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Abstract
Purpose of Review The purpose of this review is to give an overview of recent findings on antifungal resistance in Aspergillus
fumigatus (the major causative agent of aspergillosis) and sibling Aspergillus species, which can be hidden agents of
aspergillosis.
Recent Findings Azole resistance by Cyp51A mutation in A. fumigatus is a growing problem worldwide. The resistance can
occur in patients or in the environment. The former occurs by drug selection in the host, inducingmutations in Cyp51A. The latter
is characterized by a tandem repeat in the promoter region of cyp51A gene and mutation(s) in Cyp51A. Environmental resistant
strains are prevailing rapidly and globally. Moreover, efflux pump and biofilm formation are closely related with antifungal
resistance of A. fumigatus. Finally, sibling species of Aspergillus are described with regard to antifungal resistance.
Summary Environmental azole-resistant strains have newly emerged and been dispersed globally, and continuous survey and
countermeasures are urgently needed against these strains. Although the contributions of Cyp51A and efflux pumps to antifungal
resistance are becoming clear, other resistance mechanisms remain unclear. Further investigations including genome compari-
sons will help to clarify the novel resistant mechanisms and to develop countermeasures or novel antifungal drugs against
resistant strains of A. fumigatus and other Aspergillus species that have low susceptibility to antifungal therapeutics.
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Introduction

Aspergillosis and candidiasis are the most common invasive
fungal infections found worldwide [1–4, 5•]. The prognosis of
aspergillosis continues to be sub-optimal and in chronic pul-
monary aspergillosis, which is fairly common in Japan, the 5-

year survival rate is approximately 50–60%. The causative
agents are Aspergillus spp., which are commonly found in
the environment and grow there saprophytically. The most
common causative agent of aspergillosis is Aspergillus
fumigatus [2, 3, 6–8]. Although A. fumigatus is not prevalent
in the air, its characteristics, for example, spore size and easy
dispersion of spores, confer advantage in infection. Secondary
causative agents of aspergillosis are A. flavus, A. niger, and A.
terreus [2, 3, 7]. Under macroscopic and microscopic obser-
vation, these species can be differentiated from A. fumigatus.
Recently, sibling Aspergillus species have been recognized as
causative agents of aspergillosis by sequencing-based identi-
fication methods [9–14]. For instance, in Aspergillus section
Fumigati, several cryptic species such as A. lentulus, A. felis,
and A. udagawae, which resemble A. fumigatus, have been
often misidentified as A. fumigatus in the past, and their clin-
ical significance overlooked [13, 15].

Antifungals have been developed for the treatment of as-
pergillosis and are currently available in three antifungal clas-
ses: polyene (amphotericin B), azoles (voriconazole (VRCZ),
itraconazole (ITCZ), isavuconazole, and posaconazole), and
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echinocandins (micafungin, caspofungin, and anidulafungin).
Among these, azoles are the most commonly used to treat
aspergillosis. Some azoles, not medical azoles, have been used
as agricultural fungicides.

Antifungal resistance is a growing problem worldwide.
Drug resistance inCandida spp. and Aspergillus spp. has been
intensively analyzed [16]. Major antimicrobial resistance
mechanisms are roughly classified into four types [17]: (1)
modifications of the antimicrobial molecule, (2) decreasing
penetration or active exportation of the antimicrobial com-
pounds, (3) modification of drug target protein/enzyme, and
(4) global cell adaptation. It is thought that biofilm is a global
cell adaptation, resulting in antimicrobial resistance. For anti-
fungal resistance, efflux pumps and target alteration have been
characterized among fungi although modification of antifun-
gal compounds by fungi has never been reported. A. fumigatus
is recognized as a pathogenic fungus that forms biofilms.

As genomic and transcriptomic analyses forward our un-
derstanding of the characteristics of Aspergillus species, some
molecular mechanisms of antifungal resistance, as well as
other phenotypes, have been disclosed [18, 19]. The genome
sequence ofA. fumigatuswas determined in 2005 [20], as well
as that of A. oryzae, which is an important microbe for fer-
mentation [21] and A. nidulans, an important model organism.
The genome sequences of A. flavus, A. niger, and A. terreus
have also been determined [22–24]. Genome sequences of
several sibling species, such as A. lentulus [25] and A.
udagawae [26], have also recently been determined.

In this review, we describe recent findings on antifungal
resistance in causative agents of aspergillosis: A. fumigatus
and non-fumigatus Aspergillus; especially azole resistance
by Cyp51A alteration, drug resistance related with efflux
pumps, biofilm formation of A. fumigatus, and low suscepti-
bility of non-fumigatus Aspergillus, including sibling species.

Azole Resistance in Aspergillus fumigatus
by the Mutation and Increased Expression of Cyp51A

Azole resistance of A. fumigatus, a growing problem world-
wide, occurs after long azole exposure in a patient (patient
route) or in the environment (environmental route) [27–30].
In the patient route, the causative A. fumigatus strain is sus-
ceptible before entering the host. During treatment with
azoles, the exposure in a host induces mutation(s) in the ge-
nome, resulting in azole resistance [31–34]. For instance, ami-
no acid substitution(s) in lanosterol-14-α-demethylase
Cyp51A, which is the major target of azole antifungals, ap-
pears during azole treatment. Hagiwara et al. reported the
acquisition of ITCZ resistance in a patient [32], who presented
with an aspergilloma and treated with ITCZ for 449 days.
Isolates before ITCZ treatment were not resistant to azoles.
However, after ITCZ treatment, the isolate possessed a
P216L mutation in Cyp51A and was resistant to ITCZ

(minimum inhibitory concentration (MIC) 4 μg/mL). In other
studies, the acquisition of a G448Smutation after VRCZ treat-
ment and the acquisition of G54E or G54W substitution after
ITCZ in each patient have been reported in Cyp51A of A.
fumigatus [33, 34].

Via the environmental route, A. fumigatus acquire azole
resistance in the environment. Although it remains unclear
how the environmental-resistant strain appeared, it is widely
accepted that the selection with agricultural fungicides might
induce azole resistance. In contrast to the patient route, the
resistant strains possess limited sets of amino acid substitu-
tion(s) in Cyp51A and a tandem repeat (TR) in the cyp51A
promoter region, mainly TR34/L98H and TR46/Y121F/
T289A. The TR34/L98H type of resistant strains has been
initially reported as isolates from across the Netherlands be-
tween 2002 and 2006. Thereafter, isolation cases from Italy
and the Netherlands in 1998 were reported [35•, 36]. TR-
type strains have been reported not only in European coun-
tries but also in the Middle East, South Asia, and East Asia.
Recently, in Japan, a TR46/Y121F/T289A strain [37] and a
TR34/L98H strain [38] have been isolated from patients.
Moreover, a TR34/L98H strain has been isolated from the
environment in Japan [39]. The short tandem repeat pattern
of the TR34/L98H isolate was close to the patterns of over-
seas isolates harboring TR34/L98H, but not Japanese azole-
susceptible isolates [38, 39], indicating that the isolate was
introduced from overseas into Japan. The route how TR-
type strain was brought to Japan remains unknown. Spores
might adhere to individuals or imported items because A.
fumigatus could be found in soil worldwide or it may be
airborne, because spores of A. fumigatus are easily dis-
persed. Dunne et al. isolated azole-resistant A. fumigatus
from imported plant bulbs [40••], suggesting that transporta-
tion of items associated with soil is a route for intercountry
transfer of the resistant strains.

It is thought that most of the mutations in the coding se-
quence directly affect the structure and binding of azoles to
Cyp51A. For example, 54th and 220th residues are located at
the mouth of the binding pocket, suggesting that those substi-
tutions affect the drug entering in and binding to the pocket.
The 448th residue is located behind heme cofactor, suggesting
that the substitutions have the potential to distort the position
of heme [41]. Although the 98th residue of Cyp51A is far
from the catalytic pocket, by in silico analysis, the binding
stability to azoles was lowered by the substitution from leu-
cine to histidine [41].

The tandem or triple repeat found in the environmental
strains increased the expression of Cyp51A [42, 43••] and
was included in the binding region of a positive regulator,
SrbA [44••], suggesting that the TR contributes to azole resis-
tance by the increase of its expression. Zhang et al. [43••]
report a possible role of sexual reproduction in the emergence
of triple repeat.
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As an azole resistancemechanism, Cyp51A upregulation is
also reported [45, 46]. As shown in Fig. 1, cyp51A regulation
is becoming clear. As well as acquisition of tandem or triple
repeat in the cyp51A promoter region, a transposon insertion
in the promoter was reported in a clinical isolate, suggesting
that the insertion might be responsible for increased expres-
sion of cyp51A [45]. Camps et al. identified HapE mutation
P88L as the mutation responsible for azole resistance [46].
HapE is a subunit of the CCAAT-binding transcription factor
complex, which is important for the repression of cyp51A
expression [44••]. P88L mutation in HapE could not interact
with the cyp51A promoter region, resulting in increased ex-
pression of cyp51A [44••]. Another important transcription
factor, SrbA, interacted with the cyp51A promoter and in-
duced cyp51A expression [44••, 47•]. An srbA disruptant de-
creased cyp51A expression, resulting in azole hypersensitivity
[44••, 47•]. Notably, the hypersensitivity resulting from the
deletion of the srbA gene was shown even in the TR46/
Y121F/T289A strain [47•]. AtrR, a Zn2-Cys6 type transcrip-
tion factor, also interacts with cyp51A promoter and regulates
cyp51A expression [48••]. High-level expression induced by
azole or constitutive expression of cyp51B, a paralogue of
cyp51A, has been reported in azole-resistant clinical isolates
of A. fumigatus [49].

Contribution of Efflux Pumps to Drug Resistance
in A. fumigatus

Efflux pumps contribute to drug resistance in microbes, in-
cluding fungi, especially by overexpression. In Candida
albicans, ATP-binding cassette (ABC) transporters, CDR1
[50] and CDR2 [51], and a major facilitator superfamily

(MFS) protein MDR1 (BENr) [52] are well characterized in
the contribution to azole resistance. The contribution of some
efflux pumps to azole resistance in A. fumigatus has also been
described. Fraczek et al. [53] and Paul et al. [54] show that an
ABC transporter, Cdr1B, is associated with azole resistance in
A. fumigatus. MdrA, an MFS protein in A. fumigatus, is de-
scribed as a potential protein conferring azole resistance [55].
Recently, Hagiwara et al. elucidated the regulation of cdr1B
expression as well as cyp51A by AtrR [48••]. AtrR is a Zn2-
Cys6 type transcription factor in Aspergillus spp. atrR
disruptant showed hypersusceptibility to azoles and decreased
expression of cdr1B and cyp51A. AtrR bound to cdr1B and
cyp51A promoters, indicating the direct regulation of their
expression.

Biofilm Formation and Antifungal Resistance
in A. fumigatus

Biofilm formation is a major mechanism in fungal resistance
to antimicrobial agents. C. albicans is a well-known biofilm
former among fungi (in a recent study reviewed by Cavalheiro
and Teixeira [56]). The molecular mechanism underlying bio-
film formation and the relationship between biofilm formation
and antifungal resistance have been extensively investigated
in C. albicans [56–58].

A. fumigatus, although less well known, is also recognized
as a biofilm former [59–64].A. fumigatus forms a biofilmwith
an extracellular matrix (ECM) in vitro [59, 63–66] and in vivo
[67].Mowat et al. [59] and Seidler et al. [62] developed simple
biofilm models of A. fumigatus in which antifungals against
the biofilm were less effective than against planktonic cells.
Fatal bovine serum and fetuin A (a serum glycoprotein) found

Fig. 1 The regulation of cyp51A
expression.CBC,CCAAT-binding
transcription factor
complex;TR,tandem repeat.
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in a patient’s fungus ball was found to promote biofilm for-
mation by A. fumigatus [64]. Biofilms formed in vitro also
conferred resistance to antifungals [68].

Several mechanisms, adherence [69], ECM formation [70],
and efflux pump expression [71], have been suggested to re-
duce the efficacy of antifungals in Candida biofilm. In A.
fumigatus biofilm, efflux pump expression has been relatively
well-characterized compared with other mechanisms [65, 72,
73]. Transcriptome analyses show that ABC and MFS trans-
porters are upregulated in A. fumigatus biofilms [65, 72].
Rajendran showed that MIC of VRCZ was reduced by treat-
ment with an efflux pump inhibitor and the expression of an
MFS protein was induced by the exposure of VRCZ [73],
strongly suggesting that transporters have a pivotal role in
antifungal resistance of A. fumigatus biofilm. The ECM pro-
duced by A. fumigatus has a putative role in antifungal resis-
tance in the biofilm. In C. albicans biofilms, β-1,3-glucans
have a putative role in antifungal resistance, because plank-
tonic C. albicans’ susceptibility to fluconazole was signifi-
cantly reduced by the addition of laminarin and soluble β-
1,3-glucan, as well as adding ECMs to C. albicans biofilms
[70]. The ECM in A. fumigatus biofilms is mainly composed
of galactosaminogalactan, galactomannan, and α-1,3-glucans
[63, 67]. β-1,3-Glucan, chitin, and polygalactosamine were
not detected in a model of A. fumigatus ECM in vivo [63].
Although soluble β-1,3-glucan was detected at tens of nano-
grams per milliliter in a supernatant of A. fumigatus biofilm
[64], the role in antifungal resistance remains unclear.

Antifungal Resistance in Aspergillus Species Including
Sibling Species

As described above, A. fumigatus is the major causative agent
of aspergillosis. Other Aspergillus species, such as A. flavus,
A. niger, and A. terreus, are also recognized as causative
agents of aspergillosis. Recently, sibling species, for example,
A. lentulus, A. udagawae, A. felis (resembling A. fumigatus)
and A. tubingensis (resembling A. niger), have been newly
recognized as causative agents of aspergillosis. It is notewor-
thy that MIC distributions of some species are higher than
those of A . fumigatus. As shown by FILPOP and
TRANSNET studies, strains resistant to antifungals among
non-fumigatus Aspergillus species are more frequently found
among A. fumigatus [13, 15, 74]. A case report of aspergillosis
due to A. lentulus has been published, which showed low
sensitivity of the isolate to antifungals (2 mg/L for VRCZ,
4 mg/L for amphotericin B) [75]. A. felis, an emerging agent
of aspergillosis in humans and animals, is a novel species in
Aspergillus section Fumigati [10]. In a report by Barrs et al.,
MIC of VRCZ against 3 of 13 A. felis strains was 4 mg/L [10].
A. tubingensis is recognized as a major causative agent among
Aspergillus section Nigri [13, 15]. Hashimoto and colleagues
reported that environmental strains and clinical isolates of

Aspergillus section Nigri showed low susceptibility to azoles
[76]: 79.5 and 89.7% of A. tubingensis strains showed ITCZ
and VRCZ MICs above 2 mg/L, respectively [76]. In our
study, five of the eight clinical isolates of A. tubingensis
showed ITCZ and/or VRCZ MICs ≥ 2 mg/L (unpublished
data). In contrast, all nine of our isolates of A. niger showed
ITCZ and VRCZ MICs < 2 mg/L, suggesting that most A.
tubingensis isolates are intrinsically resistant or less sensitive
to azoles.

The natural resistant mechanisms among sibling species of
Aspergillus remain mostly unknown. Some of the resistant
strains showed the increase of cyp51A gene expression [76];
other mechanisms, however, might be hidden. Next-
generation sequencing and genome comparison analyses will
help to disclose new intrinsic resistant mechanisms in sibling
species.

Conclusions

Perspectives

TheWorld Health Organization released a Global Action Plan
on antimicrobial resistance in 2015. The importance of under-
standing antimicrobial resistance and countermeasures has
been increasing because new resistance mechanisms are
emerging and spreading globally. Antifungal resistance in
pathogenic yeasts and fungi is also emerging and spreading.
C. auris [77], a non-albicans Candida not described in this
review, is also recognized as an emerging pathogen [78], and
the type strain is susceptible to azoles and 5-flucytosine [77].
The species, however, is now recognized as a multidrug-
resistant yeast [79]. Along with antifungal stewardship, con-
tinuous drug susceptibility testing of clinical and environmen-
tal isolates is needed to detect, track, and prevent the emer-
gence and spread of resistant lineages. Besides Cyp51A and
efflux pumps, other players such as Hsp90 [80] contribute to
antifungal resistance. However, many factors involved in
azole resistance remain to be identified. Further analysis, in-
cluding genome analysis, and deeper understanding of anti-
fungal resistance mechanisms will facilitate the development
of new antifungals against less susceptible and resistant
strains.
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