 
56, 58–64]. Tadano et al. [65] showed that the Taylor model 
and the homogenization-based polycrystal finite element 
method yield almost the same FLD, at least for random and 
cube textured FCC sheets. Lebensohn et al. [54] and Signo-
relli et al. [66] used the MK technique coupled with the 
self-consistent models. Signorelli and co-workers [67–69] 
showed that the Taylor model does not necessarily result in 
realistic FLDs, depending on the texture and crystal struc-
ture, whereas the viscoplastic self-consistent model gives 
FLDs consistent with experimental results. Theoretically, 
the most reliable model among the three is the homoge-
nization-based polycrystal finite element method, which 
satisfies both equilibrium and compatibility between grains 
in the aggregate. The MK-self-consistent approach should 
be subject to further investigation via comparison with the 
homogenization-based polycrystal finite element method 
in the future. A schematic illustration of the MK technique 
combined with the homogenization-based polycrystal finite 
element method, which was originally proposed by Tadano 
et al. [65], is shown in Fig. 4. This method is expected to 
be efficient for forming limit predictions not only of poly-
crystals, but also of voided (damaged), multiphase and/or 
composite (particle reinforced) materials. Very recently, 
the MK technique in conjunction with crystal plasticity 

models have been comprehensively reviewed by Signorelli 
et al. [46].

The fundamental idea of the MK technique can also be 
applied to a simplified three-dimensional analysis of shear 
band formation in a bulk material. Details and applications 
can be found in [18, 37, 70].

Width of plastic flow localization region –
strain gradient plasticity–

Classical plasticity theories (including crystal plasticity 
theories) do not include any intrinsic material length-scale 
effects. This could be a drawback in plastic flow localiza-
tion analysis since shear band width is not determined as a 
finite size. When we perform finite element analysis includ-
ing shear band formation, the shear band width becomes 
narrower and narrower as the finite element mesh is refined. 
In other words, the shear band width unreasonably coincides 
with the size of one finite element, and thus, mesh conver-
gence is not reached. Strain gradient plasticity theories aim 
to represent the material length-scale effects inherent in 
actual materials.

Strain gradient plasticity (SGP) theories are classified 
into three types. One type of theory, proposed by Acharya 
and Bassani [71] retains conventional stresses, equilib-
rium equations and boundary conditions, but incorporates 
a dependence on plastic strain gradients into incremental 
tangential hardening moduli. The second type of theory is 
that first proposed by Aifantis [72] in which higher-order 
spatial gradients of plastic strain are introduced into the 
yield function. In addition to changing the constitutive rela-
tion, an extra governing differential equation is introduced 
along with additional (microscopic) boundary conditions 
(e.g., Mühlhaus and Aifantis [73]; Zbib and Aifantis [74]; 

Fig. 4   Marciniak–Kuczyn-
ski technique combined with 
homogenization-based finite 
element method [65]. Two 
regions with slightly different 
thicknesses are modeled by 
initially identical representative 
volume elements (RVEs)
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de Borst et al. [75]; Fleck and Hutchinson [76]; Gurtin and 
Anand [77]; Fleck et al. [78]). Introduction of higher-order 
plastic strain gradient effects results in unique solutions to 
problems involving plastic flow localization phenomena. 
The third type of theory is the class of higher-order theories 
proposed by Fleck and Hutchinson [79] in which the gradi-
ents of the total strains are introduced as a third-order tensor 
and the gradient effect emerges even when the deformations 
are elastic. Recent years, the second type is most widely 
accepted for microscale plasticity computations. In the pre-
sent study, the second type will be featured.

Aifantis [72] proposed that higher-order spatial gradients 
of plastic strain be introduced into the conventional yield 
function:

where �
e
 is an equivalent stress, � is a length-scale coef-

ficient having a dimension of force that is often assumed to 
be � = l2�0 with l and �0 being a length scale and a reference 
stress, respectively, �p is an equivalent plastic strain, ∇ is a 
spatial gradient operator (nabla), and R(�p) is a strain hard-
ening function. With the introduction of the spatial gradient 
term, the yield function acquires the nature of a partial dif-
ferential equation. This is not only a change of the constitu-
tive relation, but also an introduction of an additional gov-
erning equation with concomitant unconventional boundary 
conditions. Equation (4) with Eq. (5) is one of the simplest 
models [72]. More elaborate relations can be found in the 
literature [76, 80, 81]. The weak form of an incremental 
form of Eq. (4) is written as

where 𝛿𝜀̇p is an arbitrary weighting function that can be 
viewed as a virtual plastic strain rate, V and S are the volume 
and surface of the body and n is a unit normal vector to dS . 
We can prescribe values of n ∙ ġ

p or 𝜀̇p on S as extra (higher-
order) boundary conditions. In principle, this additional 
governing equation should be solved simultaneously with 
the conventional force equilibrium equation. The system of 
finite element equations takes the form [73, 75, 82, 83]

where 
{

U̇
}

 is a vector array of nodal displacement rates and 
{�̇

p
} is that of nodal equivalent plastic strain rates. The first 

and second rows of Eq. (7) are derived from the standard 
virtual work relation (the force equilibrium relation) and 
Eq. (6), respectively. Discussions on a variety of treatments 

(4)�
e
+ ∇ ∙ gp − R(�p) = 0,

(5)gp = �∇�
p
,

(6)∫ V

{(

Ṙ − 𝜎̇
e

)

𝛿𝜀̇
p
+ ġp ∙ ∇δ𝜀̇p

}

dV = ∫ S

n ∙ ġ
p

δ𝜀̇
p
dS,

(7)
[

K
(uu)

K
(up)

K
(pu)

K
(pp)

]{

U̇

�̇
p

}

=

{

Ḟ
(u)

Ḟ
(p)

}

,

of strain gradient plasticity and related issues on numerical 
analysis have been given in [84, 85].

The introduction of the higher-order strain gradient effects 
revives the uniqueness of the solution for problems accompa-
nying plastic flow localization. Early pioneering studies (e.g., 
[74, 75]) on plastic flow localization with the size effect mainly 
considered strain-softening solids. These studies showed that 
the severe mesh dependence is remedied with the introduc-
tion of the strain gradient effects. Recently, a pseudo-corner 
theory of plasticity [16] was incorporated into the framework 
of strain gradient plasticity [82, 83]. Figure 5 shows the results 
of a plane strain tension problem involving shear band forma-
tion with and without material length-scale (strain gradient) 
effects. The shear band width depends on the mesh discretiza-
tion in the case of the conventional size-independent theory, 
whereas the strain gradient theory predicts an identical shear 
band width regardless of mesh design. The gradient term 
∇ ∙ gp works to augment stresses as seen in the distribution 
of �

e
∕�0 in Fig. 5. This leads to a delay of strain localization.

In [86, 87], the strain gradient plasticity theory was com-
bined with the MK technique. In this approach, the neck pro-
file and the corresponding deformation state inside and outside 
the neck region can be determined using a numerical scheme 
based on the strain gradient theory. It was reported that the 
gradient plasticity theory significantly reduces the imperfec-
tion sensitivity encountered in the conventional MK approach 
[86, 87].

For single crystals, several gradient theories have also been 
proposed. Gurtin [88, 89] presented a higher-order gradient 
crystal plasticity theory based on an extended virtual work 
principle that involves unconventional higher-order stresses 
whose constitutive relations are derived in a thermodynami-
cally consistent manner. Groma et al. [90], Yefimov et al. [91], 
Evers et al. [92] and Bayley et al. [93] independently proposed 
a different type of gradient theory whose primal component 
is a backstress (equivalent to an internal stress with the oppo-
site sign) arising in response to spatial gradients of density 
of geometrically necessary dislocations (GNDs), which cor-
responds to the first-order spatial gradient of crystallographic 
slip. It has been shown that fundamentally, these two different 
types of gradient crystal plasticity theory are mathematically 
equivalent and give the same solution for the same boundary 
value problem [94–96]. The simplest yield condition for a slip 
system can be written as

where � (�) is the resolved shear stress on slip system � , g(�) 
is slip resistance, �(�)

G(e)
 and �(�)

G(s)
 are the edge and screw GND 

densities, s(�) is the slip direction, p(�) is the tangent line 

(8)�
(�)

+ ∇ ∙ �
(�)

− g(�) = 0,

(9)�
(�)

= −�
(�)

(

�
(�)

G(e)
s(�) + �

(�)

G(s)
p(�)

)

,

Page 7 of 11    43International Journal of Material Forming (2022) 15: 43



1 3

direction of edge dislocations and �(�) is a coefficient associ-
ated with the length-scale. Equation (8) with Eq. (9) is one 
of the simplest models in the Gurtin-type approach [88, 89]. 
The term ∇ ∙ �

(�) can be viewed as a backstress (� (�)
b
) in the 

alternative approach [90–93]. If the correlation � (�)
b

= ∇ ∙ �
(�) 

holds, the two approaches can be mathematically equivalent. 
More elaborate relations for �(�) and � (�)

b
 can be found in the 

literature (e.g., [88, 89, 92, 93]). Applications of higher-
order gradient crystal plasticity have been reported in 
[97–102]. Similar to the phenomenological strain gradient 
theories, the gradient crystal plasticity theories eliminate the 
mesh dependence in finite element simulations of plastic 
flow localization problems (e.g., [97, 102, 103]).

Concluding remarks

When a normality f low rule with a smooth yield sur-
face is assumed, a change in the direction of plastic 
strain rate requires a corresponding amount of change 

in the total stress direction. This inhibits abrupt change 
in the deformation mode and prevents the occurrence of 
plastic flow localization. The corner theories of plastic-
ity (including the pseudo ones) naturally overcome this 
difficulty. When the early corner theories [10–13, 23] 
were proposed, the existence of the corners in practical 
polycrystalline metals was not proved experimentally, 
but they were based on the conceptual need for the cor-
ners. The existence of the corners was proved by Kuwa-
bara et al. [27], and now, we can employ the corner 
theories as ones that have a firm physical background. 
The crystal plasticity theory inherently possesses the 
vertex effect and automatically represents plastic flow 
localization without any additional consideration if its 
occurrence is a physical necessity. Furthermore, the 
crystal plasticity theory is capable of representing the 
initial anisotropy using the measured crystal orienta-
tion distribution and pursuing its subsequent evolution. 
This clearly exceeds the corresponding potential capa-
bility in phenomenological corner theories.

Fig. 5   Shear band formation in plane strain tension predicted by 
pseudo-corner theory of plasticity [82]: a  Conventional size-inde-
pendent computations ( l∕H0 = 0) and (b) strain gradient plasticity 
computations ( l∕H0 = 0.04). For each case, distributions of �p for 
coarse mesh ( 12 × 36 quadrilateral elements) and fine mesh ( 30 × 90 

quadrilateral elements), and distribution of �
e
∕�0 for the fine mesh 

are displayed. A quarter portion of a rectangular-shaped specimen 
with a width of 2H0 under plane strain conditions was analyzed with 
introduction of symmetric boundary conditions and small geometric 
imperfections to trigger off diffuse necking
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