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Abstract
Purpose of Review Transplant patients are at high risk for
invasive pulmonary aspergillosis, and the associated mortality
is high. The purpose of this study is to review the pathogenesis
of invasive pulmonary aspergillosis (IPA) in transplant
patients.
Recent Findings The pathogenesis of aspergillosis is multi-
factorial and results from a complex interplay between the
pathogen and host. It is well recognized that Aspergillus
causes IPA in immunocompromised patients. Recent studies
have shown that Aspergillus might also cause diseases likely
attributed to an unmodulated immune response in certain
transplant recipients such as bronchopulmonary aspergillosis
or bronchiolitis obliterans syndrome in lung transplant
recipients.
Summary This review focuses on two crucial axes of the dam-
age response framework applicable to aspergillosis: (1)
Aspergillus virulence attributes that enable it to survive and
proliferate in the host (thermotolerance, stress and hypoxic
response, secretion of secondary metabolites) and (2) host
response with specific focus on innate immunity and
angiogenesis.

Keywords Invasive pulmonary aspergillosis . Aspergillus
pathogenesis . Damage response framework . Transplant
recipients

Introduction

Aspergillus species are ubiquitous, saprophytic fungi which
live in decaying vegetation and are found in water, soil, dust,
and food. They produce small hydrophobic asexual spores or
conidia that are dispersed easily in the air, and are able to
survive broad range of harsh environmental conditions [1].
Although these conidia are frequently inhaled by humans in
hundreds, the majority of the individuals do not typically de-
velop diseases. Indeed, Aspergillus has been considered an
“opportunistic pathogen” that does not possess classical viru-
lence factors [2], and harms only immunocompromised host.
However, it has increasingly been recognized that the clinical
spectrum and severity of aspergillosis are determined by the
degree of host damage resulting from the interaction between
Aspergillus and the host [3]. On one hand, in patients with
weak immune function, the damage of invasive aspergillosis
(IA) is mediated by the pathogen, resulting from proliferation
and invasion of fungal elements leading to host tissue destruc-
tion and infarction. On the other hand, in patients with strong
immune response, the damage is primarily mediated by an
unmodulated immune response, resulting in allergic sinus or
bronchopulmonary aspergillosis [3].

Over the last few decades, the incidence of IA is on the rise
due to exponential increase in the number of transplantation
[4••]. In this review, we will discuss the pathogenesis, epidemi-
ology, and clinical spectrum of pulmonary aspergillosis (IPA)
among transplant recipients.
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Pathogenesis

Out of nearly 200 known species of Aspergillus, approx-
imately 20 species are known to cause human diseases.
The primary route of infection with Aspergillus is via
inhalation of airborne fungal spores called conidia, and
their deposition in the lower respiratory tract. The vast
majority of infections are caused by Aspergillus
fumigatus, Aspergillus flavus, Aspergillus niger, and
Aspergillus terreus, followed by other rare species such
as Aspergillus nidulans and Aspergillus calidoustus.
A. fumigatus is by far the most common cause of asper-
gillosis. Although the relative abundance of A. fumigatus
conidia may partially explain for its success as pathogen,
this is not universally true as there are several studies
which found A. fumigatus to be less prevalent than other
Aspergillus species in the environment [5–7]. In one
study, A. niger and A. fumigatus accounted for 56 and
0.3% of air isolates, respectively, whereas A. fumigatus
was the dominant isolate (44%) recovered from patients
compared to A. niger (17%) [5]. It is likely that, by virtue
of smaller size, the conidia of A. fumigatus (2.0–3.5 μm)
and A. terreus (2.0–2.5 μm) can reach lower airways and
alveoli more readily than larger conidia of A. flavus (3–
6 μm) and A. niger (4–5 μm). Indeed, the conidial size
might explain the fact that A. fumigatus and A. terreus
mostly cause invasive pulmonary aspergillosis (IPA),
whereas A. flavus and A. niger are mainly implicated in
paranasal sinusitis and otitis [8–10]. Besides conidial size,
several virulence attributes enable A. fumigatus to adapt,
survive, and proliferate in the host. For example,
A. fumigatus is more thermotolerant than other
Aspergillus spp., and this ability to grow and germinate
at higher temperatures correlates with its pathogenicity
[11]. Higher temperature also induces stress response
genes, which in turn confer additional survival benefits
in A. fumigatus. Other putative virulence factors include
cell wall composition and structure, nutritional scaveng-
ing mechanism, elaboration of extracellular proteases, and
excretion of secondary metabolites [12].

The first defense mechanisms against inhaled Aspergillus
spores are mucociliary apparatus and anatomical and mechan-
ical barriers in the airways. Despite these measures, conidia of
≤2 μm in size are still able to reach terminal airways and
alveoli, where they encounter epithelial lining comprising of
respiratory epithelial cells (types I and II), alveolar macro-
phages, interstitial fibroblasts, and endothelial cells. Alveolar
macrophages, the first line of innate immunity, phagocytose
and kill the conidia. They also activate pro-inflammatory re-
sponse that recruits neutrophils which in turn kill Aspergillus
hyphae that escape the intracellular killing by alveolar macro-
phages. Epithelial cells secrete soluble antimicrobial peptides
(AMP), defensins, lysozyme, and lactoferrin, that play a direct

role in airway defense [13–16]. Corticosteroid therapy and
high salt concentration in the airways of cystic fibrosis (CF)
patients can eliminate the effect of the AMPs, favoring the
colonization and subsequent invasion in the susceptible pa-
tients [16, 17]. Type II pneumocytes, in addition to phagocy-
tosing and killing conidia, secrete surfactant proteins (SP-A,
SP-D, and SP-C type lectins) to the alveolar space; these op-
sonins potentiate the phagocytic effect of alveolar macro-
phages and neutrophils [18–22]. Interestingly, a small fraction
of internalized conidia not only survives within the type II
pneumocytes but also inhibits the apoptosis of the host cells
[23, 24]. The dual ability of Aspergillus conidia of evading the
host’s immune surveillance and at the same time maintaining
the integrity of host cell not only is an important virulence trait
of Aspergillus but also serves as a potential reservoir for it to
cause invasive diseases in appropriate clinical setting.

Conidia germinate into germ tubes and hyphae when
exposed to the favorable environment of the airway with
optimum moisture and temperature. Germinated conidia
and hyphae produce secondary metabolites and myco-
toxins, e.g., gliotoxin, fumagillin, and helvolic acid,
which damage the integrity of epithelial lining and
mucociliary apparatus, and enhance hyphae penetration
of epithelial cells and subsequently vascular endothelial
cells [25–27]. Angioinvasion, the central feature of path-
ogenesis of IPA, is associated with endothelial injury,
tissue factor expression and activation of platelets, and
coagulation cascade [12, 28, 29•, 30]. Collectively, these
processes impair vascular perfusion of Aspergillus-infect-
ed lung tissue, resulting in a necrotic core, where fungal
hyphae proliferate abundantly, surrounded by peripheral
zone of host immune response cells [31]. The adaptation
to hypoxia, an important virulence trait, helps Aspergillus
to survive in hypoxic environment [32].

Although both Aspergillus conidia and hyphae can induce
endothelial cell endocytosis, the interaction between
Aspergillus hyphae and endothelial cells is paramount for
angioinvasion. Two different mechanisms of angioinvasion
occur in IPA [33]. The most common mechanism is the local
invasion of Aspergillus hyphae from the lungs into the
alveolar-capillary barrier, then onto the blood vessels
(abluminal penetration). The less common mechanism occurs
in severely immunocompromised hosts, where the blood-
circulating hyphal fragments lodge onto the peripheral capil-
lary beds, penetrate the endothelial cell, and establish infection
at a distant site (luminal penetration) [33]. In vitro study
showed that luminal penetration by hyphae results in greater
endothelial cell damage compare to abluminal penetration. On
the other hand, abluminal invasion, as primarily happens in
the lungs, is associated with greater induction of inflammatory
response (such as cytokines, leukocyte adhesion molecules)
and thrombosis (tissue factors) than luminal invasion.
Altogether, the differences in the endothelial cell responses
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to luminal versus abluminal infection may indicate significant
differences in the pathogenesis of hematogenously dissemi-
nated versus locally invasive aspergillosis [33, 34].

Faced with tissue injury, the host cells trigger angiogenesis
to facilitate tissue healing and regeneration via the release of
vascular endothelial growth factor (VEGF), basic fibroblast
growth factor (bFGF), and other growth factors [34]. In re-
sponse, A. fumigatus secretes gliotoxin and other secondary
metabolites to counteract the angiogenic activity, thus leading
to further tissue hypoxia and necrosis, and limiting the pene-
tration of immune cells and antifungal drugs into the site of
infection [12, 28, 29•, 30]; this process results in abscess for-
mation, which is the hallmark of late stage of IA. Interestingly,
recent in vivo experiment showed that treatment with VEGF
and fibroblast growth factor (FGF) improved survival of neu-
tropenic mice with IPA, and both growth factors acted syner-
gistically with the antifungal drug amphotericin B to decrease
pulmonary fungal burden enhance survival [29•, 35•].

Epidemiology and Risk Factors for Aspergillosis
in Specific Transplant Population

Over the past few decades, there has been significant change
in the epidemiology of IA. This is mainly attributed to large
number of immunosuppressed population including transplant
recipients. The patients at risk for IA include those with leu-
kemia and other hematologic disorders, hematopoietic stem
cell transplantation (HSCT) recipients, solid organ transplant
(SOT) recipients, neutropenic patients, and patients with im-
munosuppressive therapy for other immunologic conditions
[36, 37]. Although there is significant advances in prophy-
lactic antifungal regimens, early diagnosis, and newer antifun-
gal medications, the mortality rate of IA remains as high as
50–60% in highest risk groups [36].

Hematologic Malignancy and HSCT Recipients

Invasive fungal infection occurs more frequently in patients
with acute leukemia compared to chronic leukemia, lympho-
ma, and multiple myeloma [38]. Aspergillus accounts for 40–
70% of all invasive fungal diseases in allogenic HSCT recip-
ients [39••]. Recent studies showed that the 12-month cumu-
lative incidence for IA among allogenic HSCT patients ranges
from 1.6 to 3%, with overall 1-year survival of 25.4%
[40–44]. In the last decades, the shortening of pre-
engraftment neutropenia due largely to use of peripheral blood
stem cells, growth factor, and nomyeloablative conditioning
regimen decreased the incidence of early post-HSCT IA
(≤40 days). However, increased age of transplant recipients,
the use of alternate source of transplant (cord blood, T cell-
depleted, or CD34-selected stem cell product), chronic graft
versus host diseases (GVHD) and its prolonged treatment with

corticosteroids, prolonged neutropenia, concomitant cyto-
megalovirus diseases, and respiratory virus infections have
dramatically shifted the incidence of IA among HSCT recip-
ients towards late-onset (41–180 days) or very late-onset (>
180 days) post-transplant [45–48]. Themortality rate in HSCT
recipients with IA ranges from 66.6 to 80% and does not differ
for those with early- versus late-onset post-transplant infec-
tions [49]. In HSCT, specific polymorphisms also contribute
to host’s inability to contain invasive diseases once
A. fumigatus conidia gain entry to the lungs (Table 1) [50–52].

Solid Organ Transplant Recipients

The Transplant-Associated Infection Surveillance Network
(TRANSNET) demonstrates that the overall 12-month cumu-
lative incidence of IA among SOT recipients was 0.65%,
which was most common among lung transplant recipients,
followed by heart and liver transplant recipients [53, 54••,
55–57]. However, IA can occur 3 years or more post-
transplant [58]. The specific risk factors for IA among specific
organ transplant recipients are summarized in Table 1. The
mortality rate of IA in SOT recipients ranges from 20 to
66% [59].

Lung Transplant Recipients

During lung harvest, the bronchial artery is disrupted, and the
donor’s bronchus has to rely on the collateral perfusion.
Revascularization of the donor lung by the recipient’s bron-
chial arteries may take several weeks. Thus, during early post-
transplant, the bronchial anastomosis is devascularized lead-
ing to airway ischemia which in turn provides a fertile envi-
ronment for saprophytic conidia to proliferate. For these rea-
sons, it is not surprising that the rate of Aspergillus coloniza-
tion is high in lung transplant recipients, ranging from 22 to
85%, and highest within 6 months of transplant [60•].
Colonization itself, irrespective of infection, increases patient
mortality at 5 years [61]. Furthermore, colonization with
small-sized spores of Aspergillus has recently been linked to
bronchiolitis obliterans syndrome (BOS), a common compli-
cation after lung transplantation that leads to progressive allo-
graft dysfunction [62•, 63]. The exact mechanism by which
Aspergillus colonization leads to BOS is not known. It is
speculated that Aspergillus spores, similar to other infectious
agents previously linked to BOS, like Cytomegalovirus and
respiratory viruses, trigger the host response that leads to in-
nate immunity activation that ultimately induces BOS [64].

The overall incidence of IA among lung transplant recipi-
ents ranges from 4 to 23% [65], a rate as high as the reported
rate among donor-mismatched allogeneic HSCT recipients
[44, 53]. This emphasizes the highest risk status of IA among
lung transplant recipients despite widespread use of antifungal
prophylaxis. Lung transplant recipients possess unique risk
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factors that predispose them to IA. First, they typically remain
on higher dose and longer duration of immunosuppression
than other organ transplant. Second, the continuous exposure
of the lungs to the environment and inhaled pathogens,
coupled with blunted cough response and impaired ciliary
function, contributes to susceptibility to IA. The overall

mortality is 20%, ranging from 23 to 29% in patients with
tracheobronchitis to as high as 67 to 82% in patients with
IPA [49, 66].

Heart Transplant Recipients

Aspergillosis is the most commonly occurring invasive myco-
ses among heart transplant recipients, with incidence ranging
from 1 to 14% [53, 67]. The data on IA among heart transplant
recipients are relatively scarce. In a recent descriptive study of
479 consecutive heart transplant recipients from 1988 to 2011
in a single institution in Spain, the overall incidence of IAwas
6.5%. Incidence decreased from 8.7% in the period 1988 to
2000 to 3.5% thereafter. The overall mortality was 61%, and
the attributable mortality was 36%, with significant decrease
from 46% in the historical cohort (1988–2000) to 0% in the
present cohort. The proportion of early episodes (<90 days) in
the historical cohort and present cohort was 71 and 86%, re-
spectively [68]. Recovery of Aspergillus from respiratory tract
cultures, particularly of A. fumigatus, is highly predictive of
IA in heart transplant recipients [49, 69]. Other risk factors
include reoperation, CMV diseases, post-transplant hemodial-
ysis, and an episode of IA in the institutions’ heart transplant
program 2 months pre- or post-transplant date (Table 1) [49,
69].

Liver Transplant Recipients

IA has been reported in 1–9.2% of liver transplant recipients.
Although IA in general occurs within the first month of trans-
plant, the timing can range from a few weeks to years after
[57, 70]. More recent data, however, documented later-onset
IA (>90 days), which is largely due to advanced surgical tech-
nique, delayed onset of post-transplant risk factors of IA (e.g.,
CMV infection), and allograft rejection due to hepatitis C
virus (HCV) infection [57]. The other risk factors for IA in-
clude retransplantation and renal replacement therapy which
confer 30-fold and 15- to 25-fold higher risk of IA, respective-
ly (Table 1) [49, 57, 71, 72]. The overall mortality rate of IA is
60 to 80%, particularly among those undergoing
retransplantation within 30 days of primary transplant.

Renal Transplant Recipients

The risk of IA after renal transplant is relatively lower com-
pared to that of other SOT recipients, with incidence rate
<0.5% in most of the studies and ranging up to 4% [54••,
55, 73, 74]. Approximately 45% of IA cases were diagnosed
within the first 6 months post-transplant. The 6- and 12-week
survival rates were 68.8 and 60.7%, respectively, and 22.1%
of survivors experienced graft loss.

Table 1 Risk factors for invasive aspergillosis in transplant recipients

General risk factors
• Neutropenia
• Prolonged corticosteroid treatment
• Post-transplant rejection and augmented immunosuppressive therapy
• Older age of transplant recipients
• Renal dysfunction
• CMV infections
• Respiratory viral infections

Hematologic malignancies and HSCT recipients
• Hematological malignancy
▪ Acute (compared to chronic) leukemia
▪ Myelodysplasia
▪ Aplastic anemia

• Myeloablative conditioning regimen
▪ Alemtuzumab

• Transplant type
▪ Allogenic (compared to autologous) transplant
▪ Bone marrow (compared to peripheral stem cell) transplant
▪ Cord blood transplant
▪ T cell-depleted or CD34-selected stem cell product
▪ HLA-mismatched transplant

• Graft versus host diseases and its treatment
▪ Corticosteroids (>0.5 mg/kg/day)
▪ Infliximab

• Polymorphisms
▪ Toll-like receptor 4 polymorphism
▪ Dectin-1 Y238X heterozygosity
▪ Deficiency of soluble pattern-recognition receptor, pentraxin 3 (PTX3)

• Others
▪ CMV disease

Lung transplant recipients
• Pre- and post-transplant Aspergillus colonization
• Single lung transplant
• Early ischemia at the anastomosis and airway stenosis
• Hypogammaglobulinemia (IgG < 400 mg/dl)
• Uncontrolled CMV infection
• Augmentation of immunosuppression

Heart transplant recipients
• Reoperation
• Isolation of Aspergillus from respiratory culture
• Post-transplant hemodialysis
• An episode of IA in the heart transplant institute 2 months pre- or
post-transplant date

Liver transplant
• Retransplantation
• Transplantation for fulminant hepatic failure
• Renal replacement therapy
• Allograft dysfunction
• Recurrent HCV infection
• Human herpes virus 6 (HHV 6) infection

Renal transplant
• Allograft dysfunction
▪ Requiring renal replacement therapy

• Delayed graft function
• Pre-transplant diagnosis of chronic obstructive pulmonary diseases
(COPD)

• Occurrence of post-transplant pneumonia
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Clinical Spectrum of Aspergillosis

The clinical manifestations and outcome of Aspergillus infec-
tion are governed by the host- and pathogen-mediated events.
Aspergillus is categorized as a class 4 pathogen according to
the damage response framework, meaning that the damage to
the host can occur at the extremes of both weak and strong
immune response (Table 2) [3]. Indeed, the spectrum of clin-
ical diseases varies from asymptomatic colonization in immu-
nocompetent or minimally immunosuppressed individuals to
symptomatic and, at times, severe diseases, in individuals with
depressed immune response (Table 2). In the other extreme of
the immune system, an exuberant and dysregulated host re-
sponse to Aspergillus antigens could result in hypersensitivity
reactions in the form of allergic sinus and bronchopulmonary
aspergillosis (ABPA).

Invasive Pulmonary Aspergillosis

Invasive pulmonary aspergillosis (IPA) is associated with a
high mortality rate in immunocompromised patients, particu-
larly those with hematologic malignancies, those with

chemotherapy-induced prolonged and profound neutropenia,
and those recipients of HSCT or SOT. However, neutropenic
and HSCT patients are afflicted with different defects in
host immune system than non-neutropenic SOT patients.
Histopathology of IPA in neutropenic and HSCT patients is
characterized by abundant Aspergillus hyphae invading blood
vessels and tissue, thrombosis, coagulative necrosis, intra-
alveolar hemorrhage, a scant mononuclear inflammatory in-
filtrate, and eventual dissemination [75, 76]. In contrast, in
non-neutropenic non-HSCT patients receiving corticoste-
roids, IPA is characterized by few hyphal elements with co-
nidia in various stages of germination, neutrophilic and mono-
cytic infiltrates, areas of pneumonia and bronchiolitis, inflam-
matory necrosis, and scant intra-alveolar hemorrhage [75–78].

The histopathologic patterns of IPA correlate with the com-
puted tomography (CT) findings in these cohorts of patients.
In neutropenic or HSCT patients, the common CT findings of
IPA are macronodules of >1 cm in diameter, which are present
in ~94% of patients [79]. Nodules are characteristic of
angioinvasion (Fig. 1a), a form of IPA that typically occurs
in neutropenic or severely immunocompromised patients.
Nodules may be surrounded by a halo sign (Fig. 1b) which

Table 2 Classification of clinical manifestations of aspergillosis according to damage response framework

Aspergillus coloniza�on

Host response Severe 
immunosuppression

Non-neutropenic, 
chronic steroid
administra�on +/
other 
immunosuppression

Normal immunity to 
mild 
immunosuppression ,
with broncho-
pulmonary disordersa

Hyperac�ve 
immunity

Examples of 
clinical 
scenerios

Neutropenia
Acute leukemia
HSCT

Solid organ transplant Cavitary lung disease
Bronchiectasis
Cys�c fibrosis

- Asthma
- Exposure to 
Aspergillus

Histopathology 
and 
host damage

- High fungal burden, 
angioinvasion, intra-
alveolar hemorrhage
- Severe �ssue 
destruc�on

- Few hyphae and 
conidia, neutrophilic 
and monocy�c 
infiltrates
- Areas of pneumonia 
and bronchioli�s

Coloniza�on - Allergic
- Chronic 
immune 
ac�va�on

Examples of 
clinical en��es

- IPA
- ITBA, 
pseudomembranous 

- IPA
- ATB, 
- ITBA, ulcera�ve

- Aspergilloma
- Airway coloniza�on

- ABPA
- ? BOS

Treatment An�fungal
Surgical resec�on

An�fungal
Surgical resec�on

None if asymptoma�c Steroid and 
an�fungal

−

a Patients with pre-existing pulmonary cavities, cystic fibrosis, and other bronchopulmonary disorders like chronic obstructive pulmonary diseases and
bronchiectasis are prone to Aspergillus colonization. However, these conditions alone are not sufficient to cause IPA, unless there is an epithelial damage
or the patient receives immunosuppressive therapy
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is an area of ground glass opacity of non-inflammatory alve-
olar edema or hemorrhage [80]. In severely immunocompro-
mised hosts, the halo sign is highly suggestive of infection due
to angioinvasive fungi. Among SOT patients, the most com-
mon CT manifestations of IPA are ground glass opacification,
macronodules, peribronchial consolidation, and mass-like
consolidation (Fig. 1c, d) [81]; halo and air-crescent signs
are uncommon.

Invasive Aspergillus Tracheobronchitis

Invasive Aspergillus tracheobronchitis (IATB), an infrequent
form of IA, is most common in lung transplant recipients,
although it is seen in other immunocompromised patients
(SOTand HSCT recipients and neutropenic patients) and rare-
ly in immunocompetent patients [82, 83]. Based on broncho-
scopic and pathologic appearance, three different forms of
IATB have been described: Aspergillus tracheobronchitis
(AT), ulcerative form, and pseudomembranous form [83].
AT is characterized by bronchial and/or tracheal inflammation
and excessive mucus production without invasion of the bron-
chial mucosa on biopsy [83]. The ulcerative form is charac-
terized by the presence of ulceration or plaque-like lesions in
the bronchial walls (endobronchial aspergillosis) and most
commonly associated with lung transplant recipients
[83–85]. The pseudomembranous form is the most severe

form of IATB and affects severely immunocompromised or
neutropenic pat ients . They are character ized by
pseudomembranes comprising of sloughing off necrotic epi-
thelium and endobronchial mucous overlying the mucosal
surface of the airways [83]. These three forms may overlap,
or represent a progressive evolution of the disease. TBA may
also progress to invasive and disseminated disease.

IATB affects 4–5% of lung transplant recipients, and the
incidence is highest in the first year after transplantation [83,
85]. Virtually all cases were diagnosed within the first 3 to
6 months after transplantation with a medial interval of
2.7 months. Recently, IATB has been described to be associ-
ated with the use of belatacept, a CD-28 co-stimulation
blocker, in patient with double lung transplant [86•]. TBA
can be asymptomatic and detected only by surveillance bron-
choscopy. Reported clinical findings have included fever,
cough, wheezing, and hemoptysis. The overall outcome of
IATB in lung transplant recipients is better than that of IPA,
and treatment includes systemic and inhaled antifungal thera-
py along with bronchoscopic debridement, balloon dilatation,
laser treatment, and/or stent placement.

Allergic Bronchopulmonary Aspergillosis

Allergic bronchopulmonary aspergillosis (ABPA) is charac-
terized by type I hypersensitivity reaction to Aspergillus

Fig. 1 CT scan manifestations of
IPA among transplant recipients.
The most common CT findings of
IPA among the neutropenic
patients and HSCT patients are
macronodules (a). Nodules may
be surrounded by a halo sign (b).
Among SOT patients, the most
common CT manifestations of
IPA are macronodules (a) and
peribronchial infiltrates or
consolidations (c, d)
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antigens in particular individual with clinical symptoms of
asthma or COPD [31]. ABPA has been reported to develop
after lung transplant in two patients with cystic fibrosis [87,
88]. Recently, there have been several case reports describing
a syndrome suggestive of ABPA following lung transplant
[89, 90]. These patients presented with features of obstruction
of the central bronchi, obstructive patterns on their pulmonary
function tests, and subsequently Aspergillus recovery from
mucus plugs. Although radiological changes characteristic of
ABPA, such as consolidation, segmental or lobar atelectasis,
and shadows from mucous impaction, were notably absent in
most of the patients, some patients had elevated Aspergillus-
specific IgE level and positive intradermal Aspergillus skin
test [89, 90]. Immunosuppression in these patients may ac-
count for varying presentation [89]. All these patients
responded to increased dose of corticosteroid and antifungal
therapy.

Conclusion

Aspergillus is the second most common cause of invasive
mycoses in transplant recipients. Despite recent advances
in diagnostics and treatment modalities, the mortality of IA
remains high. The interaction of host immunity and
Aspergillus is complex and determines the clinical spec-
trum. Even among the immunocompromised population,
the disease process is heterogeneous and depends on the
deficiency of specific immune components of the host.
Recent studies also enlighten the role of genetic compo-
nents in the pathogenesis of IA. It is apparent that innate
immunity has an important role in containment of infec-
tion. Furthermore, Aspergillus is able to develop mecha-
nisms to evade host immune response. With advent of
newer, potent immunosuppressive drugs, humanized
monoclonal antibodies, and novel anticancer therapy, the
population susceptible to IA is expanding. Thus, newer
studies in pathogenesis of IA are of utmost importance. A
major challenge in moving forward is how to harness the
recent developments for newer therapeutic interventions.
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