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Abstract
Purpose of Review  Solid organ transplant (SOT) recipients are a high-risk population for invasive fungal infections. While 
infections with black molds are rare in SOT recipients, they are important to consider since morbidity and mortality are high, 
and the treatment may differ substantially from other more common invasive fungal infections.
Recent Findings  The incidence of black molds tends to be increasing. While the backbone of diagnosis remain traditional 
tools like histopathology and culture, the rapid evolution of non-culture-based methods for molecular detection promises 
improved identification of these rare fungi. While for many of those rare fungal infections liposomal amphotericin B remains 
the treatment of choice, mold active triazoles are the backbone for treatment of scedosporiosis and lomentosporiosis. New 
antifungal agents like ibrexafungerp, olorofim, and fosmanogepix may provide additional treatment options for the future.
Summary  In this paper, we review infections caused by black molds in SOT recipients. The focus lies on epidemiology, 
diagnostic work-up, and antifungal treatment.
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Introduction

In solid organ transplant (SOT) recipients, infection control 
remains a cornerstone to optimize outcomes. Beside bacte-
rial and viral infection, invasive fungal infections (IFIs) play 
an important role in this population as well. While infections 
by Candida spp. and Aspergillus spp. are responsible for 
about 70–80% of IFIs in SOT recipients [1, 2, 3, 4], there 
are other emerging fungal pathogens that may cause infec-
tions in these vulnerable populations, including black molds.

This review will focus on the role of black molds as rare 
fungal pathogens causing infections in SOT recipients, 
while the review will exclude black Aspergillus spp., which 
are discussed elsewhere [5, 6]. Black molds are character-
ized by their dark appearance caused by melanin in the cell 
walls. Melanin classically prevents solar damage through 
UV radiation in the fungus but is believed to play an impor-
tant role in enhancing ability for human infection. Since 
melanized fungi are overrepresented in human infections, 
they can cause infections in immunocompromised as well 
as in immunocompetent individuals [7]. For example, it was 
demonstrated that melanin in cell walls of Aspergillus spp. 
and Rhizopus spp. leads to a complete phagosome matura-
tion arrest [8].

Melanized non-Aspergillus molds include a wide range 
of different fungi species, most importantly Mucormycetes, 
followed by Fusarium spp. (which may sometimes present as 
black mold) and Scedosporium/Lomentospora spp. but this 
may vary among geographic regions and transplant types [1, 
9, 10]. Others include dematiaceous fungi from which the 
most important pathogen is Alternaria spp. in SOT recip-
ients [11] and other black molds like Paecilomyces [12].
While black molds are rarely the cause of invasive infection 
even in the immunocompromised host, they are important 
to consider as individual morbidity and mortality are high 
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and therapy may substantially diverge in relation to more 
frequent IFIs [9, 12, 13]. Here we will review epidemiol-
ogy, diagnosis, and management of black mold infections 
in SOT recipients.

Epidemiology

IFIs from black molds are rare diseases, and only few larger 
multicentric cohort studies are available for reliable estima-
tion of prevalence rates [12]. Additionally, the data should 
be interpreted with caution since the studies were performed 
two decades ago and awareness of these pathogens as well 
as diagnostic possibilities has since improved. Furthermore, 
analysis of collected case series may include a significant 
selection bias [14].

Overall, prevalence of rare invasive mold infections 
(IMIs) tends to be increasing [14, 15•, 16, 17]. Whether 
this is due to an increased recognition of these infections, 
better diagnostic tools, or a larger at-risk population with 
concordant increased infection rates remains speculative 
but all of these factors may contribute to this observation. 
Importantly, prevalence rates of rare IMIs diverge widely 
among different geographic areas and even between centers 
within the same countries.

Fungi from the order Mucorales are responsible for 
mucormycosis. From this large group, 11 genera and about 
27 species have been identified to cause human infection, 
most importantly Rhizopus spp. which account for about 
50–70% of mucormycosis [1, 18, 19]. SOT recipients consti-
tute for 3–14% of all mucor infections [15•, 16, 19, 20, 21]. 
Mucormycosis make up about 2% of all IFIs in SOT recipi-
ents while the distribution according to transplant type var-
ies widely among reports [1, 2, 4, 19, 20, 21]. Common risk 
factors seen in SOT recipients are the use of corticosteroid 
and immunosuppressive agents, diabetes mellitus, malnour-
ishment, renal failure, and prior therapy/prophylaxis with 
voriconazole/echinocandins [22].

In fusariosis, only a small proportion of the more than 
300 species cause invasive infection. While Fusarium spp. 
are not classic “black molds,” there are reports of melanin-
producing spp. with positivity in Fontana-Masson stain of 
up to 30% and will therefore be covered here [23, 24, 25]. 
Fusarium solani spp. and F. oxysporum spp. are the most 
commonly identified in SOT recipients as well as in other 
at-risk populations [10]. The main pathway of infection is 
usually the inhalation of airborne microconidia or direct 
inoculation due to trauma, which leads to infection of the 
airways (sinuses, lung) and the soft tissue as most infected 
sites [9, 12]. Invasive fusariosis account for < 1% of all IFIs 
in SOT recipients [1, 10]. Lung transplant recipients tend to 
be at higher relative risk, most likely due to the main portal 
of entry through the respiratory tract [1, 10, 26].

Scedosporium and Lomentospora make up about 1% of 
all IFIs in SOT recipients, primarily infecting lung transplant 
recipients [1]. The most identified species come from the S. 
apiospermum complex followed by Lomentospora prolifi-
cans, which is now distinguished from Scedosporium [1, 9]. 
Recent single-center studies report an incidence of 2–3% in 
lung transplant recipients [27, 28, 29]. Identified risk factors 
for scedosporiosis include prior colonization (many centers 
consider pre-transplant colonization as contraindication to 
lung transplant) and prior use of amphotericin B, in addition 
to general risk factors for IFI [12]. The main site of infection 
is the lower respiratory tract, but SOT recipients are also at 
risk for developing disseminated disease [27, 29].

Infections due to dematiaceous fungi make up to 2.5% of 
all IFIs in SOT recipients [11]. This heterogenous class of 
fungi summarizes more than hundred species; Alternaria 
spp. is the most common pathogen in SOT recipients. Most 
frequently infected sites include the skin and the underly-
ing soft tissue, although the proportion of these cases may 
be overestimated as other manifestations of the disease are 
harder to diagnose. Dematiaceous fungi can also infect the 
lung, sinuses, cerebrum, and bones/joints [11]. While an 
analysis of the Transplant-Associated Infection Surveillance 
Network (TRANSNET) population showed disseminated 
disease in 63%, controversially a recent systematic review 
of phaeohyphomycosis cases in SOT recipients reported a 
much lower rate of dissemination (11%) [11, 30•].

Case reports have also reported on black mold infections 
in SOT recipients caused by Rasamsonia, Paecilomyces, and 
Penicillium spp. [31, 32, 33, 34, 35].

Diagnosis

IFIs and particularly those caused by rare molds are diffi-
cult to diagnose. First, diagnosis requires clinical suspicion 
while symptoms are mostly nonspecific and range widely 
from a simple cough or even asymptomatic patients to septic 
shock [36]. After that, finding the right diagnostic approach 
is crucial and includes imaging, biomarkers, and obtain-
ing samples for microbiological and molecular testing and 
histopathological processing. The diagnosis of rare mold 
infections becomes even more challenging in light of a low 
pre-test probability and the fact that invasive aspergillosis 
shares some risk factors and clinical appearance as well as 
radiological findings with the discussed pathogens [37]. 
Therefore, a diagnosis can only be made with identification 
of these molds from optimally otherwise sterile samples, 
which can also be used to distinguish between colonization 
and infection [9, 12].

Mucormycosis in SOT recipients usually involves the 
lung; however, it can also manifest as infection of the sinuses 
(with cerebral involvement), skin, and gastrointestinal tract 
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(mostly the stomach in SOT recipients), as well as infection 
of any other organ (e.g., endocarditis, pyelonephritis) or as 
disseminated disease [38]. Computer tomography (CT) is 
considered the first-line imaging of pulmonary infection or 
sinusitis, while intracranial involvement can be examined 
better through magnetic resonance imaging (MRI) [13, 
39]. Along with features of pulmonary mold infection in 
CT (e.g., masses, cavities, halo sign, or air-crescent sign in 
aspergillosis), ≥ 10 nodules, pleural effusion, and concomi-
tant sinusitis have been suggested as characteristics that 
differentiate invasive pulmonary aspergillosis (IPA) from 
pulmonary mucormycosis (PM) [40]. A radiological sign 
that might suggest PM is the reversed halo sign, but similar 
to the typical radiological signs for aspergillosis these find-
ings were mostly from neutropenic patients with underlying 
hematological malignancies [40, 41, 42], while radiological 
presentation may differ in non-neutropenic patients.

Once a suspicion of mucormycosis has been established 
based on host susceptibility and clinical and radiologi-
cal findings, all effort should be made to obtain samples 
to confirm the diagnosis (e.g., BAL or CT-guided biopsy 
in PM, skin biopsy in cutaneous infection, gastroscopy in 
gastrointestinal involvement). Direct microscopy preferably 
using a fluorescent brightener might support a presumptive 
diagnosis [13, 22]. Mucorales show hyphae that are at least 
6–16-µm wide, ribbon-like, and pauci-septate, and branch 
irregularly, and better visualized with special stains like 
Grocott methenamine silver (GMS) or periodic acid-Schiff 
(PAS) [12]. Additionally, culture of specimen can confirm 
the diagnosis and enable susceptibility testing, with a sen-
sitivity of about 50% [13]. Currently PCR-based techniques 
are intensively evolving in this field and also show promising 
results when tested directly from blood or BAL, while still 
lacking standardization [43]. Fresh material is preferred over 
formalin-fixed or paraffin-embedded tissue (FFPE) [44]. In a 
recent study evaluating PCR of serum samples from patients 
with probable or proven mucormycosis, specificity and sen-
sitivity were about 85 and 90%, respectively [45••].

Fusariosis in SOT recipients usually manifests as infec-
tion of the respiratory tract (pneumonia, sinuses), or the 
skin/soft tissue, as well as disseminated disease with the 
ability to infect any other organ [12, 46]. In a recent Span-
ish study, non-neutropenic patients were more likely to have 
localized infections with pneumonia as the most common 
manifestation (64.3%), while cutaneous manifestations 
(21.4%) were less common when compared to neutropenic 
patients [17]. Blood culture might be positive in about 40% 
of the cases [47] with higher positivity rates observed in 
disseminated disease [48]. Fusarium spp. show cross-reac-
tivity with Aspergillus galactomannan assays and appear 
quite similar morphologically in histopathologic specimen; 
therefore, the distinction might be additionally challenging 
[9, 12]. Also, BDG is usually positive in invasive infection 

[9]. In addition to culture, matrix-assisted laser desorption/
ionization-time of flight mass spectrometry (MALDI-TOF 
MS) and PCR-based techniques may be used to investigate 
the fungus to species level [49, 50, 51].

In a retrospective observational study from France, Sce-
dosporium spp. and Lomentospora mainly infected the 
lungs, the skin, the bones and joints, and the cerebrum, 
with the proportion of disseminated disease reaching nearly 
50% (with more cerebral, cardiovascular, or osteoarticular 
locations involved when compared to hematological malig-
nancies) [52]. The diagnostic approach is similar to previ-
ously mentioned molds with focus on obtaining specimen 
for histopathological processing and microbiological testing 
[9]. If scedosporiosis/lomentosporiosis is suspected, culture 
requires an additional medium like the Scedosporium Selec-
tive Agar (SceSel +) to prevent the overgrowth from faster 
growing fungi (e.g., Aspergillus) [9, 53]. Again, tools to 
compliment culture and histopathology are MALDI-TOF 
MS and molecular-based methods [53, 54, 55].

In contrast to the other discussed molds, dematiaceous 
fungi primarily cause local infection of the skin/soft tis-
sue, clinically manifesting as a variety of papules, plaques, 
nodules, and subcutaneous masses [14, 56]. Others include 
infections of the central nervous system (mostly seen in 
liver transplant), the lungs (predominantly in lung trans-
plant), and disseminated disease [14]. Reported activities 
before medical care are consulted and distribution of cuta-
neous lesions suggests direct inoculation as the most com-
mon infection pathway [14, 30•]. Direct microscopy may 
show melanized hyphae in Fontana-Masson staining, but 
this finding should be interpreted with caution since many 
other molds (e.g., Fusarium spp., Aspergillus spp.) can lead 
to positive results [23]. Confirmation of suspected phaeohy-
phomycosis requires confirmation by histopathology along 
with culture and may be assisted by molecular identifica-
tion techniques mentioned above, especially to aid species 
identification [14]. It should be noted that culture may show 
a slow growth [57, 58].

Treatment

Treatment of these rare molds is difficult and often requires 
susceptibility testing for systemic antifungal treatment. 
When clinically feasible, surgical therapy of localized infec-
tions is an important adjunct [9, 12]. For mucomycosis, 
high-dose LAmB (5–10 mg/kg/day) is currently considered 
the first-line therapy and shows overall response rates of 
about 40% [13, 59]. The European Confederation of Medical 
Mycology (ECMM) guideline on mucormycosis currently 
recommends an initial dose of LAmB of 10 mg/kg/day and 
to avoid slow escalation of doses [13]. Additionally, early 
surgical resection with clean margins plays a key role, since 
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the angioinvasive nature of the disease hinders the penetra-
tion of antifungal pharmaceutics in infected tissue [60, 61]. 
If LAmB cannot be given, the alternatives isavuconazole 
and posaconazole can be considered [13]. In a case–control 
analysis, patients from the VITAL study receiving isavu-
conazole were matched with patients from the FungiScope 
Trial which received LAmB. No significant difference was 
found in all-cause mortality at day 42 (33 to 39%) [62]. 
If progressive disease is noticed, salvage therapy may be 
attempted by switching between the mentioned drugs [13]. 
Additionally, combination therapy between LAmB and 
either isavuconazole or posaconazole might be an option for 
escalation. While combination therapy showed synergistic 
effects in animal model, improved outcomes in the clinical 
setting could not be proven [63] Future treatment options 
may include fosmanogepix and ibrexafungerp which have 
both shown synergism with LAmB in animal studies [64••]. 
Optimal therapy duration has not been established yet. Deci-
sion about duration should be made on an individual basis 
according to radiological resolution and clinical response 
[13]. Reported mortality rates are high ranging from 30 to 
50% [16, 20].

Fusarium spp. show variable resistance to polyenes and 
extended spectrum triazoles. Since delayed treatment has 
been associated with worse outcomes, an empiric combi-
nation therapy with LAmB and voriconazole seems rea-
sonable until susceptibility data is available. Alternatively, 
monotherapy with one of the mentioned antifungals might 
be given [9, 12, 65]. Additionally, surgical debridement of 
localized infections is a cornerstone in the management of 
fusariosis [66]. For second-line therapy, posaconazole and 
isavuconazole are options, which both showed success in 
treating fusariosis with response rates of about 50% (compa-
rable to those of LAmB and voriconazole) [65, 67, 68, 69], 
as salvage therapy posaconazole is recommended by most 
guidelines [9, 12]. Future treatment options may include fos-
manogepix and olorofim, which are promising novel classes 
of antifungals in clinical development for treatment of not 
only fusariosis but also scedosporiosis and lomentosporiosis 
[64••].

Lomentospora prolificans show intrinsic resistance 
to most antifungals with voriconazole and posaconazole 
showing the highest in vitro susceptibility [70]. Terbinafine 
was found to have synergistic effects in combination with 
voriconazole [71]. In fact, this combination therapy showed 
improved outcomes in many case series against therapy with 
other antifungals [9, 72].Therefore, combination therapy 
currently is preferred over monotherapy with voriconazole 
[9, 12]. While a combination of a triple therapy of polyene 
with voriconazole and echinocandin has shown synergism 
in vitro, there are limited data in the clinical setting [65].

In scedosporiosis, monotherapy with voriconazole is the 
antifungal of choice [9, 12, 73]. In a relatively large case 

series of 107 patients with scedosporiosis treated with vori-
conazole, SOT recipients represented the largest subgroup 
(22%) with response rates of 63%. Duration of therapy var-
ied widely from 1 to 802 days (median 103 days), underlin-
ing the heterogeneity of this disease [74]. Other azoles like 
posaconazole or isavuconazole may be considered second-
line therapy, but evidence is exceedingly scarce. The role of 
early surgical debulking has to be stressed once again, as it 
has shown increased survival in SOT recipients [75].

Located superficial phaeohyphomycosis may be cured 
with surgical debridement alone, but can be augmented with 
triazoles, while disseminated disease and deep foci require 
systemic antifungal treatment [12]. Again, treatment can be 
difficult due to the variable susceptibility of this heterog-
enous group [76]. Among the azoles, the best experience is 
with itraconazole for cutaneous/subcutaneous phaeohypho-
mycosis with voriconazole considered alternative first-line 
therapy [9, 76, 77]. Successful treatment with isavuconazole 
or posaconazole has been described, but optimal treatment 
remains unclear [14, 78, 79]. In case of disseminated infec-
tion, generally combination therapy is initially warranted 
with either voriconazole or posaconazole plus echinocandin 
or voriconazole plus terbinafine. LAmB might be an alterna-
tive option especially when considering that Alternaria spp. 
(which make up for approximately a third of the cases in 
SOT recipients) usually show susceptibility to this antifun-
gal [76]. Outcome depends on the infected site. While local 
superficial infection shows good prognosis with adequate 
therapy and response rates of 84%, in disseminated disease 
mortality rates reached 32–69% [14, 30•].

A tabular summary of the discussed rare mold infections 
with respect to risks as well as diagnostic and treatment con-
siderations is presented in Table 1.

Conclusions

The diagnosis of an IFI is not easy to establish and is based 
on the clinical suspicion in a patient at risk together with 
radiological and microbiological findings, such as biomark-
ers, fungal culture, or PCR-based techniques [9]. Uncom-
mon black molds are even more difficult to diagnose, since 
they might have a similar clinical presentation to invasive 
aspergillosis (IA) [10]. Additionally, some of these emerg-
ing fungi might show cross-reactivity for the galactomannan 
assay (e.g., Fusarium spp.) used primarily for the diagnosis 
of IA [47, 80]. Since the therapeutic regimen varies between 
the different pathogens and delayed therapy is associated 
with worse morbidity and mortality, the distinction is crucial 
for patient’s outcome.

Another point to make is the lack of diagnostic and thera-
peutic standard procedure in reality, while clinical manifes-
tations and patient population are also very heterogenous 
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[56]. The ECMM more recently addressed this issue by cre-
ating a score to help physicians measure guideline adherence 
in this matter, hence a form to measure standardization [81, 
82]. Since randomized controlled trials seem out of reach, 
this together with rigorously reporting all cases in a cen-
tral register may help to draw valid conclusions and drive 
scientific effort to improve outcomes of these infections in 
different populations.

Antifungal therapy of black mold infections currently 
consists mostly of mold active azoles and LAmB, although 
there are significant differences between the pathogens, with 
some showing intrinsic resistance to mold active azoles, 
while others show frequently high MICs against LAmB 
[9]. In the SOT population with a significant proportion of 
organ dysfunction, toxicity (hepatotoxicity for triazoles; 
nephrotoxicity for LAmB) needs always to be taken under 
consideration.

Additionally, in the presence of common immunosup-
pressive agents used in SOT, potential drug-drug interac-
tions have to be considered [83, 84]. Since LAmB is not 
metabolized by cytochrome P-450 (CYP450) enzymes, 
drug-drug interactions are generally less an issue, but 
coadministration of nephrotoxic agents which also 
accounts for common immunosuppressants like tacroli-
mus or cyclosporin may sometimes pose a problem [85]. 
In contrast, azoles are known for their countless drug-
drug interactions due to their interference with hepatic 
and intestinal CYP450, which can increase the levels 
of common immunosuppressants. As a consequence, 

measurements of plasma concentrations not only of those 
systemic antifungals that frequently interact (i.e., vori-
conazole) but also immunosuppressants with subsequent 
dose modifications are highly recommended. Compared to 
voriconazole, isavuconazole may be an attractive option 
in SOT recipients, since the effect on CYP450 is lower 
and pharmacokinetics are more predictable [86, 87]. 
Also, novel antifungal pharmaceutics like fosmanoge-
pix, ibrexafungerp, and olorofim may be of great use in 
this matter [64••]. Particularly, olorofim and fosmanoge-
pix show promising results in the treatment of fusariosis 
and scedosporiosis/lomentosporiosis which are resist-
ant to nearly all currently used antifungals. It should be 
noted that olorofim is a weak inhibitor of CYP 3A4 and 
ibrexafungerp is a reversible inhibitor of CYP2C8 and 
CYP3A4. Nevertheless, the current data suggests that 
these antifungals are not likely to have a clinically relevant 
impact on the drug levels of current immunosuppressive 
agents. The evaluation of fosmanogepix in this matter has 
not been published yet (NCT04166669) [64••].

In conclusion, rare mold infections continue to emerge 
in SOT recipients and pose significant challenges to diag-
nosis and clinical management. Knowledge of local epi-
demiology and a high level of awareness are necessary for 
early diagnosis and a successful outcome.
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Table 1   Overview of the discussed black mold infections in SOT recipients

SOT solid organ transplant, IFI invasive fungal infection, qPCR quantitative polymerase chain reaction, BAL bronchoalveolar lavage, GM galac-
tomannan, LAmB liposomal amphotericin B

Mucormycosis Fusariosis Scedosporiosis/Lomento-
sporiosis

Phaeohyphomycosis

Epidemiology (% of IFI in 
SOT) [1, 2, 4, 10, 11]

≈ 2%  < 1% ≈ 1% ≈ 2.5%

Risk according to trans-
plant type [1, 2, 11, 22, 
30•]

Risk tends to be higher 
in liver, lung, and heart 
transplant

Risk tends to be higher in 
lung transplant

Lung transplant recipients 
are at higher risk

Risk tends to be higher in 
lung and kidney transplant

Diagnostic considerations 
[13, 14, 43, 45••]

1,3-β-d-glucan usually 
negative

Mucorales qPCR from 
serum

- 85.2% sensitivity
- 89.8% specificity

1,3-β-d-glucan usually 
positive

Serum and BAL-GM 
might be positive

1,3-β-d-glucan usually 
positive

Selective culture media 
(e.g., SceSel +) increases 
isolation rates

1,3-β-d-glucan poorly 
studied

Culture may show slow 
growth

First-line medical therapy 
[9, 12, 13]

High-dose LAmB 
(5–10 mg/kg/day)

Voriconazole + LAmB
Until susceptibility testing 

is available

Lomentosporiosis:
-Voriconazole + terbinafine
Scedosporiosis:
-Voriconazole

Localized infection:
-Itraconazole, voriconazole, 

and posaconazole
Disseminated infection:
-Posaconazole/voricona-

zole + echinocandins
-Voriconazole + terbinafine 

(consider LAmB in alter-
nariosis)
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