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Abstract
Purpose of Review To provide information on characteristics and use of various ceramics in spine fusion and future directions.
Recent Findings In most recent years, focus has been shifted to the use of ceramics in minimally invasive surgeries or
implementation of nanostructured surface modification features to promote osteoinductive properties. In addition, effort
has been placed on the development of bioactive synthetics. Core characteristic of bioactive synthetics is that they undergo
change to simulate a beneficial response within the bone. This change is based on chemical reaction and various chemical
elements present in the bioactive ceramics. Recently, a synthetic 15-amino acid polypeptide bound to an anorganic bone
material which mimics the cell-binding domain of type-I collagen opened a possibility for osteogenic and osteoinductive
roles of this hybrid graft material.
Summary Ceramics have been present in the spine fusion arena for several decades; however, their use has been limited. The
major obstacle in published literature is small sample size resulting in low evidence and a potential for bias. In addition, different
physical and chemical properties of various ceramics further contribute to the limited evidence. Although ceramics have several
disadvantages, they still hold a great promise as a value-based graft material with being easily available, relatively inexpensive,
and non-immunogenic.
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Introduction

The incidence of spinal fusion has been steadily increas-
ing over the past couple of decades [1, 2]. Over the last
18 years, the annual mean for spinal fusion procedures
performed in the USA was 317,534 [2]. It has been well
established in the spine literature that the gold standard
for achieving arthrodesis is iliac crest bone graft (ICBG).
However, potential complications including donor site
morbidity, increased operative time and blood loss, in-
creased length of stay, and limited supply have been re-
ported [3]. As a result, there has been a growing trend in
the use of bone graft substitutes and bone graft extenders
in an effort to mitigate these risks. Although there are
various graft substitutes, none of them has all three char-
acteristics of ICBG: being osteoconductive, osteogenic,
and osteoinductive.

Ceramics are a class of bone graft substitutes that provide
osteoconductive properties without any osteogenic or
osteoinductive potential [4, 5]. Examples of the most
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commonly used ceramics include hydroxyapatite (HA), beta-
tricalcium phosphate (β-TCP), calcium phosphate (CaP), cal-
cium sulfate, and bioactive synthetics such as silicate-
substituted calcium phosphate (Si-CaP) and bioglass (BAG).
In newer generation of ceramics, bioactive synthetics go be-
yond osteoconductive role, and they have osteoproductive
characteristics which promote cell stimulation towards osteo-
genesis and growth factor production. Ceramics are an attrac-
tive alternative given that they are an inert substance that is
non-toxic, non-immunogenic, and without risk of infection.
They are fully customizable, easily stored, and available in
virtually unlimited supply. Lastly, when compared with other
graft materials, they are also a less expensive option [6]. The
main disadvantage is the inherent lack of mechanical strength
(Fig. 1). Ceramics are brittle with low fracture resistance and
tensile strength [7]. Therefore, they are commonly protected
until bone ingrowth has occurred.

The purpose of this review was to describe evolution of
various ceramics and their use in spine fusion.

Hydroxyapatite

Hydroxyapatite (HA) is one of the most commonly used ce-
ramic in orthopedics. HA is a crystalline structure composed
of calcium phosphate and is a major component of the inor-
ganic bonematrix. HA functions as an osteoconductive matrix
without any osteogenic cells or osteoinductive potential. HA
sharesmany of the advantages as other types of ceramics, such
as being an inert substance that is easy to sterilize and readily
available as an off the shelf product. However, one of the main
disadvantages is its inherent lack of strength. Therefore, HA is
rarely used as a stand-alone bone substitute and must be aug-
mented with instrumented fusion to allow for its incorporation
within the surrounding bone. Multiple studies have demon-
strated its clinical effectiveness in both the cervical and lumbar
spine.

In a prospective randomized controlled trial (RCT) by
Korovessis et al., 60 patients with degenerative lumbar
stenosis undergoing posterior lumbar fusion (PLF) were
divided into three groups: autologous iliac crest bone graft
(ICBG) bilaterally, ICBG on one side and HA + local bone
(LB) + bone marrow (BM) on the contralateral side, or HA
+ LB + BM bilaterally [8•]. All three groups, regardless of
graft used, progressed to fusion based on radiographs and
CT scans performed at 12 months postoperatively. Authors
noted incomplete fusion between transverse processes,
which they attributed to the progressive resorption of HA
that began at the 6-month time point. This, however, had
no effect on the overall fusion rate or functional outcomes.

Similarly, HA has also been used to achieve high fu-
sion rates in the cervical spine. Yoshi et al. performed a
prospective study evaluating patents who underwent ante-
rior cervical discectomy and fusion (ACDF) with either
HA + percutaneously harvested ICBG vs tricortical ICBG
alone [9]. They found that at 2-year follow-up, there were
no significant differences in recovery rates, fusion rates,
or sagittal alignment.

In addition to augmenting fusion rates, HA has also
been used as a bone graft extender. Multiple studies
have demonstrated that HA can be used a bone graft
extender to address some of the drawbacks with ICBG
harvest, while at the same time achieving comparable
fusion rates to the gold standard [10–12]. Yoo et al.
evaluated 88 patients undergoing minimally invasive
transformational lumbar interbody fusion (MI-TLIF)
[13]. Patients were divided into three groups: group I
autograft, group II HA + autograft (> 50%), and group
II HA + autograft (< 50%). Fusion rates at 2 years post-
operatively increased as the amount of autograft in-
creased (90.9%, 87.8%, and 85.7% for groups I–III re-
spectively); however, there was no statistical significant
difference between the groups showing the value of ce-
ramic graft extenders.

Fig. 1 Pros and cons of
ceramics—first to third
generations

531Curr Rev Musculoskelet Med  (2020) 13:530–536



Beta-Tricalcium Phosphate

Another commonly used ceramic is β-TCP. β-TCP is a syn-
thetic bone graft substitute similar to normal bone [14]. It is
composed of 39% calcium and 20% phosphate [5]. β-TCP
shares the same osteoconductive properties of other ceramics,
enabling it to function as an effective carrier for both cells and
growth factors. When compared with other ceramics such as
hydroxyapatite (HA), β-TCP has a higher porosity and there-
fore resorbs at a much faster rate, typically within 6 weeks [15].
Despite this limitation, multiple studies have used it successful-
ly as a bone graft substitute as well as a bone graft extender.

Dai et al. conducted a prospective randomized control trial
(RCT) evaluating fusion rates in patients undergoing instru-
mented PLF for degenerative lumbar spinal stenosis treated
with either β-TCP combined with local autograft or ICBG
[16]. Out of the 62 patients included in this study, all 32
patients in β-TCP group and 30 patients in ICBG group dem-
onstrated evidence of radiographic fusion within the 3-year
follow-up period. Authors found no significant difference in
fusion rates or functional outcome scores between groups at
the time of final follow-up. Gan et al. used β-TCP combined
with autologous enriched mesenchymal stem cells (MSCs) in
41 patients undergoing posterior spinal fusion (PSF) [17]. At
34.5 months, 95.1% of patients had a successful fusion based
on radiographic and clinic assessment. Authors attributed the
success of this composite graft to the osteogenic and
osteoinductive properties of MSCs that when combined with
an osteoconductive scaffold, such as β-TCP, allows for the
ingrowth of cells and blood vessels. A systematic review by
Nickoli et al. found 30 studies that used ceramics as a bone
graft extender in patients undergoing PLF [11]. They found
that the fusion rate for β-TCP was 92.5% (319 patients out of
349). This was significantly higher than the fusion rate for all
ceramic-based bone grafts, which was 86.4%.

More recently, there have been number of studies that have
evaluated the use of β-TCP with newer minimally invasive sur-
gery (MIS) techniques. A retrospective review by Abassi et al.
usedβ-TCPwith autologous bonemarrow aspirate (BMA) in 24
patients undergoing oblique lateral lumbar interbody fusion
(OLLIF) [18]. After discectomy was performed, authors packed
all available disc space with β-TCP and BMA. Fusion was con-
firmed radiographically by two independent observers in all 24
patients at the 1-year follow-up visit.

Efforts have been made to create composite ceramic grafts,
often a combination of β-TCP and HA, in an attempt to max-
imize fusion rates. Multiple studies have used them as
standalone bone substitutes as well as bone graft extenders.
Parker et al. comparted the use of AttraX (95% β-TCP + 5%
HA) with rhBMP-2 in 135 patients undergoing extreme lateral
interbody fusion (XLIF). Fusion rate at the 2-year postopera-
tive visit was 80% for β-TCP group compared with 96% for
rhBMP-2 group [19•]. However, this difference was only

significant when β-TCP was used as a standalone graft. No
difference in fusion rate was seen when both groups were
supplemented by instrumented fusion. Conversely, Malham
et al. used Mastergraft (85% β-TCP + 15% HA) as a bone
graft extender by combining it with rhBMP-2 in patients un-
dergoing XLIF [20]. Supplemental fixation was used to avoid
subsidence, maintain stability, or correct any deformities.
Authors reported a fusion rate of 95.2% for standalone group
vs 80% for supplemental fixation group at 1-year follow-up.

Calcium Sulfate

Calcium sulfate has long been used as a bone substitute, par-
ticularly in orthopedic trauma, and has been praised for its
availability, low-cost, and osteoconductive properties [21].
The crystalline structure of calcium sulfate is similar to that
of cancellous bone, providing architecture for the introduction
of capillaries and mesenchymal stem cells [22]. The lack of
osteoinductive or osteogenic properties, as well as quick re-
sorption time (1–3 months), hinders the use of calcium sulfate
as a standalone graft and mandates the use of additional sub-
stances such as demineralized bone matrix or local allograft
for maximized effect [21, 23].

Owing to the traditional use of calcium sulfate in trauma, a
handful of recent studies have shown that pedicle screw fixa-
tion is improved with calcium sulfate augmentation in unsta-
ble thoracolumbar burst fractures [24–26]. Calcium sulfate
injections have also been shown in sheep models to reduce
fracture risk in osteoporotic vertebral bodies [27].

Previous reviews have demonstrated similar results between
calcium sulfate and autologous graft for lumbar fusion across
multiple studies [23•]. However, more recent clinical investiga-
tions of calcium sulfate for spinal fusion are limited. In a pro-
spective study of 68 patients with cervical degenerative disc dis-
ease being treated with one- or two-level discectomy, Xie et al.
showed comparable results between polyether-ether-ketone
(PEEK) interbody cages with calcium sulfate/demineralized
bone matrix (CS/DBM) and those with autogenous iliac cancel-
lous bone [28]. At 12-month follow-up, the CS/DBM group
showed 94.3% fusion compared with 100% in the ICBG group.
Both groups had 100% fusion at final follow-up (24months). No
significant difference was found in follow-up clinical symptom
score or lordotic angle between the two groups. The complication
rate for the ICBG group (18.2%) was significantly higher than
the CS/DBM group (8.6%) [28].

PMMA

Polymethylmethacrylate (PMMA) has been a staple of orthope-
dic surgery for years. Traditionally utilized as a cement in total
joint replacement, PMMAwas subsequently expanded into uses
such as vertebroplasty and kyphoplasty. Themethylmethacrylate
monomer is capable of polymerizing at room temperature, is
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low-cost, and has good biocompatibility, although it is bioinert
and thus has minimal bone remodeling capacity [29, 30].

Studies comparing PMMA against other materials for use
in cages for anterior cervical fusion have yielded variable re-
sults. A review by Noordhoek et al. compared PEEK cages,
titanium cages, cage-screw-combinations (CSC), and PMMA
cages. Of the seventy-one studies included, only 6 looked at
PMMA, but a significantly higher incidence of subsidence
occurred in PMMA vs PEEK or CSC (30.2% vs 23.5% and
15.1%) [31]. A recent single-blind randomized controlled
study by Farrokhi et al. comparing PEEK cage with a novel
PMMA cage enrolled 64 patients that were randomly assigned
to undergo ACDF using either the acrylic cage (n = 32) or
PEEK cage (n = 32). At 12-month follow-up, there was a sta-
tistically significant difference in the disc space height be-
tween acrylic and PEEK (5 ± 0.9 mm and 4.25 ± 1 mm, re-
spectively), as well as intervertebral angle correction (3.38 ±
1.9 and 3.16 ± degrees, respectively) [32].

Recently, PMMA has been utilized for pedicle screw aug-
mentation to increase pull-out strength and resistance to failure
in osteoporotic patients [33]. Low-quality bone has increased
risk for implant failure, and while a number of techniques have
been assessed to improve fixation in these patients, PMMA-
augmented screws have demonstrated to be most successful
[34]. Four retrospective studies (ranging from 28 to 313 osteo-
porotic patients) examined the safety and efficacy of lumbar
fusion using cement injectable cannulated pedicle screws
(CICPS) [34–37]. Three studies utilized Visual Analog Scale
and Oswestry Disability Index to assess efficacy and showed
statistically significant decreases in low back and lower leg pain
[35–37]. They also examined complications and found leakage
rates between 6.46 and 10.3%, with all cases of leakage being
clinically insignificant. The fourth retrospective study, by
Martín-Fernández et al., was the largest (313 patients) and
showed a leakage rate of 62.3%, none of which showed major
clinical complications [34]. The same study found a revision
rate of 17.9%, mostly in patients with > 4 level reconstruction.

A prospective study by Cao et al. prospectively compared
unilateral transforaminal lumbar interbody fusion using tradi-
tional pedicle screws and PMMA-augmented screws in oste-
oporotic patients [38]. The fusion rate with PMMA was sig-
nificantly higher (91.3% vs 79.2%), and at 2-year follow-up,
there was a significant difference in disc height in the PMMA
group vs non-PMMA (10.7 ± 1.6 mm vs 8.7 ± 2.3 mm).

Bioactive Synthetics: Si-CaP and Bioactive Glass

Silicate-substituted calcium phosphate (Si-CaP) is a new gen-
eration of ceramics formed by a partial substitution of phos-
phate with silicate (usually around 0.8% by weight) [39].
Silicate has been shown to have a role in bone metabolism
and can upregulate osteoblast proliferation and differentiation,
promote osteoinductive gene expression, and increase type I

collagen synthesis [40, 41]. Adding silicate to the ceramic in-
creases negative surface charge leading to increased osteoblast
attraction to the surface of the material and additionally induces
porosity, making it an osteoinductive material [42]. Wheeler
et al. compared Si-CaP to iliac crest autograft and found fusion
mass to be higher with Si-CaP, while bony bridging was equiv-
alent when compared with autograft treatment [40]. A study by
Jenis et al. showed a fusion rate of 76.5% at 24 months of
follow-up following posterolateral lumbar fusion [43]. In two
separate studies, Alimi and et al. found fusion rates of 90% and
82.9% following spinal fusion (cervical, thoracic, and lumbar
procedures included) [39, 44]. Licina et al. compared Si-CaP
with rhBMP-2, and fusion was observed in 9/9 and 8/9 patients,
respectively, following posterolateral lumbar fusion with simi-
lar alleviation of pain and improvement in quality of life [45]. A
prospective study by Pimenta et al. compared Si-CaP with
rhBMP-2 bone graft [46]. Pimenta et al. reported complete
fusion with both graft materials with rhBMP-2 resulting in
more rapid early postoperative fusion following XLIF. More
recently, Mokawem et al. found a combined fusion rate of
98.9% following TLIF and LLIF using SiCaP-packed 3D-
printed lamellar titanium cages, while Bolger et al. found the
use of Si-CaP to have a fusion rate of 86.3% at 12 months
following PLF surgery [47, 48]. Additionally, Lerner et al.
found Si-CaP augmented with BMA to be an effective and safe
bone graft extender in scoliosis surgery [49].

Bioactive glass is an osteoconductive bone substitute that is
composed of 46.1 mol% SiO2, 24.4 mol% Na2O, 26.9 mol%
CaO and 2.6 mol% P2O5 (45S5 bioactive glass) [50]. Bioactive
glass bonds strongly to bone due to the formation of an HCA
layer which interacts with collagen fibrils of damaged bone [50].
Once this HCA layer is formed, dissolution of calcium and silica
ions stimulates attachment of osteoblasts, cell division, and up-
regulation of osteogenic genes that is dose dependent to ion
release [51, 52]. Early animal model studies found bioactive
glass to induce either comparable rates of fusion or higher vol-
umes of fusion mass than autograft [53–55]. Ilharreborde et al.
conducted a comparative study of bioglass vs iliac crest autograft
for spinal fusion in adolescent idiopathic scoliosis and found
complete fusion with both graft materials in 88 patients [56]. A
study by Frantzen et al. found a higher fusion rates with bioglass
with a higher silica content than 45S5 BAG (53.9 vs 46.1 mol%
for 45S5) in patients undergoing L4/5 and L5/S1 spinal fusion
for spondylolisthesis [57]. A recent study by Barrey et al.
assessed 30 patients with a wide range of degenerative and trau-
matic conditions of the cervical or lumbar spine who underwent
spinal fusionwith bioactive glass and found an overall fusion rate
of 93% at 1-year postop [58].

P-15

Recently, P-15, a synthetic 15-amino acid polypeptide that
mimics the cell-binding domain of type-I collagen, has emerged
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as a bone graft alternative in the setting of spinal fusion. Serving
as an attachment site for osteogenic cells to type I collagen, P-15
also stimulates osteoblastogenesis by promoting the differentia-
tion of bone marrow stromal cells to osteoblasts. Furthermore, it
enhances the cellular production and subsequent secretion of
various growth factors, cytokines, and bone morphogenetic pro-
teins that signal for further osteoblastogenesis [59, 60]. i-Factor
Bone Graft (Cerapedics, Inc., Westminster, CO) is a bone graft
substitute which consists of P-15 bound to an anorganic bone
material (ABM); it therefore contains both osteoconductive and
osteoinductive properties. To date, favorable fusion rates with
use of P-15 have been demonstrated in a limited number of
clinical studies in the setting of cervical fusion [61, 62].

In a single-blinded randomized controlled IDE trial, Arnold
et al. demonstrated non-inferiority of i-Factor when compared
with local autograft bone in the setting of single-level ACDF
utilizing a cortical ring allograft. At 12-month follow-up, fu-
sion rates with use of i-Factor were comparable to that of
autograft (88.97% compared with 85.82%, respectively; P =
0.0004) with no significant differences in adverse events or
patient reported clinical outcomes between the two groups
[61]. In the 2-year follow-up study, overall fusion rates had
improved with no significant differences between groups
(94.87% vs 93.79% in autograft group; P = 0.2513).
However, use of i-Factor was associated with overall im-
proved clinical outcomes when utilizing study defined end-
points of success (fusion, Neck Disability Index > 15, neuro-
logical success, and absence of reoperations; 69.83% in the i-
Factor group vs 56.35% in the autograft group; P = 0.0302)
[62].

In the setting of lumbar fusion surgery, preliminary animal
studies have additionally shown P-15 to be a useful fusion
adjunct [59, 63]. While high-quality clinical data is limited, in
their series of 110 patients who underwent either single or
multi-level ALIF utilizing ABM/P-15, Mobb et al.
demonstrated high fusion rates (97.5%, 81%, and 100% in
single-level, two-level, three-level fusions, respectively) and
favorable patient-reported outcome measures at 2-year follow-
up [64].

While P-15 may prove to be a useful adjunct in the setting
of spinal fusions, additional high-quality and independently
conducted clinical studies are warranted to further delineate
its clinical utility.

Conclusions

Ceramics have been present in the spine fusion arena for several
decades; however, their use has been limited. The major obsta-
cles in published literature are small sample size and different
physical and chemical properties resulting in low evidence and
a potential risk for bias. Although non-inferiority with the use of
ceramics as a bone graft extender when compared with ICBG

has been demonstrated, many published studies were not ade-
quately powered to show a significant difference. Even with
limitations ceramics hold a promise as a value-based graft ma-
terial being easily available, relatively inexpensive, and non-
immunogenic. Chemical modifications and addition of various
elements have a potential to not only enhance cell differentia-
tion and growth factor production but also stimulate vasculari-
zation and help prevention of surgical site infection. In patients
with risk factors such as osteoporosis, bioactive synthetics can
play an important role with addition of strontium which has a
potential of inhibiting osteoclast activity. Finally, cost is one of
the key variables when it comes to spine conditions and their
treatments. Studies have shown that ceramics are less expensive
than other graft materials [65]. Well-designed prospective stud-
ies on new ceramics and hybrids are warranted to solidify the
clinical impact and utility in various spine fusion procedures.
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