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Abstract
Purpose of Review The objective of this paper is to review the armamentarium of tests available for diagnosis of invasive 
fungal infections (IFI) in lung transplant recipients (LTs), focusing on developments over the last 5 years.
Recent Findings The use of fungal biomarkers is increasing, especially Aspergillus galactomannan, which now has an 
established role in diagnosis and prevention of invasive aspergillosis. Molecular diagnostics are increasingly being applied 
to tissue and other specimens to assist identification of fungi. Functional imaging has an evolving role, improving diagnostic 
precision and time to diagnosis.
Summary While demonstration of fungi in tissue obtained biopsy remains the gold standard for diagnosis of IFI in LTs, 
this is not always possible. There are now a host of biomarkers, molecular, and imaging techniques available that are less 
invasive and allow earlier diagnosis of IFIs.
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Introduction

Thirty years have passed since the first long-term success-
ful lung transplantation. While survival following lung 
transplantation has increased over time [1, 2], infections, 
including invasive fungal infections (IFIs), remain a sig-
nificant source of morbidity and mortality. During the first 
12 months post-transplant, the cumulative incidence of IFI 
ranges from 3.8 to 16.0% [3–5, 6••, 7]. Although most lung 
transplant recipients (LTs) with IFI are alive or demonstrate 
response to antifungal therapy at 12 weeks, overall mortality 
remains high at 12.9–17.0% [3, 8]; with the highest mortality 
of 50% associated with mucormycosis [9].

The pathophysiology of IFIs in LT is complex and mul-
tifactorial. In the early post-transplant period, breaches 
in the epithelial barrier, as occurs with surgical incisions, 
indwelling vascular access and extra-corporeal membrane 
oxygenation (ECMO) catheters predispose to invasive can-
didiasis, which most frequently occurs early post-transplant 
[10, 11]. Within the allograft, factors that predispose to IFI 
include ischemic injury to the bronchial anastomosis (BA) 
and distal airways; altered epithelial integrity, ciliary func-
tion, and mucus production; denervation which impairs the 
cough reflex; and necrosis or stenosis of the BA [12–14]. 
The risk of IFI is increased with the use of T cell–deplet-
ing agents to treat allograft rejection [15] and the presence 
of hypogammaglobulinemia [16]. Cytomegalovirus (CMV) 
viremia impairs the function of cytotoxic T cell, neutrophil, 
and macrophage [17] and is associated with an increased 
risk of IFI in LT [18]. Prerequisite to the development of IFI 
is of course exposure to the fungus. While all LTs are at risk 
of ubiquitous fungi such as Aspergillus, incidence will vary 
depending on location, and endemic fungi such as Crypto-
coccus, Blastomiyces, Coccidioides, and Histoplasma must 
be considered in certain regions. IFI is often preceded by 
colonization; however, fungal colonization does not always 
lead to IFI and may be transient [19–21]. Distinguishing 
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between colonization and invasive infection remains a chal-
lenge for clinicians when a fungus is isolated from a clinical 
specimen from a LT, but necessary to avoid over-/under-
treatment and unnecessary anti-fungal toxicities.

This review will provide an overview of the diagnostic 
approaches, focusing on recent developments including 
non-culture-based diagnostic assays. We will predomi-
nantly focus on pulmonary IFI, which is the most common 
IFI site in LTs [3, 10] and concentrate on developments in 
diagnostics aimed at Aspergillus, Candida, Cryptococcus, 
Mucormycosis, and Pneumocystis. Endemic mycoses will 
not be discussed but remain important etiologies of IFI in 
LTs patients in these specific regions.

Approach to Diagnosis of Invasive Fungal 
Infections in Lung Transplant Recipients

The presentation of IFIs in LTs depends on the pathogen 
and time post-transplant. Invasive candidiasis tends to 
occur early post-transplant and can present as surgical 
site infections, vascular access catheter–related infec-
tions, and candidemia [4, 10, 11, 22]. Invasive aspergil-
losis (IA) and other invasive mold infections occur at any 
time post-transplant. The pulmonary parenchyma and the 
airways including the BA are the most common sites of 
infection; however, the central nervous system (CNS), 
sinuses, and other sites including the eyes, pleural space, 
skin, and vertebrae may be involved [3, 10, 23]. Dissemi-
nation occurs in 10% of IA in LTs [23].

During the early post-transplant period in particu-
lar, routine bronchoscopies allow direct visualization 
and sampling of the airways. Beyond this, the modali-
ties for fungal surveillance for IFIs in LTs are limited. 
Traditional diagnostic techniques such as microscopy 
and culture rely on obtaining a clinical specimen. The 
BA is readily visualized via bronchoscopy, but there is a 
risk of anastomotic dehiscence associated with biopsy, 
particularly in the setting of ischemia, recent treatment 
of rejection and airway infection, especially Aspergillus 
[24, 25]. The overall risk of pneumothorax or significant 
bleeding from a transbronchial biopsy in LTs is low [26], 
but the tolerance of such complications needs to be con-
sidered in light of the individual patient’s condition. The 
diagnostic yield of any biopsy must be weighed against 
potential adverse events.

Therefore, a greater emphasis of non-culture-based 
diagnostics has occurred with the application of biomark-
ers and molecular diagnostics to specimens obtained via 
less invasive procedures including blood, exhaled breath 
condensate (EBC), and bronchoalveolar lavage (BAL) 
fluid. The various tools for diagnosing IFIs in LTs are 
demonstrated in Table 1.

Diagnostic Criteria

Given the complex nature of IFIs, the European Organisa-
tion for Research and Treatment of Cancer (EORTC) and 
the Mycoses Study Group Education and Research Con-
sortium (MSGERC) have provided standardized definitions 
for IFI diagnosis for the purposes of research [27••]. These 
definitions were updated in 2019 to incorporate advances 
in the field with a further update of the specific criteria 
for Pneumocystis jirovecii published in 2021 [28•]. The 
EORTC/MSGERC document outlines three categories, 
proven, probable, and possible IFI. “Proven” IFI requires 
the demonstration of the presence of a fungus from a 
normally sterile site by histopathology, culture, or tissue 
nucleic acid diagnosis and is not dependent on the immune 
status of the host. Cryptococcal antigen positivity in the 
blood or cerebrospinal fluid is the only fungal biomarker 
that fulfills the mycologic evidence criterion for “proven 
IFI.” The diagnosis of “probable” IFI is specific to immu-
nocompromised hosts (ICH) and requires the presence of at 
least one clinical feature and mycologic evidence in the set-
ting of specific host factors, depending on the fungus con-
cerned. The category of “possible IFI” is less well defined 
and infrequently used in the research setting. Whereas the 
EORTC/MSGERC criteria are not specific for LTs, the 
International Society for Heart and Lung Transplantation 
(ISHLT) 2010 consensus statement provides syndrome-
based definitions, specific for LTs, for fungal pneumonia, 
tracheobronchitis, BA infection, and pulmonary coloniza-
tion [29]. Of note, these definitions are also intended for 
use in the research rather than for strict application to the 
clinical setting. In practice, the diagnosis of IFI in LTs 
can be difficult and the decision to treat must consider the 
nuances of the host, results of diagnostic tests, and poten-
tial toxicities of treatment.

Fungal Microscopy and Culture

Microscopy

Despite recent advances in molecular and other diagnos-
tics, demonstration of fungi in histopathologic examina-
tion of tissue and culture remains the gold standard for 
IFI diagnosis. In the microbiology laboratory, microscopy 
is performed on the primary clinical specimen, including 
sputum, BAL or pleural fluid and biopsy tissue, or cul-
ture isolates, to aid in the identification of possible fungal 
isolates. Although important in determining the isolate 
present, this result per se does not differentiate fungal 
colonization from invasion.
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Table 1  Radiologic and mycologic diagnostic modalities for invasive pulmonary fungal infections in lung transplant recipients

The diagnostic tests are arranged horizontally by source of specimen and vertically by the EORTC/MSGERC criterion for proven and probable 
IFI. The ISHLT definitions for proven and probable IFIs are included; however, the diagnostic criteria cross over EORTC/MSGERC categories
BAI bronchial anastomotic infection, BAL bronchoalveolar lavage, CT computed tomography, EBC exhaled breath condensate; EORTC  European 
Organisation for Research and Treatment of Cancer, MSGERC Mycoses Study Group Education and Research Consortium, PCR polymerase 
chain reaction, FDG-PET (18)F-fluorodeoxyglucose positron emission tomography, VOC volatile organic compounds
1 Must exclude alternative etiologies of positive BDG
Color key

Green Aspergillus

Blue Pneumocys�s

Red Candida

Orange Cryptococcus

Purple Mul�ple fungal 

species
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Culture

An advantage of fungal culture is the ability to speciate and 
perform antifungal susceptibility testing; however, results 
can take up to 4 weeks and requires skilled laboratory facil-
ities and personnel. The sensitivity of culture is affected by 
the source of the sample. In patients with invasive pulmo-
nary aspergillosis (IPA), the sensitivity of culture ranges 
from 8 to 34% for sputum, 45 to 63% for BAL [30, 31•], 
and is highest for lung biopsy, particularly when guided 
by imaging [32•]. In LTs with proven or probable IPA, 
fungal culture are negative in 40% [33•]. While the fungal 
agents of mucormycosis grow rapidly under appropriate 
conditions, their delicate hyphae may be damaged during 
biopsy and specimen preparation, resulting in negative cul-
ture results [34].

Matrix‑Assisted Laser Desorption 
Ionization‑Time‑of‑Flight Mass Spectrometry 
(MALDI‑TOF)

MALDI-TOF MS is a method to assist microbial identifica-
tion from a culture specimen, which is fixed in a crystal-
line matrix on a target plate, bombarded by a laser resulting 
in vaporization and ionization and then accelerated using 
a high voltage. The molecular weight of the ions is deter-
mined by their time-of-flight to a detector, and a peptide 
mass fingerprint is generated and compared to a reference 
library for species identification. The uptake of MALDI-
TOF in mycology has been slower than for bacteriology as 
fungi are biologically more complex than bacteria and can 
exist in different states (hyphae and/or conidia), complicat-
ing identification [35]. Yeasts including Candida, Crypto-
coccus, and Pichia can be readily identified by MALDI-TOF 
using standard procedures as used for bacteria [36, 37]. 
Although inherently more challenging to identify using 
this method, reference libraries for filamentous fungi have 
expanded in recent years [38–40] and MALDI-TOF MS has 
been shown to correctly identify 95.4% of filamentous fungi 
to the species level [41]. MALDI-TOF requires a culture 
isolate and cannot be applied to a primary specimen such 
as BAL fluid (BALF) or biopsy; thus, there is a delay to 
identification when compared with PCR. Reference libraries 
must be continuously expanded to maintain the usefulness 
of MADLI-TOF.

Fungal Biomarkers

The role of fungal biomarkers in the diagnosis of IFI is 
evolving. While biomarkers may be used to diagnose IFI, 
they are unable to provide antifungal susceptibilities or spe-
cies identification.

Galactomannan (GM)

Galactomannan (GM) is a soluble polysaccharide present 
in the cell wall of Aspergillus that is released during growth 
[42]. Commercial enzyme-linked immunosorbent assays 
(ELISA) detect GM using a rat monoclonal antibody (MAb) 
EB-A2 commercial enzyme-linked immunosorbent assay 
(ELISA) and is an EORTC/MSGERC mycologic criterion 
for “probable IFI.” In LTs, GM has been evaluated in BALF, 
EBC, and serum for both diagnosis of IA and in the setting 
of pre-emptive monitoring.

The utility of BAL GM in LTs for diagnosis has been 
assessed in several studies. In LTs with invasive pulmonary 
aspergillosis (IPA), BAL GM has a specificity of 95% at an 
index cut-off value of ≥ 0.5 and 98% at ≥ 1.0, with a sensi-
tivity of 60% at both cut-off values [43]. The sensitivity of 
BAL GM increases when the index cut-off value is increased 
to ≥ 1.5 [44]. Complicating interpretation of BAL GM is the 
lack of standardization of BALF sampling with considerable 
variation in method of collection including the volume of 
fluid instilled and number of sites sampled. Nevertheless, 
BAL GM continues to have a role in IPA prevention. Husain 
et al. demonstrated the effectiveness of a pre-emptive strat-
egy using routine surveillance bronchoscopies with BAL 
fungal culture and GM for LTs not receiving antifungal 
prophylaxis. They reported < 1% probability of IPA in LTs 
with negative BAL GM (cut-off index ≤ 1.0) and negative 
BAL Aspergillus culture [6••].

Bronchoscopy is not always feasible and EBC GM has 
been evaluated. This method involves exhaled vapor being 
condensed into a liquid for testing. Bhimji et al. compared 
EBC GM to BALF GM in 444 matched specimens from LTs 
and patients with hematologic malignancies. Although GM 
was detectable in EBC, they were unable to correlate EBC 
optical density index (ODI) values and IA in LTs [45•]. EBC 
GM remains a promising diagnostic tool, which merits fur-
ther assessment including defining cut-off values, which may 
require adjustment based on the proportion of alveolar air in 
the sample [46]. Inherent to the method of airway sampling, 
a positive EBC GM result cannot delineate the site (upper vs 
lower airway) or extent (colonization vs invasive) of disease.

The presence of GM in the serum may reflect fungal inva-
sion [47]. The relative utility of the test depends on several 
factors including the population being tested, the number 
of consecutive positive tests obtained, the index observed, 
and whether the patient is on antifungal prophylaxis. In a 
prospective study of 70 LTs, Husain et al. performed twice 
weekly serum GM screening in LTs during their index 
and subsequent hospitalizations within 18 months post-
transplant [48]. Of LTs, 17.1% developed IPA during the 
study period. While serum GM was detected (cut-off ≥ 0.5 
value) in 29% of LTs with IPA, it was not detected in any 
cases of Aspergillus tracheobronchitis [48], where disease 
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is localized to the airway. In a subsequent meta-analysis of 
27 studies, serum GM was found to be less useful in solid 
organ transplant (SOT) recipients when compared to patients 
with a hematologic malignancy [49] and should rarely be 
tested in LTs.

The Aspergillus GM lateral flow assay (GM-LFA) is a 
rapid immunochromatographic test that uses two MAbs 
including ME-A5 Mab, which binds to a similar epitope as 
EB-A2 and an undisclosed MAb to detect GM in serum and 
BALF. As a point of care test, it can provide a result in less 
than an hour and does require minimal laboratory support. 
The GM-LFA was assessed on BALF of 20 LTs with proven/
probable IPA. At an ODI cutoff of ≥ 0.5, the sensitivity and 
specificity of GM-LFA were 40% and 80%, respectively. By 
increasing the ODI cut-off to ≥ 1.0, the sensitivity remained 
unchanged but the specificity increased to 95% [50•]

A limitation of the use of GM for the diagnosis of IA is 
the potential for false positives due to the presence of other 
fungi (Penicillium sp., Paecilomyces sp., Cryptococcus sp., 
Paracoccidioides brasiliensis, Histoplasma capsulatum) 
[43, 51]. False positives were previously seen with the use 
of piperacillin-tazobactam [52], as Penicillium, which also 
contains GM in its cell wall [53], was used for its produc-
tion; however, this is less of an issue with newer formula-
tions [54].

Cryptococcal Antigen (CrAg)

The CrAg can be detected in whole blood, serum, plasma, 
or CSF using latex agglutination, lateral flow assays (LFA), 
or enzyme immunoassay. It is one of the most useful fungal 
biomarkers with sensitivity and specificity of more than 95% 
for cryptococcosis [55, 56], which exceeds that of culture, 
although not specifically evaluated in LTs. The CrAg cannot 
differentiate between Cryptococcus neoformans and Crypto-
coccus gattii, with the former being more common in immuno-
compromised hosts. False negatives may be seen and are often 
due to a prozone effect at higher antigen titers, a phenomenon 
which is not seen when newer, semi-quantitative assays are 
used [57]. False positives/cross-reactivity can be seen in the 
presence of IFI due to Trichosporon sp., which are uncommon 
pathogens in LT [58]. Although the CrAg titer correlates with 
the fungal burden at diagnosis [59], it cannot be used to moni-
tor treatment response as there is no relationship between the 
rate clearance of the cryptococcal capsule polysaccharide and 
the killing of yeast by antifungals [60, 61]

Beta‑D‑Glucan (BDG)

BDG is a cell wall component of many fungi including 
Aspergillus, Candida, and Pneumocystis but not Cryptococ-
cus and Mucorales. BDG has a limited role in the diagnosis 
of IFI in LTs. Several different assays are in use, each with 

different cut-offs. A recent Cochrane analysis of BDG in ICH 
and critically ill people documented significant heterogene-
ity amongst studies, which prevented a formal meta-analysis 
[62]. The utility of BAL BDG has been assessed in LTs for 
the diagnosis of IPA and found to have limited utility due to 
poor sensitivity (71–80%) and specificity (38–81%) [63–65] 
and thus not recommended. BDG is present in the wall of the 
cystic but not trophic form of P. jirovecii [66•]. In a recent 
meta-analysis found, the pooled sensitivity and specificity 
of serum BDG testing for PJP were 91% and 79%, respec-
tively [66•]. The overall sensitivity was higher in patients 
with HIV (94%) compared to non-HIV patients (86%). The 
authors of this meta-analysis concluded that BDG was only 
useful to exclude PJP when the pre-test probability was low 
[66•], which is likely the best use of this test in LTs. Further 
limitations on the use of BDG in in LTs is the propensity 
of false positives due to cross reactivity with components 
of some beta-lactam antibiotics, hemodialysis filters, and 
immunoglobulins [67], which are often used post-transplant.

Molecular Diagnostics

The advantage of molecular fungal diagnostics is the poten-
tial for higher sensitivity and more rapid diagnosis when 
compared to microscopy and culture. When used on tissue 
biopsies, fungal PCR and/or sequencing allows for spe-
cies identification and is a mycologic criterion for “proven 
IFI” when consistent fungi are seen on histopathology of 
the same tissue biopsy. For other specimen types, fungal 
DNA detection by PCR is a “probable” mycologic criterion, 
reflecting the inability of PCR to differentiate between IFI 
and fungal colonization or environmental contamination 
There are many commercial fungal PCRs available, which 
have either broad range (panfungal) or species-specific tar-
gets. Below is a brief summary of the relevant PCRs avail-
able for fungal diagnostics with many lacking data specific 
in LTs.

Panfungal PCR

Panfungal PCR assays utilize universal fungal primers 
with targets that include at least one of the D1/D2 regions 
of the 28 s gene and internal transcribed spacers 1 and 2 
(ITS1 and ITS2). While the specificity of panfungal PCR 
is high across the spectrum of specimen types from BAL 
to formalin-fixed tissue paraffin embedded tissue, the 
greatest sensitivity is reported for sterile site specimens, 
such as tissue and blood [68•, 69•]. The diagnostic yield 
is improved when tissue is obtained by open biopsy [70] 
and when corresponding histopathology is consistent with 
IFI [69•]. With the ability to detect broad range of fungal 
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pathogens, another benefit of panfungal PCR testing is 
the potential to detect rare fungi. This is particularly 
important for LTs many of whom remain on antifungal 
prophylaxis long-term, which may result in perturbations 
of the pulmonary mycobiome and increased susceptibility 
to atypical or emerging fungal pathogens.

Multiplex PCR

Multiplex PCRs differ from panfungal PCR in that they 
contain a panel of specific fungal primers in one reaction 
and can be considered a more targeted test with nega-
tive results only excluding those pathogens examined for. 
Importantly, this assay would exclude common contami-
nants, e.g., Penicillium species that may be detected using 
a ITS-based approach. Although it can be used on all 
specimen types, it has mostly been used to confirm fungal 
pathogens on biopsy specimens. In a proof-of-concept 
study, Bhimji et al. compared testing of EBC with the 
Luminex multiplex xTAG fungal ASR assay to conven-
tional BAL GM and fungal culture. While fungal DNA 
was detected in EBC, the sensitivity and specificity were 
38.9% and 97.6% compared to BAL fungal culture and 
15.6% and 100% compared to BAL GM [71]. The low 
sensitivity compared to other diagnostics limits the cur-
rent clinical usefulness of the multiplex fungal PCR assay 
for this sample type. However, given the non-invasive 
nature of EBC collection, it is an appealing specimen 
type and requires further assessment to establish its role, 
if any, in diagnosis of colonization and/or IFI in LTs.

PCR for Aspergillus

Several PCR tests for Aspergillus spp. with different 
primers and PCR formats have been developed; how-
ever, there are few studies specifically in LTs. The sen-
sitivity of pan-Aspergillus PCR performed on BALF in 
LTs with IPA is higher than GM (80–100% vs 60–88%) 
with a similar specificity (74–93% for PCR and 71–89% 
for GM) [33•, 72]. In LTs with Aspergillus colonization, 
Aspergillus is more likely to be detected on PCR than by 
GM or culture; thus, cautious interpretation is required 
to avoid over-treatment [33•]. In both the screening and 
diagnostic settings, a combination of tests improves the 
diagnostic yield; however, the additive benefit of Asper-
gillus PCR to GM and culture in LTs requires further 
evaluation, particularly considering the cost of the test 
and limited availability.

Some commercial Aspergillus PCRs include targets for 
resistance associated mutations, for example, in the CYP15A 
gene, which allow for rapid genotypic identification of resist-
ance, permitting earlier modification of antifungal therapy 

[73•, 74]. In LTs, this may be of greatest utility when fungal 
colonization or infection is identified in the peri-transplant 
period, to guide post-transplant antifungal choice, especially 
in cystic fibrosis patients where prior antifungal exposure 
has been associated with development of antifungal resist-
ance [75].

PCR for Pneumocystis jirovecii

PCR for the detection of Pneumocystis is becoming 
increasingly common due to improved sensitivity when 
compared with microscopy [76], reduced time to result 
and laboratory limitations such as lack of personnel skilled 
in microscopy. BALF is the preferred specimen for Pneu-
mocystis detection to maximize sensitivity and reduce 
contamination from upper respiratory tract colonization 
[77]; however, induced sputum is an appropriate alterna-
tive. Several meta-analyses, none specifically in LTs, have 
demonstrated that the sensitivity of Pneumocystis PCR 
is 97–99% and specificity 90–94% [78–80]. Quantita-
tive assays perform better than qualitative assays [78, 79] 
although no “burden” cut-offs have not been established 
for differentiation between colonization and infection 
and hence are not included in diagnostic criteria [28•]. 
Irrespective of these testing interpretation uncertainties, 
lifelong prophylaxis is currently recommended as the 
incidence, and significance of asymptomatic Pneumocys-
tis colonization in LTs has not been established [81••]. 
Quantitative Pneumocystis PCR on BALF, in addition to 
imaging and clinical features, can be interpreted in con-
junction with serum BDG testing to differentiate between 
Pneumocystis colonization and infection [82].

Molecular Tests for Candida

Molecular assays available for Candida have been mostly 
applied to blood samples to improve sensitivity and time 
to diagnosis, compared to culture, particularly when fun-
gal burden is low [83]. Assays generally target the five 
most common Candida sp. (C. albicans, C. glabrata, C. 
parapsilosis complex, C. tropicalis, and C. krusei). In a 
meta-analysis of 54 studies, PCR sensitivity for blood 
specimens for proven/probable candidiasis was 95% and 
specificity 92%, with specificity reducing in the setting 
of Candida colonization [84].

The T2 Magnetic Resonance (T2MR) assay is an all-
in-one automated system that lyses red blood cells, ampli-
fies Candida DNA, and then detects amplified product by 
amplicon-induced agglomeration of supermagnetic parti-
cles. The time to result is 3–5 h and T2MR has a nega-
tive predictive value for candidemia of 99% [85]. It is not 
designed for use on non-blood samples, where Candida 
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colonization and contamination would impact the specific-
ity. Evaluation of these assays in deep-seated intra-thoracic 
invasive candidiasis is lacking, and the impact of antifungal 
prophylaxis on sensitivity has not been assessed; thus, their 
role in diagnosis of IC in the early post-transplant period 
requires further evaluation.

PCR for Mucorales

Mucorales can be identified to the species level using a 
variety of different targets (ribosomal 18S, 28S and inter-
nal transcribed spacer, FTR1 gene, cytochrome B) [86] 
either by panfungal or Mucorales-specific PCR. This can 
help to overcome some of the challenges associated with 
diagnosis including lack of typical morphologic criteria 
for some species and when the organism fails to grow on 
culture but is visualized on microscopy. When applied 
to BALF from immunocompromised patients, primarily 
those with hematologic malignancy and pulmonary infil-
trates, Mucorales PCR followed by high-resolution melt 
analysis demonstrated a sensitivity of 100% and speci-
ficity of 93% [87]. The utility of PCR for detection of 
Mucorales in LTs, where the fungal burden and incidence 
may be lower, has not been studied.

Imaging Modalities

Computerized Tomography (CT)

CT is the usual initial imaging modality in the diagnostic 
work-up of IFI in LTs, and the sensitivity is greater than 
that of plain radiographs [88]. Classic CT findings of 
IPA such as the halo sign, air-crescent sign, and well-
defined nodular lesions are less commonly seen in non-
neutropenic patients, including LTs. IPA may present as 
ground-glass opacities, consolidation, cavitation, and 
tree-in-bud opacities [23, 89]. Multiple lesions and pleu-
ral effusions are more commonly seen with pulmonary 
mucormycosis than IPA, the former classically presents 
as consolidation or as a nodule/mass surrounded by a 
reverse halo [90, 91]. CT of the chest is useful for diag-
nosis of Pneumocystis pneumonia, where plain radio-
graphs may be normal. Findings of Pneumocystis are not 
specific to LTs and typically include bilateral ground-
glass opacities and interstitial infiltrates and may pro-
gress to pulmonary nodules, consolidation and/or pleural 
effusions [92–94].

Magnetic Resonance Imaging (MRI)

magnetic resonance imaging is useful for detecting cns ifis 
[95], but has a limited role in pulmonary ifi due to poor 

air-tissue contrast due to the lack of detectable protons in 
air-filled spaces [96].

Functional Imaging

Imaging modalities that combine anatomic depiction with 
specific functionality are a potential way to improve the 
diagnostic sensitivity of imaging for IFI. The addition of 
positron emission tomography (PET) with fluorodeoxyglu-
cose (FDG) to CT improves the sensitivity, across the spec-
trum of IFI, compared with CT alone, allows detection of 
occult dissemination and can be used to guide duration of 
therapy [97–103]. The use of PET-CT using radiolabelled 
siderophores, such as iron-scavenging siderophores labelled 
with 68 Ga or 89Zr for detecting IA, is gaining attention but 
lacks specificity [104•]. Monoclonal antibodies against 
fungal pathogens, including Aspergillus, Scedosporium, 
Fusarium, and Lomentospora, labelled with a PET tracer 
combined with MRI or CT may improve sensitivity and 
specificity but require further evaluation. The functional 
imaging modalities described have not been specifically 
evaluated in LTs.

Novel and Emerging Diagnostic Tests

Monoclonal Antibodies

JF5 is a monoclonal antibody that binds to an extracel-
lular glycoprotein secreted during growth by Aspergillus 
sp. and can be detected by lateral flow assay (LFA). In 
a recent meta-analysis, BALF JF5 LFA performed better 
than serum for detection of IA with a pooled sensitiv-
ity and specificity in BALF of 86 and 93%, respectively 
[105]. LTs have been included in mixed cohort studies but 
JF5 LFA has not been specifically evaluated in LTs [106]. 
Limitations of the test relevant to LTs include reduced 
sensitivity in the setting of antifungal use [106], and cross-
reactivity with Penicillium sp. [107].

Pentraxin‑Related Protein 3

Pentraxin 3 (PTX3) is a TNF-inducible gene 14 protein of 
the pentraxin superfamily, which includes serum amyloid 
P-component and C-reactive protein. It is produced locally 
by a variety of cells in response to inflammatory cytokines 
produced by inflamed or injured tissue. For example, in 
renal allografts with acute rejection–increased PTX3 
expression, which decreases with treatment of rejection, 
has been demonstrated [108]. In patients with IFI, cir-
culating PTX3 levels are elevated and subsequently nor-
malized with antifungal treatment [109]. Kabbani et al. 
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examined PTX3 levels in a retrospective study of 322 
BALF samples from LTs, which included 15 events of IPA, 
38 instances of Aspergillus colonization, and 17 cases of 
GM positive/Aspergillus culture negative [110•]. PTX3 
levels were significantly higher in those with IPA, com-
pared to those with Aspergillus colonization and healthy 
controls [110•]. PTX3 is not specific to IPA and elevated 
levels are seen with other etiologies of pneumonia [110•, 
111]. PTX3 may be a useful adjunct when there is uncer-
tainty about the presence or absence of invasive diseases 
in the setting of other BAL indicators of the presence of 
Aspergillus.

Volatile Organic Compounds (VOCs)

VOCs are low molecular mass organic substances that 
vaporize at room temperature [112]. Human breath con-
tains > 3000 VOCs, the composition of which is altered 
in various disease states including infection [113]. During 
growth, fungi produce a specific VOC “signature.” The role 
of VOCs in pathogenicity of fungi is unclear, but they may 
have a role in diagnosis. The detection of exogenous fun-
gal metabolites in the breath of hematology SOT patients 
with IPA has been described [114, 115]. In a small study of 
cystic fibrosis patients colonized with A. fumigatus, distinc-
tive breath print patterns were demonstrated in 89% [116]. 
Early experience with VOCs is promising; however, in order 
to be clinically useful in LTs, a database of fungal molecular 
VOC “fingerprints” is required and the sensitivity/specificity 
of VOCs for detecting IFI and colonization in LTs exam-
ined, including the potential to differentiate between the two 
states, for which there is currently no data.

Conclusions

Over the past three decades, the field of lung transplan-
tation has progressed significantly in terms of improved 
survival and the complexity of the patients being offered 
transplantation. However, IFI continues to threaten mor-
bidity and mortality in LTs and the optimum strategy for 
prevention has not been established [117–119]. While 
biopsy, microscopy, and culture remain the gold standard 
for diagnosis, this approach is invasive and relatively 
slow to yield results. We expect the field to progress with 
greater use of non-invasive specimens and a combina-
tion of highly specific molecular tests to rapidly speci-
ate fungi and provide genotypic susceptibilities and bio-
markers and imaging to assist differentiation between 
colonization and invasive disease. To achieve these 
advances in precision diagnostics, large-scale studies of 
IFI diagnostics in LTs are required.
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