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Abstract
In this note, we prove that for a complete noncompact three-dimensional Rieman-
nian manifold with bounded sectional curvature, if it has uniformly positive scalar
curvature, then there is a uniform lower bound on the injectivity radius.
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1 Introduction

A well-known problem posed by Yau (see Problem Section in [29]) is how to classify
3-manifolds admitting complete Riemannian metrics of positive scalar curvature up to
diffeomorphism. In the case of closed 3-manifolds, it has been resolved bySchoen–Yau
[24], Gromov–Lawson [16], Hamilton [17] and Perelman [20–22]. But for open 3-
manifolds, this problem remainswide open. Some recent progressweremade under the
assumption of uniformly positive scalar curvature. Particularly, Chang–Weinberger–
Yu [5] classified complete 3-manifolds with uniformly positive scalar curvature and
finitely generated fundamental group. Bessieres–Besson–Maillot [2] classified com-
plete 3-manifolds with uniformly positive scalar curvature and bounded geometry.
Here the bounded geometry means the sectional curvature is bounded and the injec-
tivity radius is bounded away from zero.

In this note,wemake further progress towardsYau’s problemand show that bounded
curvature and uniformly positive scalar curvature on complete open 3-manifolds are
enough to derive a lower bound on the injectivity radius.

Theorem 1.1 Assume (M3, g) is a smooth three-dimensional complete noncompact
Riemannian manifold. If the sectional curvature is bounded by |Kg| ≤ � and the
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scalar curvature is bounded below by Rg ≥ 1, then the injectivity radius has a uniform
lower bound. In other words, there exists a uniform positive number r0 = r0(�) > 0,
depending only on �, such that for any x ∈ M, the injectivity radius at x is bounded
from below by r0.

This theorem together with the main result in [2] gives the following corollary.

Corollary 1.2 Let M be a connected orientable 3-manifold which carries a complete
metric of bounded sectional curvature and uniformly positive scalar curvature, then
there is a collectionF of spherical space forms with finitely many diffeomorphim type
such that M is a (possibly infinite) connected sum of copies of S2 × S1 with members
of F .

Remark 1.1 Jian Wang recently claimed a result on classification of open three mani-
folds carrying uniformly positive scalar curvature in [27].

Also, we have the following improvement of the main result in [3].

Corollary 1.3 Themoduli space of complete Riemannianmetrics of bounded curvature
and uniformly positive scalar curvature on an orientable 3-manifold is path-connected
or empty.

By regularity results in [1], the main theorem implies the following compactness
result.

Corollary 1.4 For any sequence of pointed complete noncompact Riemannian 3-
manifolds (M3

i , gi , pi ) with uniformly bounded curvature and uniformly positive
scalar curvature, up to a subsequence, they converge locally in C1,α-topology for
any 0 < α < 1.

Another corollary is that 3-manifolds with uniformly positive scalar curvature and
bounded curvature have at least linear volume growth.

Corollary 1.5 Assume (M3, g) is a complete noncompact 3-manifold satisfying that
the sectional curvature is bounded by |Kg| ≤ � and the scalar curvature is bounded
below by Rg ≥ 1. Then there is a positive constant c = c(�) > 0, depending only on
�, such that for any point p ∈ M,

lim inf
r→∞

Volg B(p, r)

r
≥ c.

Proof For any r � 1, and q ∈ ∂B(p, r), choose a geodesic segment γ : [0, r ] →
M between p and q. Let r0 be the lower bound on the injectivity radius given in
Theorem 1.1. Choose a partition of the interval [0, r ] by 0 = t0 < t1 < · · · < tk+1 ≤ r
with ti+1 = ti + 3r0 for 0 ≤ i ≤ k and r < tk+1 + 3r0. Then the geodesic balls
{B(γ (ti ), r0)}ki=0 are disjoint and all included in B(p, r). Note that k ≥ r

3r0
.

For any point x ∈ M , since the injective radius at x is bigger than r0 and Kg ≤ �, for
r1 := 1

2 min{r0, π√
�

}, we have a polar coordinate such that g = dr2 + gr in B(x, r1).
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By the Hessian comparison theorem [23, Chapter 6, Corollary 2.4], in B(x, r1) we
have

(gr (∂i , ∂ j )) ≥ 1

�
sin2

√
�r · I2

as 2 × 2-matrix, where ∂i = d expx (∂θi ) for a coordinate {θi } of the unit sphere in
TxM . Denote by g� = dr2 + 1

�
sin2

√
�rds22 the standard metric on the 3-sphere

with constant curvature �. So

Volg B(x, r0) ≥ Volg B(x, r1) ≥ Volg� B(r1) =: v�(r0).

Together with above arguments, we have

Volg B(p, r) ≥
k∑

i=0

Volg B(γ (ti ), r0) ≥ r · v�(r0)

3r0
.

It’s done by taking c = v�(r0)
3r0

. 	

Remark 1.2 Yau [28] proved that any complete noncompact manifolds with nonnega-
tive Ricci curvature have at least linear volume growth. In general, the volume growth
is not uniform. Munteanu–Wang [18] proved that for a complete 3-manifold with
nonnegative Ricci curvature and uniformly positive scalar curvature, the volume has
at most uniform linear growth. So in the case of a complete noncompact 3-manifold
(M3, g)with 0 ≤ Ricg ≤ � and Rg ≥ 1, the volume of a geodesic ball has uniformly
linear growth. That is, for some uniform constants c1, c2 > 0, as r → ∞,

c1r ≤ Volg B(p, r) ≤ c2r .

Now we explain the ideas in the proof of the main theorem and give some remarks.
The proof is by contradiction, and involves two main ingredients: the structure of
collapsing manifolds with bounded curvature, which has been intensively studied, see
works [8–11]; and Gromov’s width inequality [14, 15].

Let us assume by contradiction that, up to a double covering of orientations, there
is a sequence of three dimensional complete noncompact orientable Riemannian man-
ifolds (M3

i , gi , pi ) with uniformly bounded curvature and uniformly positive scalar
curvature, which, up to a subsequence, converges to a complete Alexandrov space
(X , d, o) in the pointed Gromov-Hausdorff topology, and the injectivity radius inj(pi )
at pi converges to 0.

By our assumptions, the sequence is collapsing and X can’t be a point, i.e. dim X =
1 or 2. The theory of collapsing with bounded curvature gives a symmetric structure
around sufficiently collapsed part. Roughly speaking, if dim X = 2, there is a wide
Seifert fibered spacewith boundary around pi inMi , see Proposition 2.2; if dim X = 1,
there is a long torical band in Mi , see Proposition 2.3. The noncompact assumption
ensures that we can find a Seifert fibered space with any arbitrary width or a torical
band whose length is large enough.
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But Gromov’s width inequality tells us that uniformly positive scalar curvature on
a Riemannian band imposes a uniform upper bound on the width, except that there
are spheres separating this band, see Propositions 3.2 and 3.3. When dim X = 1, this
immediately gives a contradiction. When dim X = 2, note that a Seifert fibered space
with boundary is S2-irreducible, so spheres can not separate the wide Seifert fibered
space in the sufficiently collapsed part, which also gives a contradiction (see Sect. 3
for more details).

Remark 1.3 The following example shows that the assumption on the upper bound of
sectional curvature is necessary.

Example 1.1 Consider the warped product metric dr2 + ρ(r)2ds22 on R × S2. Then
the scalar curvature is given by

R = −4ρ̈

ρ
+ 2 − 2ρ̇2

ρ2 ,

and the sectional curvature K is between the values − ρ̈
ρ
,
1−ρ̇2

ρ2 . See [23] for computa-
tions. Define

ρ(r) =
{
f (r), |r | ≤ R0
1
|r | , |r | ≥ R0,

where

f (r) = 3

8R5
0

r4 − 5

4R3
0

r2 + 15

8R0
.

Then ρ is a positive C2-function, and for a fixed R0 ≥ 100, it’s easy to see that
R > 1, and K ≥ − C

R2
0
. A smooth modification of ρ gives a metric with sectional

curvature bounded from below and uniformly positive scalar curvature on R × S2.
But the injectivity radius converges to 0 and the curvature upper bound blows up as
|r | → ∞.

Remark 1.4 The main theorem still holds for closed 3-manifolds with big diameter
by the same proof. That is, there exists a uniform constant D0 > 0, coming from

Gromov’s width inequality (e.g. D0 = 4
√
6π
3 + 1), such that if (M3, g) is a closed

3-manifold satisfying |Kg| ≤ �, Rg ≥ 1 and diam(M, g) ≥ D0, then there exists a
uniform positive number r0 = r0(�) depending only on � such that the injectivity
radius of (M, g) is bounded from below by r0.

In general, if we drop the diameter assumption, there exists closed 3-manifolds
with uniformly bounded sectional curvature and uniformly positive scalar curvature,
but arbitrarily small injectivity radius. Some examples are given by product metrics
ds22 + ε2ds21 on S2 × S1 with small ε > 0, and collapsing Berger 3-spheres.
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Remark 1.5 The main result does not hold in higher dimensions. For example, we can
consider S2 ×R

2 with product metric g = gS2 + gR2 , where (R2, gR2) is a complete
metric with bounded curvature, and the injectivity radius goes to zero at infinity in
R
2, and (S2, gS2) is a constant curvature metric. We can choose gS2 with big enough

curvature such that g has uniformly positive scalar curvature and bounded sectional
curvature, but the injectivity radius does not have a uniform lower bound.

2 Collapsing with Bounded Curvature

In this section, following [10, 11], we talk about the structure around sufficiently
collapsing part of three manifolds with bounded curvature.

Assume there is a sequence of complete noncompact orientable three manifolds
(Mi , gi , pi ) with sectional curvature uniformly bounded |Kgi | ≤ � and injectivity
radius inj(pi ) satisfying

lim
i→∞ inj(pi ) = 0.

By Cheeger-Gromov compactness theorem [6, 13], we can take a convergent sub-
sequence in the pointed Gromov-Hausdorff topology. For simplicity, we abuse the
notation and write (Mi , di , pi ) for a convergent subsequence, that is

(Mi , di , pi ) → (X , d, o),

where (X , d) is a complete Alexandrov space with curvature bounded below and
0 ≤ dim X ≤ 3. By results in [6, 7], the assumption that inj(pi ) → 0 implies the
sequence is collapsing, i.e. dim X < 3; the noncompactness assumption implies that
dim X > 0. Namely, dim X = 1 or 2.

Proposition 2.1 If dim X = 2, then (X , d) is a Riemannian orbifoldwithout boundary.

Remark 2.1 If X has bounded diameter and comes from codimension one collapsing,
then the fact that it is aRiemannian orbifoldwas known in the literature, seeProposition
11.5 in [12], and Proposition 8.1 in [26]. See also [19] for the general collapsing case.
For reader’s convenience, we reproduce the proof and add some details here.

Proof For any q0 ∈ X , take qi ∈ Mi with qi → q0. For a small ball B(0, ε) ⊂ R
3 ∼=

Tqi Mi with center 0 and a very small radius ε 
 π√
�
, consider the pull back metrics

exp∗
qi gi , which we still denote by gi , then (B(0, ε), gi ) has a uniform lower bound

on injectivity radius. By Cheeger-Gromov compactness theorem, up to a subsequence
we have a metric g0 on B(0, ε) such that

(B(0, ε), gi ) → (B(0, ε), g0)

in C1,α-topology. Take Gi to be the local fundamental group

Gi = G(qi , ε) := {γ : γ is a geodesic loop at qi with length < ε}.
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Then Gi is a finite set and acts on B(0, ε) by free local isometries and B(0, ε)/Gi =
B(qi , ε). The local group structure (Gi , ∗) is defined as follows: for γ1, γ2, γ3 ∈ Gi ,
we put γ1 ∗ γ2 = γ3 if γ1 ∗ γ2 is well defined and coincides with γ3, where γ1 ∗ γ2
is the Gromov’s product defined as the unique geodesic loop in the short homotopy
class of γ1 · γ2, see [4] for more details. Put the set of maps

L = {γ ∈ C(B(0, ε), B(0, 2ε)) : 1
2

≤ d0(γ (x), γ (y))

d0(x, y)
≤ 2, ∀x, y ∈ B(0, ε)},

where d0 is the metric associated to g0. Note that by Arzelà-Ascoli theorem, L is a
compact set. For large enough i , we haveGi ⊂ L . By taking a subsequence, there exists
a closed subset G ⊂ L such that Gi → G, and G acts isometrically on (B(0, ε), g0).
It was proved in Section 3 of [11] that G is a Lie group germ, which means that G is
locally isomorphic to a Lie group and its action on B(0, ε) is smooth.

Then passing to a subsequence, there is an equivariant convergent sequence

(B(0, ε), gi ,Gi ) → (B(0, ε), g0,G),

and

(B(0, ε), g0)/G = B(q0, ε).

In the case dim X = 2, we know dimG = 1.
Let H0 be the isotropy sub-local group of G at 0, that is

H0 := {γ ∈ G : γ (0) = 0}.

Then H0 is in fact a group. To show this fact, for any γ1, γ2 ∈ H0, it’s enough to prove
γ1 ∗ γ2 is well defined and lies in H0. Assume γ i

1 → γ1, γ
i
2 → γ2 with γ i

1 , γ
i
2 ∈ Gi .

Since d0(γ1(0), 0) = d0(γ2(0), 0) = 0, we know di (γ i
1(0), 0), di (γ

i
2(0), 0) → 0. In

particular, the total length of γ i
1 and γ i

2 is smaller than ε for all large i . Then γ i
1 ∗ γ i

2 is
well defined and lies inGi . Moreover, di (γ i

1 ∗γ i
2(0), 0) ≤ di (γ i

1(0), 0)+di (γ i
2(0), 0).

By taking a subsequence, γ i
1 ∗ γ i

2 → γ1 ∗ γ2 ∈ H0.
Let H ′

0,G
′ be the identity components of H0,G respectively. From Section 5 of

[11], we know for ε small enough, B(q0, ε) is isometric to B(0, ε)/H0G ′. 	

Claim H0 is discrete.

Proof of the claim We argue it by contradiction and assume that H0 is not discrete.
Then H0 contains a one-dimensional Lie group germ. Since dimG = 1, H0 and G
has the same Lie group germ at identity. Hence there exists a small neighborhood U
of the identity e in G such that ∀α ∈ U , α(0) = 0.

Notice that there is a small δ0 > 0 such that {α ∈ G : d0(0, α(0)) ≤ δ0} ⊂ H0. If
not, then there exist δ j → 0 and a sequence α j ∈ G such that d0(0, α j (0)) ≤ δ j but
α j (0) �= 0. Then up to a subsequence, assume α j → α∞ ∈ G. So α∞(0) = 0. Note
α−1∞ · α j ∈ U for large j implies α−1∞ · α j (0) = 0. So α j (0) = α∞(α−1∞ · α j (0)) =
α∞(0) = 0, a contradiction.
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Similarly, for any small 0 < δ1 < δ0, we have that for any γi ∈ Gi , if di (0, γi (0)) ≤
δ0, then di (0, γi (0)) < δ1 for all large i ≥ i0 depending on δ0, δ1. If not, then there
is a sequence γi satisfying δ1 ≤ di (0, γi (0)) ≤ δ0. Up to a subsequence, assume
γi → γ0 ∈ G. Then δ1 ≤ d0(0, γ0(0)) ≤ δ0. Butwe just proved that d0(0, γ0(0)) ≤ δ0
implies γ0(0) = 0, which is a contradiction.

Now consider the local group

Gi (δ0) := {γ ∈ Gi : di (0, γ (0)) ≤ δ0}.

There are two cases:

(1) Gi (δ0) = {e}. In this case, B(q0, δ0) = (B(0, δ0), g0) has dimension three and is
thus noncollapsing, a contradiction.

(2) Gi (δ0) �= {e}. Assume that there is a non-identity element γi ∈ Gi (δ0). Denote the
uniform lower bound of injectivity radius on (B(0, ε), gi ) by r0, and choose δ1 :=
min{ 12δ0, 1

2r0,
π

4
√

�
}. Let i0 be a large number depending on δ0, δ1 in previous

paragraph and i ≥ i0. Inductively, for anyn ∈ Z andn ≥ 2, assumedi (0, γ k
i (0)) ≤

δ0 for all 1 ≤ k ≤ n − 1. Then di (0, γ
n−1
i (0)) ≤ δ0 implies that

di (0, γ
n−1
i (0)) < δ1 ≤ 1

2
δ0.

By triangle inequality, we have

di (0, γ
n
i (0)) ≤ di (0, γ

n−1
i (0)) + di (γ

n−1
i (0), γ n

i (0))

= di (0, γ
n−1
i (0)) + di (0, γi (0))

≤ 1

2
δ0 + 1

2
δ0

= δ0.

So for any n ∈ Z+, γ n
i ∈ Gi (δ0). But Gi (δ0) is a finite set, so there exists an ni such

that γ ni
i = e.

Then we can use the technique of center of mass to show that γi = e. By our
choice of δ1, from Section 8 of [4], there is a unique minimum point qc of P(x) =
1
2

∑ni
j=1 di (x, γ

j
i (0)) in B(0, δ1). Since γi is an isometry and γ

ni
i = e, P(qc) =

P(γi (qc)). From the uniqueness of qc, we know γi (qc) = qc. Note γi behaves like deck
transformation, so γi has a fixed point only when γi = e. This gives a contradiction
and completes the proof of the claim. 	


Note the fact that H0 is a closed subset of L and thus compact. From the claim, we
know H0 is a finite group. Then the orbitG ·0 ∼= G/H0 is one dimensional. By standard
slice theorem, we know B(q0, ε) is isometric to S0/H0, where S0 = exp0(V ) for some
small ball V ⊂ R

2 ∼= (T0(G · 0))⊥ ⊂ T0B(0, ε), and via exp0, H0 acts isometrically
on V . Note that Mi are orientable and Gi preserve orientations, so G also preserves
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orientation, which implies that H0 ⊂ SO(2), i.e. H0 is a finite cyclic group. This
implies that q0 is either a regular point or an interior Riemannian orbifold point. 	

Proposition 2.2 If dim X = 2, then for any fixed number r > 1, for all sufficiently
large i , there exists a Seifert fibered space �i with smooth boundaries ∂�i = ∂− 
 ∂+
such that

dgi (∂−, ∂+) ≥ r .

Proof Under the same notations as above, if dim X = 2, then from Proposition 2.1
we have a decomposition S1(X) ⊂ X , where S1(X) consists of discrete orbifold
singularities and X \ S1(X) is a smooth surface.

By [11, Theorem 0.12, Theorem 10.1], there is a continuous map

fi : B(pi , 4r) → X

such that fi (pi ) = o and

|di (x, y) − d( fi (x), fi (y))| ≤ C(1 + r)εi ,

where C > 0 is a uniform constant and εi → 0 as i → ∞. Moreover, the restriction
of fi on f −1

i (X\S1(X)) is a smooth fiber bundle with fiber diffeomorphic to S1, and
∀p ∈ S1(X) ∩ B(o, 4r), f −1

i (p) is diffeomorphic to S1/Hp for some cyclic group
Hp = Zm . Then for any small disk D ⊂ B(o, 4r) with D ∩ S1(X) = {p}, an m-fold
covering of f −1

i (D) is diffeomorphic to D × S1. So

�i := f −1
i (B(o, 3r) \ B(o, r))

is a Seifert fibered space over orbifold B(o, 3r) \ B(o, r).
Set ∂− := f −1

i (∂B(o, r)) and ∂+ := f −1
i (∂B(o, 3r)). Perturbing B(o, 3r)\B(o, r)

by B(o, 3r + ε) \ B(o, r − ε) for some 0 < ε 
 1 if necessary, we can assume
∂(B(o, 3r)\B(o, r)) consists of no orbifold singularities such that ∂�i = ∂− 
 ∂+ is
smooth. Since

d(o, fi (∂−)) ≤ r , d(o, fi (∂+)) ≥ 3r ,

we know for all large enough i ,

di (∂−, ∂+) ≥ 2r − C(1 + r)εi ≥ r .

	

Proposition 2.3 If dim X = 1, then for any fixed number r > 1, there is a submanifold
Ti × (−1, 1) ⊂ Mi with di (Ti × {−1}, Ti × {1}) ≥ r , where Ti is diffeomorphic to a
torus T 2 or a Klein bottle K 2.
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Proof If dim X = 1, then X = R or [0,∞). In both cases, we can choose q ∈ X with
d(o, q) = r + 1 and B(q, r) ⊂ X consists of regular points. Then by [11, Theorem
0.12, Theorem 10.1], for large enough i , there is a map

fi : B(pi , 2r + 2) → X

such that the restriction on f −1
i (B(q, r)) is a fiber bundle, whose fiber is diffeomorphic

to a torus or Klein bottle with arbitrary small diameter and fi is an almost Riemannian
submersion. So

�i = f −1
i (B(q, r)) ∼= Ti × (−1, 1)

is a desired submanifold. Note limi→∞ di (Ti × {−1}, Ti × {1}) = 2r . 	


3 Proof of the Theorem

Recall that a Riemannian band is a Riemannian manifold (Y , ∂±) with two distin-
guished disjoint non-empty subsets in the boundary ∂Y , denoted by ∂− and ∂+. A band
is called proper if ∂± are unions of connected components of ∂Y and ∂− ∪ ∂+ = ∂Y .
The width of a Riemannian band (Y , ∂±) is defined as d(∂−, ∂+). Gromov proved the
following width inequalities in [15] by using μ-bubbles.

Proposition 3.1 [ 2πn -Inequality] Let (Yn, ∂±) be a proper compact Riemannian band
of dimension n ≤ 7with scalar curvature R ≥ 1. If no closed hypersurface in Y which
separates ∂− from ∂+ admits a metric with positive scalar curvature, then

d(∂−, ∂+) ≤ 2π

n
· √

n(n − 1).

As a corollary, width inequalities hold for torical bands, see also [14].

Proposition 3.2 For a Riemannian torical band T n−1×[−1, 1]with dimension n ≤ 7
and scalar curvature R ≥ 1,

d(T n−1 × {−1}, T n−1 × {1}) ≤ 2π

n
· √

n(n − 1).

Note that a closed orientable surface which admits a metric with positive scalar
curvature is diffeomorphic to a 2-sphere S2. Taking n = 3, we have the following
corollary.

Proposition 3.3 Let (Y 3, ∂±) be a three-dimensional proper compact orientable Rie-

mannian band with scalar curvature R ≥ 1. There exists a positve number C0 = 2
√
6π
3

such that if d(∂−, ∂+) ≥ C0, then there exist 2-spheres separating ∂− from ∂+.

Now we can prove the main theorem.
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Proof of Theorem 1.1 Assume by contradiction that there exists a sequence of complete
noncompact three manifolds (Mi , gi , pi ), satisfying |Kgi | ≤ � and Rgi ≥ 1, such
that inj(pi ) → 0. Taking a double covering if necessary, we assume Mi are orientable.
As in Sect. 2, up to a subsequence, we assume (Mi , gi , pi ) → (X , d, o) in the pointed
Gromov-Hausdorff topology, with dim X = 1 or 2.

If dim X = 2, from Proposition 2.2, we know for a big fixed radius r > C0 + 100,
whereC0 is the constant in Proposition 3.3, there exists a Seifert fibered space�i with
two disjoint non-empty smooth boundaries ∂�i = ∂− 
 ∂+ such that

dgi (∂−, ∂+) ≥ r .

Applying Proposition 3.3 to (�i , ∂±), by our choice of r , we know there are 2-spheres
{S2k }Nk=1 in �i separating ∂− from ∂+. In particular, we have [∪N

k=1S
2
k ] = [∂−] �= 0 in

H2(�i ).
On the other hand, by [25, Lemma 3.1], the universal covering of �i isR3, so �i is

S2-irreducible and [∪N
k=1S

2
k ] = 0 in H2(�i ), which is a contradiction. This completes

the proof of the case when dim X = 2.
If dim X = 1, from Proposition 2.3, for any r > 0, we know there is a torical band

T × (−1, 1) with width bigger than r admitting a positive scalar curvature Rg ≥ 1,
where T is either a torus orKlein bottle. Up to a double covering of T×(−1, 1), we can
assume T is a torus. Choosing r big enough gives a contradiction to Proposition 3.2.
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