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Abstract
Purpose of Review  This review examined the literature on the diagnosis of invasive fungal disease (IFD) in patients under-
going solid organ transplants (SOT) to describe the diagnostic options available for this cohort.
Recent Findings  The tools available for the diagnosis of IFD in SOT patients are similar to those for patients undergoing 
stem cell transplants. These include (1) direct visualisation by radiography or histopathology, (2) antigenic tests using ELISA 
or lateral flow devices for fungal antigens, and (3) PCR-based assays that are commercially available for the two primary 
IFD affecting SOT patients, aspergillosis and candidiasis. Testing recipients and donors for IFD susceptibility may lead to 
improved prediction of IFD in SOT.
Summary  The organ being transplanted has a strong bearing on the risk of IFD and the fungi that will cause disease. No 
single methodology can yield a definitive diagnosis so combinations of diagnostic tests targeted to the specific patient can 
indicate the probability of IFD.
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Introduction

Immunosuppression is the greatest risk factor for the devel-
opment of potentially fatal invasive fungal infection (IFI). 
Immunosuppression is usually medically induced to enable 
stem cell transplants (SCT) or solid organ transplants (SOT) 
to be undertaken; however, genetic disorders, e.g. chronic 
granulomatous disease, or prolonged use of corticosteroids 
are also among the risk factors for IFI [1–3]. The incidence 
and epidemiology of IFI in SOT have been reviewed else-
where [4–7]. The most common cause of IFI in SOT is Can-
dida spp. with the most common mould being Aspergillus 
spp. [8•]. An issue for IFI in SOT is that the infection may 
develop > 1-year post-transplant; this creates challenges for 
treatment and diagnosis [8•]. In this short review, the focus 
will be on the breadth of diagnostic methods available for 
IFI in SOT, not all of these would be available in community 

health care when the disease may present an extended period 
after the transplant.

Unlike SCT, there is a greater diversity of SOT; those of 
primary interest include lung, heart, kidney, and liver [4]. 
The type of transplant is the first indicator of the probable 
cause of IFI since Candida spp. are the most frequent cause 
in all transplants except for lung transplants where invasive 
aspergillosis (IA) is more common [8•]. Timing of IFI can 
also be instructive because infections caused by Candida 
usually occur earliest followed by Aspergillus, then Pneumo-
cystis pneumonia; IFI > 1-year post transplants also include 
zygomycosis, cryptococcosis, and infections by endemic 
fungi [9]. The timing to onset of IFI can be affected by anti-
fungal prophylaxis leading an increasing incidence of later 
development of these infections [10].

The most important causes of IFI are species of the 
genera Candida and Aspergillus (in the 2010 TRANSNET 
study, 53% of IFI were invasive candidiasis and 19% were 
IA [8•]); however, there are also increasing reports of 
Scedosporium, Fusarium, Mucorales, and Pneumocystis 
infection in SOT [2, 4]. The numbers of species from Can-
dida and Aspergillus that cause IFI are also increasing 
with several being relatively drug resistant, and antifungal 
drug resistance has been emerging across these genera, 
e.g. azole resistance in Aspergillus fumigatus [11•, 12, 
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13•]. This diversity of fungi that can cause IFI in SOT is 
a challenge as species identification and detection of drug 
resistance are also desirable.

The diagnostic methods and samples used for SCT and 
SOT are relatively similar with a focus on blood, blood 
derivatives, and bronchoalveolar lavage (BAL); some diag-
nostic strategies utilise urine or exhaled gases [14, 15]. 
In all non-culture methods, the aim is to detect evidence 
of fungal infection in the host; these methods include 
imaging (computerised tomography (CT) scans), poly-
merase chain reaction (PCR), fungal antigen detection by 
enzyme-linked immunosorbent assay (ELISA), or lateral 
flow devices [16••, 17]. These methods span a wide range 
of fungus- or host-derived molecules, yet few are able to 
give rapid and definitive diagnosis of IFI.

The absence of definitive diagnostics has created a situ-
ation where directed treatment is relatively rare, creating 
an overuse of antifungal drugs through empirical therapy 
and widespread use of antifungal prophylaxis. This also 
complicates diagnosis since the use of antifungal prophy-
laxis interferes with the performance of diagnostic assays 
[18•, 19].

Diagnosis

There are several challenges related to the diagnosis of IFI 
in SOT; the incidence of disease varies between different 
transplant types, the immunosuppressive regimen being 
employed, and the use of prophylaxis are but a few [4, 20•]. 
The great variability in patients susceptible to IFI means that 
diagnostic strategies should be tailored to the individual case 
rather than a generic ‘one size fits all’ approach. Clinical 
information on the patient allied to diagnostic tests provide 
the greatest probability of accurate diagnosis.

Diagnosis of IFI in transplant patients relies on a range 
of tests and patient observations that yields a probability of 
infection; this has been described in the European Organiza-
tion for Research and Treatment of Cancer and the Mycoses 
Study Group (EORTC/MSG) system for classification of IFI 
[16••]. In the absence of a single test, we must consider a 
range of options from culture or direct observation of the 
fungus in a patient sample to molecular methods [21]. Given 
the need for early detection to improve treatment outcomes 
[22], the time to diagnosis cannot be reduced if methods 
need to have visible signs of fungal infection; this creates a 
need for sensitive molecular diagnostic methods.

Medical Imaging

One of the key factors to take into consideration when 
diagnosing IFIs in SOT recipients is their immunocom-
promised state, as such the use of any diagnostic modality 
should be minimally invasive. Medical imaging plays a 
key role in these clinical situations. While various imag-
ing techniques (X-ray, ultrasonography, CT, and MRI) are 
available, radiography is usually the first step in any diag-
nostic workflow. Unsurprisingly, radiological findings can 
vary significantly due to a variety of host factors [23••]. 
However, any deviation from a normal healthy state in 
the area undergoing radiography should be followed by 
computed tomography (CT). CT is the modality of choice 
due to its higher resolution and sensitivity at detecting 
abnormalities [24]. The role of CT imaging has been a key 
tool since the 1980s in the early detection of IFIs [25]. A 
number of CT studies have been carried out on smaller 
numbers of SOT recipients with both proven and probable 
IPA diagnoses to help define the ‘typical’ imaging signs 
[23••, 26•]. It has been found the most common CT find-
ing to be consolidation or mass, which tended to present 
1-month post-transplantation, and the second was large 
nodules, followed by ground-glass attenuation commonly 
referred to as ‘halo sign’ [23••]. Similarly, irregular lung 
nodules surrounded by the ‘halo sign’ were present in 80% 
of SOT recipients confirmed with IPA diagnosis [26•]. 
The same study also noted the presence of regular nodules, 
patchy consolidation, and cavity. While these studies were 
undertaken to help define ‘typical signs’ of infection, these 
are not always present and vary depending on whether a 
patient is neutropenic or non-neutropenic [23••, 27]. Fur-
thermore, the same signs can also be associated with other 
infectious agents as well as non-infectious disease [28]. 
Regardless of their non-specific nature, these signs should 
raise suspicion of IFI in this patient group which can be 
followed up with further diagnostic examination.

Visualisation and Culture

As mentioned above, diagnosis of IFI is guided by the 
EORTC/MSG classification system which serves to cat-
egorise a given case as ‘proven’, ‘probable’, or ‘possi-
ble’ [16••]. Classically, the requirements for a case to be 
defined as ‘proven’ include the visualisation of fungal frag-
ments, such as hyphae, within tissues via microscopy and 
the recovery/culture of the etiological agent from a sterile 
site within the SOT recipient. When direct microscopic 
observation does occur, identification can often be incon-
clusive due to the high level of similarity shared amongst 
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a number of the filamentous fungi such as Aspergillus, 
Fusarium, and Scedosporium for example. An ideal clini-
cal outcome would be the recovery of a fungal isolate on 
culture media enabling a number of other tests (antifungal 
susceptibility testing, PCR, qPCR, or mass spectrometry 
[MS]) to be carried out enabling definitive identification. 
However, even this can be complicated by the fact that 
many SOT recipients suffering IFI such as invasive asper-
gillosis (IA) or candidiasis return negative cultures in up to 
20–50% of case [20•, 29]. It is also important to consider 
that there are a number of organisms such as Pneumocystis 
jirovecii that cannot be cultured [20•]. It is not uncommon 
for SOT patients, despite having active disease, to be nega-
tive for both microscopy and culture. As a result, meeting 
the ‘proven’ criteria is impossible; hence, the inclusion of 
the ‘probable’ and ‘possible’ criteria EORTC/MSG clas-
sification system requires alternate methods of detection. 
In terms of positive patient outcomes, timely diagnosis 
is key to enabling either the clinical implementation of 
antifungal therapy or the withdrawal of treatment should 
therapy be successful.

Sample Types for Molecular Detection

For the application of nonculture-based methods, it is impor-
tant to determine the best sample type in a particular case. 
Blood, sputum, BAL, and urine are available with BAL 
being the most demanding on the patient and less easily 
obtained at a high frequency (usually twice weekly is recom-
mended [30•]). Sputum and BAL are associated with pul-
monary infection and so would be most beneficial in lung 
transplants; the lung also has a transient microbiome that 
can create the risk of false positive results [31•]. Blood is 
routinely collected in healthcare settings and gives access to 
fungal diagnostic targets that may originate from any trans-
planted organ. Studies have shown that both serological and 
PCR-based tests can be performed with excellent results 
from serum [32•] linking these tests to existing workflows 
within the healthcare setting.

Serological Methods

Detection of pathogenic antigens in serum or other blood-
derived samples is well established in the detection of micro-
bial pathogens. The detection of fungal galactomannan has 
been implemented since the 1980s [33] and is still being 
refined and Cryptococcus antigen detection has also been 
effective [34]. More recent developments such as lateral 
flow devices create the possibility of point of care diagnos-
tic options.

Galactomannan (GM) is a component of the cell wall of 
Aspergillus spp. released by hyphae as well as germinating 

spores/conidia and can be detected by a number of com-
mercially available assays and formats (ELISA and lateral 
flow). GM detection has become the mainstay of IA diag-
nosis and can be measured using a number of bodily flu-
ids including peripheral blood and BAL, with BAL being 
the preferred sample type [35••]. The most widely adopted 
platform for detection is the Platelia™ Aspergillus enzyme-
linked immunoassay (PA-EIA: Bio-Rad, France). However, 
despite its widespread use over many decades, there is still 
some conjecture within the literature as to the accepted 
threshold for GM test index positivity (0.5 or > 1.0) [36]. 
Another compounding factor is that it is not uncommon for 
SOT recipients with Aspergillus positive cultures to produce 
negative GM test results when using serum [37]. As a result, 
a negative GM test should not be used to rule our IA. A 
number of meta-analyses have been carried out on the detec-
tion of GM in BAL. The majority to these studies involved 
patients with underlying haematological conditions and 
demonstrated a sensitivity and specificity ranging from 61 
to 92% and 89–98%, respectively [38–40]. A similar study 
by Husain et al. (2007) focused on lung transplant recipients, 
which resulted in a sensitivity of 60% and a specificity of 
95–98% depending on GM cut-off index used (0.5 versus 
1.0) [41]. The use of a lower GM index cut-off, particularly 
from pulmonary samples such as BAL, has the potential to 
complicate diagnosis due to the number of individuals natu-
rally colonised by this fungus. Thus, distinguishing active 
infection from colonisation is aided by the adoption of a 
GM index > 1.0 [36]. As a result, the EORTC/MSG recently 
updated their GM cut-off definition for BAL to ≥ 1.0 [16••]. 
As with many diagnostic tests, GM testing is not without 
its limitations. Potential impacts to test results include the 
patient’s immunological status particularly when using 
serum (neutropenic or non-neutropenic), the commencement 
of antifungal therapy, and extended turnaround times [29].

More recently, a novel Aspergillus GM lateral flow assay 
(LFA) (LFA; IMMY, Norman, Oklahoma, USA) has been 
developed enabling point-of-care (POC) diagnostic testing 
to be undertaken with good agreement between this the GM 
ELISA test (for review, see White et al. 2019) [35••]. In a 
study by Mercier et al. (2020), the IMMY LFA was tested 
using BAL samples from previous ICU patients and it was 
found that the LFA test had good sensitivity (88–94%) and 
specificity (81%) [42•]. The same authors suggested this 
methodology be used as a rapid screening diagnostic while 
awaiting other microbiological results.

The diagnostic repertoire specific for detecting Asper-
gillus has been further expanded by the introduction of 
another POC test (AspLFD; OLM Diagnostics, Newcastle 
Upon Tyne, UK). This LFD test incorporates a monoclonal 
antibody, Mab JF5, used to detect an Aspergillus-specific 
antigen released by growing hyphae and can be applied 
to both serum and BAL [43, 44]. A meta-analysis by Pan 
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et al. (2015) of several studies for proven/probable versus 
no IA demonstrated a pooled sensitivity and specificity of 
95% and 95%, respectively, for both serum and BAL for this 
test [45]. Both POC tests have the added advantage over the 
GM ELISA in that they require basic laboratory training and 
equipment, are cheaper, and have a more rapid turn-around 
time [35••]. These POC options greatly enhance diagnostic 
flexibility as many SOT recipients start to feel ill due to IFIs 
months to > 1-year post-transplantation. It is not unusual for 
their hometowns to lack the substantial diagnostic capabili-
ties of the high-tech transplantation centres, making these 
tests vital alternatives. While the detection of GM remains a 
key test for Aspergillus, it cannot be used to detect a number 
of other clinically relevant fungal pathogens due to the fact 
that they do not produce this polysaccharide.

Candida is the most frequent fungal pathogen encoun-
tered in SOT recipients [6]. Blood culture plays a key role 
in the detection of candidiasis; however, it is not uncommon 
for cultures to be negative in up to 25–50% of cases [20•]. 
A key adjunct test to enable the detection of Candida spp. 
has been the β-D-glucan (BDG) test. 1,3 β-D-glucan is a cell 
wall component of most fungi and thus should be viewed 
as a non-specific test. Carried out on serum as opposed to 
BAL, it can detect several fungal species including Candida 
spp., Aspergillus spp., and Pneumocystis [4]. Meta-analysis 
of the utility of the BDG test in diagnosing IFIs from serum 
demonstrated a pooled sensitivity of 80% and a specificity 
of 82% [46]. Due non-specific nature, this test is often used 
as the first stage of a diagnostic pipeline and as with many 
tests also has its limitations [6].

Another POC test that has had a significant impact on 
diagnosis of cryptococcosis has been the cryptococcal anti-
gen (CrAg) test [35••]. This has been an important advance-
ment due to the low sensitivity of culture-based methods 
coupled with the fact that cryptococcosis is the third most 
common IFI in SOT patients [47]. As with other lateral flow 
devices described above, this test is easy to perform and 
can be used on both serum and cerebral spinal fluid (CSF). 
Critically, this test displays excellent sensitivity (99.3%) 
and specificity (> 99%) when performed on serum and CSF 
enabling clinicians to either rule in or exclude this fungal 
pathogen as a cause of disease [35••, 48, 49].

As is evident from above and the sheer number of 
reviews and articles written on this subject, the diagnosis 
of IFI remains a significant challenge. This is not helped by 
absence of stand-alone tests that can be utilised to provide a 
definitive diagnosis in many cases. When combined with the 
wide variation in organ transplant types, the clinical speci-
mens used for diagnosis, and the diversity of potential causa-
tive agents coupled with the spectrum of clinical symptoms 
presented by SOT recipients, the challenge is immense. At 
present, diagnosis requires a combination of diagnostic tests 
[35••]. However, even this is not clear-cut strategy due to 

the extra costs involved in testing as well as the potential 
for introducing conflicting results further delaying the com-
mencement of antifungal therapy.

Molecular Methods

An extension of the concept of detecting evidence of fungal 
infection is the detection of fungal nucleic acids. This has 
been an extremely fertile area of research and is still devel-
oping with the use of low-cost next-generation sequencing 
(NGS). Detailed reviews of molecular tests for diagnosis of 
IFI have recently been published [50•, 51•].

The promise of polymerase chain reaction (PCR)-based 
diagnosis of IFI has made it the subject of research studies 
for over 30 years [52]. An area where PCR is well-estab-
lished for identification of moulds and yeasts is from tissue 
samples where amplification and sequencing are criteria for 
definition of proven IFI [16••]. However, this does not have 
the early detection benefits of qPCR.

It has taken extensive testing for qPCR-based diagnos-
tics to be accepted as an appropriate diagnostic strategy for 
invasive aspergillosis (IA) [16••, 18•]. IA standardisation 
was critical since each lab using qPCR was employing dif-
ferent methodologies, standards, and sample types creating 
inconsistency in the results [52, 53]. This standardisation has 
created a framework that can be applied to other IFI and in 
the development of commercial assays.

qPCR has been included in the revised EORTC/MSG 
definitions for diagnosis of IA from blood, plasma, serum, 
and BAL and is also accepted for Pneumocystis infections 
[16••]. Commercial assays available for IA [54] or in-house 
assays should follow the recommendations of the FPCRI 
[18•, 30•]. Other moulds have fewer options; there has been 
research into diagnostic assays for the Mucorales but further 
research is required [55, 56]. Diagnosis of IFI caused by 
Candida spp. is potentially easier to detect than IFI caused 
by moulds since it can grow in blood culture; there are 
several diagnostics for invasive candidiasis including com-
mercial assays [57]. An evolution of PCR detection is the 
T2Candida platform which combines target DNA amplifi-
cation and magnetic resonance; this is an automated system 
that can identify up to five Candida spp. from EDTA-blood 
samples; the initial clinical trial indicated 99.5% specificity 
and 91.1% sensitivity [58]. Further research confirmed the 
utility of the assay compared to blood culture [59]; however, 
it will require continued research to validate this platform.

The majority of diagnostic tests focus on a single spe-
cies or small groups of organisms that commonly cause IFI 
but the increasing number of fungi causing IFI means that 
panfungal approaches may be of the greatest importance for 
the future of IFI diagnosis in SOT. Development of assays 
that target greater numbers of species has been investigated 
with multiplex PCR strategies that have shown excellent 
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potential sensitivity and specificity but there is the challenge 
that these will be limited to a relatively small panel of target 
fungi [60]. There are issues of analytical specificity when 
targeting multiple fungi by PCR since there can be cross 
reactivity between assays and non-target species; this was 
apparent in efforts to develop pan-Aspergillus assays [61]. 
The use of PCR-based diagnostics presents a problem; qPCR 
is excellent at detecting minute quantities of target DNA in a 
sample but cannot provide accurate identification for a large 
number of target fungi. Using pan-fungal primers followed 
by sequencing of the qPCR product could be used to address 
this problem but would introduce time penalties associated 
with additional methodological steps. One solution to this is 
the use of high-resolution melt curves and panfungal primers 
similar to the multiplex PCR assay mentioned earlier [60]. 
A drawback with PCR-based assays is cost; a retrospective 
audit of the cost of panfungal PCR found a cost-per-diagno-
sis of AUD15,978 per year [62••]. Targeted use of molecular 
diagnostics to at-risk patient cohorts would be prudent given 
the financial implications of broad use of these methods.

A further diagnostic solution is the combination of PCR 
with mass spectrometry (MS); an assay for over 230 fungi 
was described that used the mass of PCR products linked to 
a database of expected masses to detect and identify fungal 
pathogens. The assay achieved 90.9% sensitivity and 82.3% 
specificity when tested in patient BAL specimens [63]. 
Though these values are adequate, the assay had a negative 
predictive value of 96.9%, so it may have potential to rule 
out the presence of IFI; this is the approach recommended 
for qPCR assays for IA [18•]. The use of MS for the identifi-
cation of fungal pathogens is also being developed; however, 
it is generally reliant on having fungal biomass for organism 
identification [64]. An interesting development is the use of 
MS for the detection of a fungal-specific dihexasaccharide 
(DS); this was performed as well as standard tests for galac-
tomannan and β-D-glucan, with the advantage that it could 
be used for candidiasis, aspergillosis, and Mucor mycosis 
[65•, 66]. The DS remained in circulation longer than fungal 
DNA after antifungal treatment; this could be an important 
consideration since prophylaxis and treatment have a nega-
tive effect on other molecular diagnostics.

Whole-genome sequencing in diagnosis for invasive fun-
gal disease has been covered in a previous review [67]. It has 
similar applications in samples from SOT patients allowing 
identification of the fungus, virulence factors such as anti-
fungal resistance mutations, and epidemiological analysis.

Host Factors

Another approach to diagnosis of infectious diseases is to 
look for host responses characteristic of infection. Assays 
such as QuantiFERON determine if the host has been 
exposed to a pathogen such as Mycobacterium tuberculosis 

through the production of cytokines (γ-interferon) based 
on the response to pathogen-specific antigens [68]. There 
has been a search for characteristic cytokine profiles 
indicative of IFI in at-risk patients. Initial studies of host 
response to IFI examined cytokine profiles in patients 
undergoing SCT; these looked at cytokines released into 
BAL and serum in patients with IA and those with no 
evidence of IFI [69, 70]. Increased IL-8 was identified as 
a potential biomarker for IA in BAL from at-risk patients. 
However, a further study in lung transplant patients found 
a different cytokine profile including IL-12 and IL-1RA; 
this indicates that the immune responses vary between 
SCT and SOT [71]. These studies focused on IA so other 
IFI may induce different cytokine profiles; further research 
is required before there can be cytokine-based diagnostics 
for IFI in SOT.

An indirect host factor that can help to predict the risk of 
IFI is host genetic susceptibility. There have been several 
genome-wide association studies (GWAS) to link infec-
tious diseases to genetic variants in humans. Polymorphisms 
in genes such as CARD9, TLR-4, and CXCR1 are associ-
ated with the development of IFI; CARD9 mutations have 
emerged as important in susceptibility to fungal infection 
[72••]. Further polymorphisms in TNFSF4 and MAPKAPK2 
were associated with an increased risk of IA [73]. Additional 
polymorphisms carrying a risk of IFD have been collected 
together in reviews on this topic looking at specific fungi, 
e.g. IA [74] and IFI in general [75, 76]. qPCR or genomic 
sequence screening of recipients and donors prior to SOT 
could be used to identify the presence of risk alleles, which 
would assist in patient management.

Conclusions

In the absence of definitive tests for diagnosing some of the 
most important fungal pathogens in SOT patients, there is 
a need to combine several strands of evidence to achieve a 
diagnosis. The choice of diagnostic tools will be dependent 
on the availability of expertise in some treatment centres. 
An approach that combines knowledge of the type of trans-
plant, host and donor genotyping, visualisation (CT scan 
or histopathology), antigen testing, or qPCR may yield an 
effective diagnosis.
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