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Abstract
Purpose of the Review This review summarises the characteristics of the lung mycobiome in patients with chronic respiratory
diseases and fungal lung diseases. We have also reviewed the limitations of the current methods in mycobiome studies.
Recent Findings Available studies in the impacts of the mycobiome in chronic and fungal lung diseases are scarce and compar-
ison of the available studies is hindered by heterogeneity in the sample sizes, methods and patient selection.
Summary The impact of the diversity and composition of the lung mycobiome in chronic and fungal lung diseases is poorly
understood. Most studies involve detection of fungi in respiratory samples by culture. However, such methods lack sensitivity
and the emergence of next-generation sequencing technologies is an important advance. However, differences in the sequencing
methodologies limit study comparisons. Well-designed methodological approaches and large cohort studies are needed to
evaluate the impact of the lung mycobiome in respiratory diseases.
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Introduction

Humans constantly inhale fungal spores [1]. Their small size enables
deposition in the airways with some spores even reaching the alve-
olus. In healthy people, with a normal lung function, spores are
cleared by the lung defences [2]. However, in some patients with
a long-term respiratory condition such as asthma, COPD, bronchitis
or cystic fibrosis (CF), spores can evade the lung immune response
and germinate to persist in the airways [3]. Changes in nutrient
composition in the lungs from patients with chronic respiratory

infections [4], impaired mucociliary clearance or increased mucus
secretion [4, 5] might be responsible for increased fungal burdens in
these patients. Additionally, fungal persistence in the lungs from
patientswith long-term respiratory diseases has been associatedwith
worse disease outcome and increases the risk for the development of
lethal fungal diseases such as chronic pulmonary aspergillosis [6].

The internal surface area of the human lung is approximately
the size of a tennis court (ranges from 30 to 60 m2 per lung) and
fungal spore inhalation is estimated to vary between 500 and
5000 daily [7]. This suggests that approximately one fungal
spore is deposited per 100 cm2 region of the lung per day as a
result of inhalation [8]. Ungerminated spores are likely to be
rapidly cleared by the mucociliary escalator and by resident
macrophages, and therefore, the levels of fungal spores in a
healthy lung are extremely low [5]. Colonisation begins when
spores germinate to form a stable locus of growth [9], and after
24–48 h growth a single uninucleate spore or yeast cell can
form a mycelium or dispersed yeast colony containing more
than 100 nuclei [10]. It is not clear how large a fungal commu-
nity can be supported in the healthy lung but recent results
suggest that individuals considered to have no fungal disease
can harbour as many fungi as those diagnosed with overt infec-
tion [11••, 12]. Bacterial gut microbiome studies have recently
shown dramatic impacts on wider human health [13], and so it
is crucial to understand the composition of the lung mycobiome
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with respect to fungal commensal and pathogen communities to
improve diagnosis of disease and to understand the effect such
communities may have on health in general.

Until relatively recently, our knowledge of the lung
mycobiome relied on culture-based techniques. These tech-
niques have low sensitivity are generally slow and once the
fungus has grown, a further step of species identification by
using microscopy, molecular techniques or MALDI-ToF is re-
quired [14]. The low natural levels of fungus in the lungs
coupled with the low sensitivity of culture-based techniques
resulted in an assumption that lungs contain no fungus.
Bacterial microbiome work and application of 16S sequencing
demonstrated a complex bacterial community colonises the
lungs [15]. Following this, next-generation sequencing (NGS)
studies also confirmed the presence of a healthy lung
mycobiome [16, 17••]. With NGS techniques becoming in-
creasingly accessible, there is great potential for dissecting fun-
gal species distribution and relative abundance in the lungs.
However, such methods are complex and contain multiple
stages which, without careful consideration, are prone to bias
and the introduction of error (Fig. 1a). Such issues can compro-
mise the conclusions of a mycobiome study and has limited our
knowledge of the airway mycobiome. Here, we will describe
our current knowledge on the impacts of the lung microbiome
in chronic and fungal lung diseases and critically analyse the
current methods used to study the human lung mycobiome.

The Lung Mycobiome in Health and Respiratory
Diseases

Inter-individual diversity amongst healthy individuals is very
high measured as composition and load of the respiratory
mycobiome. Ascomycota and Basidiomycota fungi are the
main phyla of fungi detected in the respiratory airways from
healthy individuals. The most abundant fungi belong to the
genera Cladosporium, Eurotium, Penicillium and Aspergillus.
Although Candida, Neosartorya, Malassezia, Hyphodontia,
Kluyveromyces and Pneumocystis have also been detected
[18]. Until 2012, Candida species were the dominant genus
identified in oral washes [16, 17••]. However, using NGS
methods, Cui et al. [19] have reported an overlapping between
the mycobiome in bronchoalveolar lavage (BAL) and oral
washes from healthy individuals. This suggests as with bacte-
ria, fungi residing in the upper respiratory tract and external
environment can enter the lower respiratory tract [20].
However, fungal species diversity in BAL is higher than in
oral cavities from healthly individuals.

The Mycobiome and Chronic Lung Diseases

LungMycobiome in AsthmaAsthma is a chronic lung condition
characterised by airway hyperresponsiveness leading to wheez-
ing, breathlessness and coughing. The disease affects over 200

million people worldwide and annually results in 400,000 deaths
[21–23]. Exposure to environmental fungal spores has been as-
sociated with worsening asthma symptoms, lung function,
hospitalisations and death. One possible explanation is that
long-term colonisation of atopic individuals by fungi causes fun-
gal sensitisation resulting in constant airway stimulation leading
to poorer asthma outcomes [24]. In a case-control study aiming
to determine the fungal diversity of induced sputum samples
from 30 asthmatic patients and 13 non-atopic controls using
18S pyrosequencing, van Woerden et al. observed samples from
asthmatic patients were significantly more diverse than samples
from atopic controls [25]. Additionally, Malassezia
pachydermatis, previously associated with atopic dermatitis,
was one of the most frequent species found in the airways
from asthmatic patients [25]. Additionally, Fraczek et al.
[11••] have described the mycobiome composition in BAL
from asthmatic patients using ITS1 Illumina sequencing.
They found levels of fungus to be highly variable between
individuals, but severe asthmatics showed the highest fungal
b u r d e n s c ompa r e d t o p a t i e n t s w i t h a l l e r g i c
bronchopulmonary aspergillosis (ABPA) or patients with
mild asthma. Remarkably, the observed differences in this
study were due to the increased level of A. fumigatus com-
plex fungi. This finding was confirmed by real-time PCR
targeting the ITS regions; however, the use of a single copy
gene to confirm the fungal burden would have been more
suitable [11••].

LungMycobiome in BronchiectasisBronchiectasis is a chronic
inflammatory lung disease characterised by an abnormal wid-
ening of one or more airways [26]. Clinical symptoms of
bronchiectasis include productive cough, fatigue, hemoptysis
and infective exacerbations. In these patients, impaired
mucociliary function causes mucus to pool in parts of the
airways promoting fungal and bacteria persistence [27, 28].
The most common species isolated from the airways from
patients with bronchitis are C. albicans (prevalence, 34%–
48%) and Aspergillus species (7–24%) [27–29]. Other
Candida species (C. parapsi losis , C. glabrata ) ,
Saccharomyces 7cerev i seae , Tr ichosporon sp . ,
Scedosporium or Penicillium have also been linked to bron-
chiectasis [27]. A recent mycobiome sequencing study report-
ed that Candida, Penicillium and Saccharomyces are com-
monly identified in both, healthy controls and patients with
bronchiectasis, while Aspergillus, Alternaria, Botrytis,
Clavispora andCryptococcuswere associated only with bron-
chiectasis [30••]. The authors described geographical differ-
ences in the bronchiectasis-associated genera, with
Aspergillus particularly relevant in samples derived from
Asia and the remaining associated with European samples.
Moreover, using species-specific qPCR, the authors identified
a significant positive correlation between the abundance of
A. terreus and exacerbations. Using immunological assays
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and other criteria which included A. terreus abundance, the
authors found 75% of patients sensitised to Aspergillus and
18% with ABPA. Additionally, the abundance of Aspergillus,
Penicillium and Cryptococcus increased with disease severity
[30••].

Lung Mycobiome in CF CF is a genetic disorder caused by a
dysfunction of the CF transmembrane conductance regulator
(CFTR) protein [31]. Absence of functional CFTR activity
leads to reduced chloride secretion and deficient fluid trans-
port by epithelial cells. This results in thick mucus secretion

which facilitates pathogen adhesion and growth [31]. In early
childhood, microbial load in the lungs of patients with CF is
undetectable by culturing methods [32]. However, as the dis-
ease progresses, the lung microbiome of patients with CF is
dominated by the bacterium Pseudomonas aeruginosa [33].
Some recent studies have reported that co-colonisation of the
airways by C. albicans or A. fumigatus with P. aeruginosa
lead to more exacerbations and decreased lung function [34,
35]. Other fungal species frequently detected in the airways
from patients with CF include Penicillium species, non-
fumigatus Aspergillus species, Scedosporium, Exophiala

Fig. 1 a Critical steps of next-generation sequencing approaches to study
the mycobiome. b Markers used for fungal speciation. Pan species
taxonomy can be estimated using ribosomal DNA markers such as
ITS1 and 2 or 18S. Correct speciation can often only be accomplished
by including tubulin and calmodulin sequences in the phylogenetic

analysis. For distinguishing between members of the same species few
markers are published; however, microsatellite markers and certain genes
such as CYP51 are known to vary between isolates and could be used in
isolate characterisation
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dermatitidis and Cladosporium species [34, 36]. A positive
correlation between community richness and patient health
has been demonstrated using NGS [37]. Several mycobiome
studies have confirmed the predominance of Candida species
in the CF mycobiome. Interestingly, two studies have
identified patient subsets which harbour mycobiomes
containing predominantly Aspergillus section fumigati [38••,
39, 40]. However, as all studies so far have used sputum, it
would be interesting to investigate if the same conclusion is
made when analysing BAL. Despite the prevalence of fungal
colonisation amongst patients with CF is 75% for yeast and up
to 37% for filamentous fungi, the number of fungal infections
in those patients is low [40, 41].

Lung Mycobiome in COPD COPD is a heterogeneous lung
condition characterised by chronic lung inflammation and air-
flow limitation [42]. Patients with COPD often suffer from
exacerbations triggered by bacterial infections due to
Streptococcus pneumoniae, Haemophilus influenza or
Moraxella catarrhalis [43]. However, the use of immunosup-
pressant in patients with COPD and the extensive use of anti-
biotics mean fungi are frequently detected in the lungs of these
patients [44], therefore suggesting the mycobiome as a poten-
tial causative effect for the development of COPD [45].

Aspergillus spp. are frequently isolated from the airways of
COPD patients during exacerbations (16.6%) [46] and follow-
up (14.1%) [47]. Interestingly, Pneumocystis jiroveccii colo-
nisation is described in one-third of severe COPD patients
leading to increased airway obstruction independent of
smoking, increased inflammation and emphysema [19, 46,
48–50]. A mycobiome sequencing study of COPD patients
during exacerbations confirmed a high abundance of
Aspergillus , Candida , Phialosimplex , Penicillium ,
Cladosporium and Eutypella [51]. This study did not identify
P. jirovecii; however, this is likely to be because the ITS1
primers used do not amplify this pathogen [11••].

Mycobiome and Fungal Lung Diseases

Our knowledge of the fungal species present in the lungs from
patients with fungal lung diseases is limited to culture-based
studies leading to an incomplete picture of the problem [52].
Although Aspergillus is frequently isolated from the airways
of at-risk patients, not all develop fungal disease. It is estimat-
ed more than 14 million people worldwide suffer from asper-
gillosis [53•].

Bronchial colonization by A. fumigatus in some patients
with asthma (2%) and CF (4%) drives the development of
ABPA [54]. This hypersensitivity reaction to A. fumigatus an-
tigens is characterised by immunoglobulin E production, eo-
sinophilia, mast cell degranulation and bronchiectasis [55].
Although A. fumigatus is the main causative agent, other taxa
such as Basidiomycota are also present [11••]. Cryptococcus

neoformans and Scedosporium apiospermum are also associ-
ated with a similar clinical disease referred to as allergic
bronchopulmonary mycoses [21].

Chronic pulmonary aspergillosis (CPA) is a slowly pro-
gressive disease caused by a persistent fungal infection of
the lungs in some patients with a previous lung disease
such as COPD, prior tuberculosis infection, sarcoidosis or
lung cancer [56]. In those patients, A. fumigatus can grow
inside pre-existing lung cavities and damage the surround-
ing parenchyma [57]. A. fumigatus is the most common
species associated with CPA although A. niger, A. flavus,
A. terreus and A. nidulans have also been implicated [58].
However, there are currently no studies comparing the
mycobiome composition between patients with CPA and
at-risk populations using NGS.

In recent years, there have been reports of a new clinical
form of aspergillosis called Aspergillus bronchitis which af-
fects 9% of patients with CF. [59, 60] In these patients,
Aspergillus grows in the upper airways and mycelia form
small masses which can be expectorated. The fungus does
not invade the lung tissue but mucosa alteration may occur.
While A. fumigatus is the most common species, A. niger,
A. terreus [60] and A. flavus can also be involved [61].

Our knowledge of the respiratory mycobiome in invasive
disease is poor despite the high associated mortality [53•].
Aspergillus colonisation of the airways is a poor prognostic
indicator of invasive disease in severely immunosuppressed
patients [61–64]. Additionally, some of those patients are fre-
quently carriers of C. albicans in the oral wash due to immu-
nosuppression [65].

Limiting Factors of Sample Processing
in Mycobiome Studies

The environments of the upper and lower respiratory tracts (URT,
LRT) differ significantly and the mycobiomes of these sites are
reported to be distinct [16, 19]. However, accurately sampling the
LRT is difficult, as samples can often be contaminated by the
URT during the process. BAL may provide the most accurate
sample type for the LRT, with the lowest chance of URT con-
tamination. However, the bronchoscopy procedure is invasive
and less commonly performed. For this reason, most mycobiome
studies to date have studied sputum samples.

The DNA extraction method is critical for mycobiome stud-
ies. Fredricks et al. [66] have demonstrated that bead beating and
enzyme-based methods are often biased towards filamentous
fungi and yeast, respectively. Therefore, it is difficult to generate
a DNA extract which accurately represents the fungal communi-
ty.Moreover, research is now beginning to simultaneously assess
the micro- and mycobiome of human body sites. Therefore, it is
vital that such analyses choose an appropriate and consistent
DNA extraction method which will provide efficient extraction
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from all cell types and comparable extraction efficiency from
different sample types. Nyugen et al. performed 16S and internal
transcribed spacer (ITS) sequencing and identified Candida as
the most predominant fungal genera in CF sputum samples [67].
However, the enzyme-based DNA extraction protocol they used
may have favoured the extraction of yeast compared to fungi.

Reproducibility in Mycobiome Research

A high person-to-person variation in mycobiome composition
has been reported. Few studies to date have analysed samples
in replicates and most only include technical replicates at the
PCR stage [37, 67]. Bittinger et al. [20] performed repeat
extractions from samples and found poor reproducibility be-
tween replicates, with instances of high abundance of an op-
erational taxonomic unit (OTU) in one replicate and absence
in another. This is likely a mycobiome specific issue as they
did not observe such variation between replicates when
performing bacterial16S sequencing of lung samples [16].
Therefore, it may be that the apparent variability of the human
mycobiome is not a true biological observation and is instead
due to the poor reproducibility of mycobiome methods. One
possible contributing factor is that DNA extraction from fungi
is more difficult, requiring mechanical disruption or enzymat-
ic lysis to break their robust cell walls. Without optimisation,
such methods can cause DNA degradation and reduce yield
and PCR efficiency [18, 68•], potentially producing an incon-
sistent fungal community from sample to sample. Inclusion of
large numbers of replicates has often been limited for financial
reasons or due to the scarcity of sample material. Sequencing
costs are now much lower and careful study design should
help to ameliorate the risks of sample to sample variation.
Further investigation into the reproducibility of mycobiome
biological and technical methods is required and future studies
should sequence replicates to gain a more accurate represen-
tation of a community within a body site.

Contamination Is Particularly Problematic
for Mycobiome Studies

Contamination has the potential to be a significant prob-
lem in mycobiome determination. It has been established
that fungal DNA can often contaminate PCR reagents
[69•] and, as fungi can constitute up to 11% of airborne
fine particles [70], they can readily contaminate samples
during preparation. Including negative controls in the ex-
periment can help to uncover such contamination; howev-
er, they are often omitted. Bittinger et al. [71] assessed
possible contamination sources when analysing the respi-
ratory mycobiome, including water, sterile swabs, lab sur-
faces and bronchoscope suction channel. Alarmingly, they
identified no significant difference between the fungal

composition of BAL and contamination controls from
healthy individuals. To further assess this finding, the au-
thors used PCR product concentrations to correct OTU
abundance. Although significantly different, the yield of
negative controls was within an order of magnitude of
BAL yield, suggesting that a considerable proportion of
OTUs identified from BAL were likely to arise from con-
tamination. They used these findings to define a global
abundance threshold over which an OTU is unlikely to
be a contaminant [71]. Such an approach may also help
to distinguish between transient organisms and colonisers
of the lung.

NGS amplicon library preparation is prone to carry-over
PCR contamination. Laboratories should consider
implementing a workflow as used in clinical laboratories (de-
scribed by the international organisation for standardisation
document 24276-2006). Such workflows include physical
separation of pre-PCR and post-PCR steps of a protocol, with
no crossover of reagents or equipment. In addition,
performing library preparation steps (particularly pre-PCR)
in a laminar flow cabinet which has been cleared of surface
DNA contamination is advised.

Another notable problem which can occur during a high-
throughput sequencing experiment is sample barcode cross-
talk. This refers to a sequence read which contains an incorrect
index derived from a different sample within the library pool
[72]. Index miss assignment can be introduced at the oligo
synthesis and processing stages, during PCR steps or even
on-board the sequencing instrument. A method to significant-
ly reduce the impact of these events is to use unique, dual
barcodes during library preparation [72].

Sequencing Methodologies

In a mycobiome workflow, amplicons are generated from
samples using primers with broad fungal specificity (see
Fig. 1a). Studies thus far have targeted ribosomal RNA genes
or the ITS regions. However, as these targets are present in
variable copy numbers in fungal genomes, it may hinder the
ability of sequencing to provide an accurate, quantitative rep-
resentation of a community [73]. For example, rDNA copy
numbers can vary 13-fold between isolates within a popula-
tion of A. fumigatus strains [74–76]. Furthermore, there can be
inter- and intra-species sequence variation which can compli-
cate data analysis and identification to the species level [75,
76]. Nevertheless, these targets are commonly used in the
literature (see Table 1), particularly ITS1, which was sug-
gested as the universal barcoding target for fungi [82]. A
few studies have analysed the accuracy of ITS1 sequencing
using mock communities and found significant bias for some
groups [81, 83, 84]. Variation in amplicon size may contribute
to such bias, as the commonly used ITS1 amplicon is known
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to contain an intron in some fungi. For example, underrepre-
sentation of Candida glabrata has been observed and is likely
due to its 420 bp intron-containing amplicon being amplified
with relatively less efficiency during PCR. In addition, primer
coverage is not complete [85, 86]. For example, one study
failed to identify Sporothrix schenckii and Rhizomucor
pusillus when using ITS1 due to a lack of primer compatibil-
ity. Lastly, species resolution using the ITS1 amplicon is poor
within some fungal groups, such as Aspergilli sections,
Fusarium and Pneumocystis [87].

Hoggard et al. assessed the use of four amplicon targets
(ITS1, ITS2, SSU and LSU) with mock communities
consisting of known members of the human mycobiota [83].
This analysis found an overrepresentation of Candida
albicans and Trichosporon dermatis with all targets. The au-
thors also analysed sinonasal samples and found the ITS tar-
gets to be the most accurate. However, there were significant
differences in the communities identified, with over 60% of
total taxa identified by only ITS1 or ITS2. A recent analysis of
mock communities of 53 fungal species, including several
known respiratory pathogens, demonstrated ITS1 to provide
a more accurate representation compared to ITS2 [81].
However, many species were under- or over-represented com-
pared to the expected community using either target. One
option is to combine an ITS target with a secondary barcode
which can provide improved resolution, such as translation
elongation factor 1-alpha and betatubulin [85](Fig. 1b).
Moreover, targeting a single copy gene may provide more
accurate quantification of a community, and there is a need
for this with respect to the diseased mycobiome. The mere
presence of a species is not suggestive of clinical relevance,
and normalisation procedures inherent in amplicon sequenc-
ing library preparation results in a loss of important fungal
burden information. Although this lack of data can be supple-
mented with qPCR analysis, this is not feasible for providing a
complete, quantitative picture of a fungal community. The
abundance corrected method introduced by Bittinger et al.
[71] moves toward gaining a more informative analysis.
Moreover, spike-in controls have been suggested as a method
to improve the accuracy of ITS sequencing data; however, the
authors note that due to the limitations of ITS, researchers
should not solely rely on read numbers to determine relative
abundance [88]. Therefore, variation in the copy number of
ribosomal RNA regions discussed earlier remains a confound-
ing factor in mycobiome studies.

Sequencing Platforms

There are now several NGS platforms which can be used for
mycobiome analysis. Motooka et al. [89] compared the
PacBio, MiSeq and IonPGM instruments when analysing
mock communities using ITS1. The authors demonstrated
the relatively poor performance of an IonPGM and

highlighted that the level of quality trimming applied to reads
can significantly alter results obtained using this instrument.
Therefore, it is particularly important for studies using this
technology to clearly report on the quality trimming applied
to data. Moreover, we have observed (unpublished data) that
the IonPGM produces truncated reads when sequencing the
ITS1 amplicon of Penicillium chrysogenum and Aspergillus
species. This may be due to a GC-rich region which hinders
polymerase progression [19]. These issues may have had
some influence on the lack of Aspergillus species identified
in respiratory mycobiome studies using this instrument [19].
Illumina sequencers have become a popular choice for
mycobiome studies (Table 1), and the particularly accurate
performance of the Illumina MiSeq has been highlighted
[89, 90]. A mycobiome protocol based on the well-
established 16S equivalent using Nextera XT indexes is now
provided by Illumina, making the approach easily accessible.
However, this protocol does not recommend introducing
linkers into primers for the initial ITS PCR as some adaptor
regions could be homologous to some ITS targets [91].

Bioinformatic Analysis

Another significant hurdle during a mycobiome study is data
analysis. Firstly, database choice is a crucial factor. There are
several publicly available databases of fungal sequences, in-
cluding UNITE and ISHAM Barcoding databases [92].
However, although often curated, they can be incomplete
and contain inconsistencies due to taxonomic reassignments.
For example, analysing mock communities using ITS1 result-
ed in over 15% of sequences being assigned as ‘unclassified’
when using the UNITE database [83]. In addition, 85% of taxa
within UNITE belong to the Dikarya, causing a bias toward
this sub-kingdomwhen performing the taxonomic assignment
of mycobiome data [18]. Secondly, the method of data analy-
sis significantly influences the community composition out-
come. The default settings of common software packages
used for mycobiome analysis (such as QIIME and Mothur)
have been found to produce inaccurate species-level represen-
tations of an in the silico mock community. The authors found
that a closed-reference QIIME analysis gave the best perfor-
mance, correctly assigning over 70% of sequences at the spe-
cies level. This still leaves room for considerable error and it is
suggested that performing manual BLAST analyses can im-
prove robustness of the classification [68•].

Conclusions

NGS studies of the respiratory mycobiome are limited and
there is significant heterogeneity in the methods used. There
are clear differences in sample type, extraction method,
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amplicon target, sequencing methodology and data analysis,
all of which introduce considerable variation. In addition,
mycobiome workflows are particularly prone to contamina-
tion and bias which calls for strict procedures that are not yet
universally adopted.

The studies performed to date indicate that fungal diversity
is higher in healthy people while Aspergillus and Candida
species are the most abundant genus in patients with chronic
respiratory diseases and fungal diseases [11••, 17••, 23, 38••,
80••]. However, there is a need for standardisation of
mycobiome methods in order to gain a more complete picture
of the fungal communities within healthy and diseased lungs.
It is important to highlight that even though fungi are present
in the airways from patients with chronic pulmonary diseases,
not all of them develop fungal disease and this might be linked
to the presence of other factors such as environmental expo-
sure, genetics or drug treatment.

Overall, mycobiome studies are clearly limited by several
factors such as (1) lack of standardisation; (2) absence of an
amplicon target that allows for species identification and ac-
curate community representation; (3) small and heterogeneous
patient study populations; and (4) the evaluation of different
samples such as oral washes, sputum or BAL.
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