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Abstract
Purpose of Review Small-molecule kinase inhibitors (SMKIs) have revolutionized the management of malignant and autoim-
mune disorders. Emerging clinical reports point towards an increased risk for invasive fungal infections (IFIs) in patients treated
with certain SMKIs. In this mini-review, we highlight representative examples of SMKIs that have been associated with or are
expected to give rise to IFIs.
Recent Findings The clinical use of the Bruton’s tyrosine kinase inhibitor ibrutinib as well as other FDA-approved SMKIs has
been associated with IFIs. The fungal infection susceptibility associated with the clinical use of certain SMKIs underscores their
detrimental effects on innate and adaptive antifungal immune responses.
Summary The unprecedented development and clinical use of SMKIs is expected to give rise to an expansion of iatrogenic
immunosuppressive factors predisposing to IFIs (and other opportunistic infections). Beyond increased clinical surveillance,
better understanding of the pathogenesis of SMKI-associated immune dysregulation should help in devising improved risk
stratification and prophylaxis strategies in vulnerable patients.

Keywords Invasive fungal infections . Small-molecule kinase inhibitors . Ibrutinib . Aspergillosis . Pneumocystis jirovecii
pneumonia . Cryptococcosis

Introduction

With ~5 million species, fungi constitute a large and diverse
eukaryotic lineage consisting of species that range from the
ecologically important saprotrophs that facilitate nutrient cy-
cling to fungi responsible for large-scale loss of amphibians
and bats (i.e., Batrachochytrium dendrobatidis, Geomyces

destructans) [1, 2]. Humans have evolved to resist infections
by most fungi; however, a small fraction of fungal pathogens
such as the dermatophytes, the commensal yeastCandida, and
environmental fungi such as the inhaled molds (primarily
Aspergillus), and Cryptococcus species are common causes
of infections in humans [3]. Infections of skin and nails by
dermatophytes and of oral and genital mucosal surfaces by
Candida species are the most common human fungal diseases
[4], accounting for an estimated ~8.6 million outpatient visits,
with an associated cost of ~$460 million per year in the USA
alone [5, 6•]. Of greater clinical concern, life-threatening in-
vasive infections by Candida, Aspergillus, Cryptococcus, and
Pneumocystis carry mortality rates that exceed 50% despite
administration of antifungal therapy, leading to > 1 million
deaths worldwide per year [4].

Fungi did not emerge as major human pathogens until the
late twentieth century [7], concurrently with the HIV/AIDS
epidemic and major advances in modern medicine that has led
to a significant expansion of patient populations with iatro-
genic immunodeficiency [8]. With the introduction of broad-
spectrum antibiotics for bacterial infections, myeloablative
chemotherapy for malignancies, glucocorticoids and other
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immunomodulatory regimens for autoimmune diseases, and
the progress in solid-organ transplantation (SOT) and hema-
topoietic stem cell transplantation (HSCT), modern medicine
succeeded to change the natural history of many previously
incurable diseases and extend the lives of millions of patients,
yet at the price of compromising innate and/or adaptive im-
mune functions [3].

More recently, the advent of precision medicine therapies
with novel small molecules targeting a variety of signaling
kinases has revolutionized the treatment of malignancies and
inflammatory diseases [9••]. However, many of these signal-
ing kinase inhibitors also target key signaling pathways in-
volved in host protection against fungi (and other pathogens)
[9••]. Indeed, clinical reports describing an increased inci-
dence of fungal infections associated with the clinical use of
small-molecule kinase inhibitors (SMKIs) are now emerging
[9••, 10••, 11••, 12••]. In light of the unprecedented rate of
development of these compounds and their use in patients
already at-risk for development of opportunistic infections, it
is anticipated that we will witness an expansion of iatrogenic
risk factors associated with invasive fungal (and other oppor-
tunistic) infections and new populations of patients with iat-
rogenic immunodeficiency in the coming years. In this mini-
review, we highlight a few characteristic examples of SMKIs
that have been associated with or are expected to give rise to
fungal disease. A detailed review of all SMKIs leading to
fungal disease and of non-fungal opportunistic infections that
arise with SMKI treatment is beyond the scope of this report.
Table 1 outlines the spectrum of reported SMKI-associated
invasive fungal infections (IFIs) in humans.

SMKIs as Novel Iatrogenic Risk Factors for IFIs

Fungi belonging to five genera (Candida, Aspergillus,
Cryptococcus, Pneumocystis, Mucorales) are responsible for
> 90% of IFIs in humans [4, 53]. The host risk factors associ-
ated with these infections vary greatly depending on the fun-
gal species. As such, the presence of implanted medical de-
vices, the use of central venous catheters, neutropenia, broad-
spectrum antibiotic use, and intra-abdominal surgery are
known predisposing factors for invasive candidiasis,
underscoring the importance of myeloid phagocytes and intact
mucosal barrier function in preventing this infection [54]. In
addition, patients with neutropenia and/or corticosteroid use in
the setting of hematological malignancies, SOT, or HSCT, and
patients with neutrophil dysfunction-associated primary im-
munodeficiencies such as chronic granulomatous disease are
at risk for aspergillosis and mucormycosis [53, 55–57]. In
contrast to the critical role of neutrophils for the control of
the aforementioned infections, quantitative and/or qualitative
defects in CD4+ T cells, such as with HIV infection, signifi-
cantly enhance the risk for infections by Cryptococcus and

Pneumocystis jirovecii [58–60]. Knowledge of these fungus-
specific immune requirements for host defense is critical in
understanding the pathogenesis and phenotypic expression of
SMKI-associated IFIs in vulnerable patients.

Ibrutinib

An increasing number of clinical reports of IFIs have recently
emerged with the use of inhibitors which target aberrantly
active signaling pathways in patients with hematological ma-
lignancies or autoimmune diseases. A prominent example
among these inhibitors is ibrutinib, a game-changing drug in
the treatment of chronic lymphocytic leukemia (CLL).
Beyond CLL, ibrutinib has also become a significant treat-
ment modality for other B cell-targeted hematologic malig-
nancies including mantle cell lymphoma, Waldenström mac-
roglobulinemia, diffuse large B cell lymphoma, and primary
central nervous system (CNS) lymphoma (PCNSL), as well as
in HSCT recipients with graft-versus-host disease [9••, 61].

Ibrutinib is a covalent inhibitor of the Bruton’s tyrosine
kinase (BTK), which is critical for B cell receptor signaling
and promotes B cell development and survival. In lympho-
mas, targeting BTK via ibrutinib leads to inhibition of pro-
survival signals and drives elimination of malignant cells [62].
Its use, however, has been associated with an increased inci-
dence of invasive infections by a broad range of opportunistic
fungi such Aspergillus, Fusarium, Mucorales, Cryptococcus,
and Pneumocystis [9••]. Strikingly, in an ibrutinib-based trial
of patients with primary CNS lymphoma (PCNSL), 39% of
treated patients developed invasive aspergillosis and 11% de-
veloped Pneumocystis jirovecii pneumonia (PCP) [12••]. In
another clinical trial involving CLL patients, ibrutinib use
led to PCP in 5% of them despite adequate CD4 counts (>
500/ul), with an estimated incidence of 2.05 cases per 100
patient years [63•]. Additional retrospective analyses at four
different clinical centers have also shown occurrence of IFIs
associated with ibrutinib use (Table 1) [10••, 11••, 13•, 15•]. In
contrast, in other settings of ibrutinib use, there has not been a
significant association with IFIs. In view of the lack of pro-
spective epidemiological studies in large cohorts of different
patient groups, the absolute risk of IFI associated with
ibrutinib is difficult to quantify. Collectively, the available
clinical data suggest that BTK may play a critical role in pro-
tection against various fungi, which becomes essential in the
setting of additional (host or iatrogenic) immunocompromis-
ing factors; however, mechanistic details of BTK-dependent
antifungal immunity remain less clear.

BTK is expressed on all the hematopoietic cell types except
for T cells and plasma cells [64]. In the case of Pneumocystis
jirovecii, as B cells have been shown to play an important role
in protection during PCP via priming of anti-Pneumocystis T
cell responses [65–67], a direct role of ibrutinib on inhibiting
B cell-targeted BTK is plausible for the development of PCP.
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Moreover, considering the central role of CD4+ T cells in
protection against PCP, an off-target inhibition of T cell-
targeted kinases such as ITK (interleukin-2-inducible T cell
kinase) by ibrutinib is also possible in driving PCP suscepti-
bility. Additionally, it is likely that BTK exerts functions on
myeloid antigen-presenting cells such as dendritic cells (DCs)
and macrophages for protective anti-Pneumocystis immunity,
given the crucial role that DCs play in CD4+ T cell priming
and that macrophages play in efficient intracellular
Pneumocystis clearance [68]. Therefore, further investigation
is required to fully understand the immunopathogenesis be-
hind PCP infection susceptibility in the context of BTK phar-
macological inhibition.

Similar to PCP, CD4+ T cells are also of central importance
for orchestrating protection against cryptococcosis, as evident
by the emergence of cryptococcal infections during the HIV/
AIDS epidemic [69]. Cryptococcosis is also prevalent in pa-
tients in other acquired immunodeficiencies that affect T cell
function such as in patients receiving SOTor HSCT, in hema-
tological malignancies, or in patients on systemic corticoste-
roid therapy [70]. Studies using mouse models of subacute or
chronic cryptococcal infections have also revealed the impor-
tant roles of monocyte-derived DCs in CD4+ T cell priming,
their skewing towards a Th1-phenotype, and consequently the
roles of Th1 cytokines in macrophage activation towards the
M1 phenotype for effective fungal clearance [71–73].
Consistently, patients with mutations in IL12 or the IL12 re-
ceptor, in CD40L, or those carrying neutralizing autoanti-
bodies against IFN-γ and granulocyte-macrophage colony-
stimulating factor (GM-CSF) have also been reported to de-
velop cryptococcosis [74], highlighting a critical role for the
cross-talk between T cells and macrophages in sterilizing
cryptococcal immunity. It is therefore possible that ibrutinib-
associated development of cryptococcosis may arise from ei-
ther off-target effects on BTK-related kinases expressed on T
cells and/or a direct effect of ibrutinib on BTK signaling on
myeloid phagocytes. Indeed, reduced phagocytosis by alveo-
lar macrophages, decreased levels of anti-Cryptococcus IgM,
and increased susceptibility to Cryptococcus infection has al-
so been reported in studies using X-linked immunodeficient
mice carrying a mutation in BTK [75]. Ultimately, it is appar-
ent that host defense against Cryptococcus requires the intri-
cate and synchronized interplay of both cell-mediated and
humoral immunity, with both myeloid phagocytes as well as
T cells and even B cells critical for clearance of the fungus
[76]. In view of BTK’s almost universal expression among
immune cells and its major role in regulating development
and multiple effector functions, direct inhibition with ibrutinib
could indeed affect susceptibility to infection andmore studies
are needed to elucidate the cell type-specific effects on
ibrutinib in inhibiting anticryptococcal host defense.

Unlike Pneumocystis and Cryptococcus, anti-Aspergillus
host defense primarily relies on myeloid phagocytes [56,

77]. Instead, cells of the lymphoid lineage are dispensable
for host protection as mice or patients lacking lymphoid cells
are not susceptible to invasive aspergillosis [56, 78••]. Owing
to the expression of BTK onmyeloid cells, inhibition of BTK-
dependent effector functions of myeloid cells by ibrutinib may
compromise anti-Aspergillus defense. Indeed, we have dem-
onstrated that myeloid phagocyte-specific conditional BTK
knockout mice are susceptible to invasive pulmonary asper-
gillosis and phenocopy the susceptibility to the infection ob-
served in global BTK-deficient mice (Desai and Zarakas et al.,
in preparation) [12••]. Furthermore, it has been shown that, in
murine and human monocyte-derived macrophages, BTK
functions downstream of Dectin-1 and TLR9 fungal sensing
to promote NFAT/NFĸB-dependent TNF production in the
setting of ex vivo challenge with A. fumigatus [79••, 80•].
NFAT signaling in myeloid phagocytes also regulates pentra-
xin production and anti-Aspergillus host defense [81].
However, the precise myeloid cellular subsets and the molec-
ular mechanisms responsible for BTK-dependent Aspergillus
clearance in vivo remain unclear and are a subject of ongoing
research investigation.

These collective data indicate a crucial role for BTK in
antifungal defense; however, patients with X-linked agamma-
globulinemia (XLA), who harbor mutations in BTK rarely
develop fungal infections. In fact, only two cases of fungal
infections have been reported in XLA patients thus far; one
with PCP and one with invasive aspergillosis [82, 83]. These
observations indicate that a constellation of predisposing fac-
tors, in addition to the acute pharmacological inhibition by
ibrutinib per se, may impact the incidence of IFIs in
ibrutinib-treated patients. Such factors include, but are not
limited to, the underlying lymphoid malignancy and its status
(active versus in remission), additional genetic predisposition
via polymorphisms in immune-related genes, pharmacogenet-
ic variation that may result in greater ibrutinib exposures, co-
administration of other pharmacological agents and their im-
pacts on the immune status, the age of the patient [84•], and
the extent of fungal exposure including the inoculum and fun-
gal strain. In addition, compensatory mechanisms may be op-
erational in XLA patients to overcome long-term, early-onset
BTK-dependent inhibition of antifungal immune effector
mechanisms, as opposed to the acute pharmacological BTK
inhibition conferred by ibrutinib. With the advent of second-
generation BTK inhibitors that are expected to have greater
specificity for BTK over other non-BTK kinases, it will be
important to carefully define the incidence of IFIs relative to
that of ibrutinib.

Ruxolitinib

Ruxolitinib, an inhibitor of Janus-associated kinases (JAK) 1
and 2, was initially approved by the FDA in 2011 for the
treatment of myelofibrosis and was later approved for
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polycythemia vera in 2014 [85]. The pathogenesis of myelo-
fibrosis involves dysregulation of signaling through JAK1/2-
signal transducer and activator of transcription (STAT) path-
ways, leading to reactive bonemarrow fibrosis, splenomegaly,
extramedullary hematopoiesis, and increased risk for leuke-
mia progression and decreased survival [86–88].
Ruxolitinib-mediated JAK1/2 inhibition has shown marked
and durable clinical benefits in terms of reductions in spleno-
megaly and disease-related symptoms [89–92].

In the initial randomized clinical trials, ruxolitinib treat-
ment exerted hematological side effects, mainly dose-related
anemia, thrombocytopenia, and neutropenia [90, 93], while
data on infections were not initially systematically captured
[89, 90, 94–96], with the exception of a signal for herpes
zoster virus infections [94]. Since ruxolitinib came into the
market, multiple case reports have surfaced detailing infec-
tious complications caused by viruses and bacteria [34,
96–103]. As outlined in Table 1, reports of opportunistic fun-
gal infections have also emerged with ruxolitinib (and other
JAK/STAT inhibitor) use.

Given the prominent role of JAK/STAT signaling down-
stream of diverse cytokine receptors, increasing evidence sug-
gests that ruxolitinib-dependent JAK1/2 inhibition exerts im-
munosuppressive effects [104], leading to enhanced suscepti-
bility to infection. In the case of fungal infections, the impor-
tance of JAK-STAT signaling downstream of type I–III inter-
ferons and other cytokines in host immune defense is begin-
ning to unravel. For example, in neutrophils, cell-intrinsic
STAT1 activation via IFN-λ/IFNLR1 signaling leads to reac-
tive oxygen species production for efficient Aspergillus clear-
ance [78••]. Additionally,C. neoformans-dependent transcrip-
tional activation of JAK/STAT signaling in monocytes has
been reported [105]. Furthermore, given the central role of
JAK-STAT signaling in T cell and macrophage physiology
[106] and effector functions [107•], direct ruxolitinib-derived
functional impairment of the T cell-macrophage cross-talk
leading to cryptococcosis and PCP is likely. More research
is required to elucidate the detrimental antifungal immune
effects conferred by ruxolitinib and other JAK-STAT inhibi-
tors leading to opportunistic (including fungal) infections. In
addition, expanded use of JAK/STAT inhibitors in patients
with additional immunosuppressive factors (e.g., transplant
recipients) could result in higher number of IFIs.

Sorafenib

Sorafenib is an oral multi-kinase inhibitor of cell surface tyro-
sine kinase receptors and intracellular serine/threonine kinases
in the RAS/mitogen-activated protein kinase (MAPK) cas-
cade. Sorafenib was approved by the FDA for the treatment
of advanced renal cell carcinoma in 2005, unresectable hepa-
tocellular carcinoma in 2007, and metastatic differentiated
thyroid cancer in 2013 [108–110]. By blocking the activity

of Raf-1, BRAF and kinases in the RAS/ extracellular
signal-regulated kinase (ERK), and mitogen-activated
kinase/ERK (RAS/RAF/MEK/ERK) signaling pathway, so-
rafenib inhibits tumor proliferation and survival and induces
tumor cell apoptosis [109–111]. In addition, sorafenib inhibits
angiogenesis through vascular endothelial growth factor re-
ceptor (VEGFR) 1, 2, and 3; platelet-derived growth factor
receptor β (PDGFR-β); and other tyrosine kinases
[109–111]. Currently, multiple ongoing clinical trials are ex-
amining the therapeutic potential of sorafenib for a plethora of
cancers (clinicaltrials.gov). Potential beneficial outcomes of
sorafenib in the treatment of acute myelogenous leukemia
[112, 113] and salivary tumors have also been reported [38].

Adverse events in sorafenib-treated patients are predomi-
nantly gastrointestinal, constitutional, or dermatologic in na-
ture, including diarrhea, weight loss, and hand–foot skin reac-
tions [109]. More recently, cases of sorafenib-induced acute
interstitial pneumonia [114] and other cutaneous side effects
were reported [115] [116]. As summarized in Table 1, IFIs
have been associated with the use of sorafenib, including three
cases with invasive aspergillosis [28, 38–40]. Notably, two
cases appeared in the absence of concurrent immunosuppres-
sive treatment with chemotherapy or corticosteroids within the
last month prior to the fungal infection diagnosis, implicating
sorafenib alone for the increased susceptibility of infection
[28, 38]. Furthermore, sorafenib-treated patients were report-
ed to develop mucocutaneous fungal infections caused by
Candida and Rhodotorula mucilaginosa yeasts [117, 118].
In the context of acute myeloid leukemia treated with sorafe-
nib, fungal lung nodules and fungal pneumonia have also been
reported [112, 113].

Multiple immune modulating functions of sorafenib can
potentially account for the increased risk for mucosal fungal
disease and IFIs. The RAS associated with diabetes (RAD)/
MAPK/ERK signaling pathway, a major target of sorafenib, is
important for antifungal effector functions in phagocytes
against fungal species [119, 120]. In addition, ERK signaling
regulates killing of Aspergillus by macrophages independent-
ly of TLR signaling [119]. Moreover, by interfering with
phosphoinositide 3-kinase (PI3), MAP kinases and NF-kB
signaling, sorafenib inhibits DC function by inducing apopto-
sis, and by impairing antigen presentation, it results in de-
creased T cell responses, which may underlie the mucosal
fungal susceptibility [121]. In addition, RAF-dependent acti-
vation of JAK/STAT signaling may also be inhibited by soraf-
enib [122], with potential negative effects on antifungal im-
munity, as mentioned above.

Fostamatinib

Fostamatinib is an oral spleen tyrosine kinase (Syk) inhibitor
developed for the treatment of immune thrombocytopenic
purpura (ITP), autoimmune hemolytic anemia (AHA), and
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IgA nephropathy. It was recently approved by the FDA for the
treatment of adult treatment-refractory ITP in 2018, as it was
shown to inhibit platelet destruction and achieve durable clin-
ical responses [123, 124]. Syk is a principal regulatory kinase
that acts downstream of multiple fungal-sensing pattern rec-
ognition receptors of the C-type lectin receptor family [77].
Upon activation, Syk-dependent signaling engages the adap-
tor caspase recruitment domain family member 9 (CARD9),
which assembles with B cell CLL/lymphoma 10 (BCL10) and
mucosa-associated lymphoid tissue lymphoma translocation
protein 1 (MALT1) to relay downstream antifungal responses,
ultimately leading to the induction of ERK and NF-kB and the
production of inflammatory mediators such as IL-6, IL-12,
GM-CSF, TNFa, and IL-1β [77].

Patients with inherited CARD9 deficiency develop spe-
cific and severe susceptibility to fungal infections [125•].
Specifically, CARD9-deficient patients suffer from spon-
taneous fungal infections, predominantly localized to the
oral mucosa, central nervous system (CNS), bone, and
subcutaneous tissues, caused by Candida, Aspergillus,
Exophiala, Phialophora, and other phaeohyphomycetes
[125•]. The mechanisms of Syk-CARD9-dependent anti-
fungal immunity are now being elucidated. In the CNS,
CARD9-dependent signaling is necessary for protective
neutrophil recruitment via mechanisms that relate to in-
duction of protective factors within the CNS, not
neutrophil-intrinsic survival or chemotaxis [126••]. We
recently showed that the secreted fungal secreted toxin
candidalysin acts on brain-resident microglia, in a
CARD9-dependent manner to induce transcriptional acti-
vation and inflammasome-dependent production of IL-1β,
which in turn drives microglial CXCL1 production to re-
cruit protective CXCR2+ neutrophils in the Candida-in-
fected brain [127••]. Indeed, CARD9-deficient patients
have absent CXCL1 in the Candida-infected cerebrospi-
nal fluid and do not mobilize neutrophils in the fungal-
infected CNS [126••]. Additional detrimental effects of
CARD9 deficiency on neutrophil effector function include
a selective defect in killing of unopsonized Candida yeast
forms, which may also contribute to the patient fungal
susceptibility, by compromising the function of the few
neutrophils that traffic into the infected CNS [128].

CARD9-deficient patients were also reported to devel-
op extrapulmonary aspergillosis, associated with a defect
in neutrophil accumulation in the infected tissue [129•].
CARD9-dependent induction of IL-17 may underlie the
susceptibility to mucocutaneous fungal disease [130].
Thus, owing to the central role of Syk-CARD9 signaling
in antifungal host defense, careful surveillance of
fostamatinib-treated patients for the development of fun-
gal disease is warranted. So far, a case of vaginal yeast
infection in a fostamatinib-treated woman was described
[41]. There are currently 44 clinical trials of fostamatinib

treatment registered in clinicaltrials.gov, including in the
management of conditions that already predispose patients
to fungal disease (e.g., leukemia, graft-versus-host dis-
ease). Besides the potential direct effects of fostamatinib
in compromising antifungal immune responses, neutrope-
nia can occur in a small proportion of fostamatinib-treated
patients, further increasing the risk for fungal infections
[124]. Data from the ongoing clinical trials and post-
market surveillance will shed light on the degree by
which fostamatinib treatment in humans may pose a risk
of increased susceptibility to IFIs, as it would be predicted
based on the inherited CARD9 deficiency.

Conclusions

A recent surge in the development and clinical use of
SMKIs has undoubtedly changed the treatment paradigm
of serious, often fatal, human diseases. Some of these
molecules can also target critical immune surveillance
pathways, creating a permissive environment for fungi
(and other opportunistic pathogens) to cause disease.
With the expanding indications and the unprecedented
rate of development of these compounds, new populations
of patients with predicted or unpredicted iatrogenic immu-
nosuppression may develop, requiring increased clinical
surveillance for opportunistic infections and timely
reporting. Real-time epidemiological data and case-
control studies to identify the true risk of individual
SMKIs for IFIs in the real world, out of the setting of
selected patients participating in phase II/III trials, are
missing and are urgently needed. More research into the
physiological antifungal effector signaling pathways and
the detrimental effects that SMKIs have on the innate and
adaptive immune system should allow for better risk strat-
ification and prophylaxis of susceptible patients. Finally,
there is an unmet need for development of functional im-
mune assays that will allow for an estimate of the net state
of immunodeficiency of the individual patient who is a
candidate for or is receiving SMKI therapy.
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