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Abstract The purpose of anterior cruciate ligament (ACL)
reconstruction is to restore the native stability of the knee joint
and to prevent further injury to meniscus and cartilage, yet
studies have suggested that joint laxity remains prevalent in
varying degrees after ACL reconstruction. Imaging can pro-
vide measurements of translational and rotational motions of
the tibiofemoral joint that may be too small to detect in routine
physical examinations. Various imaging modalities, including
fluoroscopy, computed tomography (CT), and magnetic reso-
nance imaging (MRI), have emerged as powerful methods in
measuring the minute details involved in joint biomechanics.
While each technique has its own strengths and limitations,
they have all enhanced our understanding of the knee joint
under various stresses and movements. Acquiring the knowl-
edge of the complex and dynamic motions of the knee after
surgery would help lead to improved surgical techniques and
better patient outcomes.
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Introduction

The anterior cruciate ligament (ACL) has an important func-
tion in knee stability. ACL tears can lead to injuries to other
structures, and ACL reconstruction should prevent further in-
juries to the nearby structures such as the meniscus and carti-
lage. The reconstructed ACL, regardless of technique or graft
type, is meant to restore the function of the native ligament,
preventing the pivot shift, which is characterized by anterior
translation and internal rotation of the tibia with respect to the
femur during weight-bearing and cutting activities [1]. The
overall outcomes of ACL reconstruction have been good,
but failures such as persistent instability, discomfort, graft tear,
and early cartilage degeneration still frequently occur [2–6]. It
is thought that the lack of stability contributes to these com-
plications; therefore, an effective biomechanical measurement
as a method of identifying knee laxity is essential for improv-
ing the outcomes after ACL reconstruction [7]. Clinical exam
maneuvers such as the Lachman, anterior draw, and pivot shift
tests have helped clinicians diagnose and guide treatment. The
pivot shift test, which combines both translational and rota-
tional movements, has been shown to be most valuable [8] but
requires experience and can often be inhibited by pain. It is
also subjective, or semi-quantitative measurement at best, and
dependent on patient cooperation.

The difference between transtibial and transmedial tunnel
creation of the ACL graft raised new discussions surrounding
the importance of restoring rotatory laxity, and since then var-
ious biomechanical studies, both in vitro and in vivo, have
evaluated the effectiveness of the surgical techniques. The
debate between single bundle (SB) versus double bundle
(DB) has joined this discussion on accurately describing the
static and dynamic function of the knee. Currently, there are a
number of ways to measure biomechanical parameters, each
with various advantages and disadvantages. Clinical exam
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maneuvers such as the pivot shift test, Lachman test, and the
KT-1000, while relatively simple to use, have not produced
the most reliable and reproducible results [9]. While other
modalities such as computer-assisted surgery may be more
reliable and precise, these procedures are invasive, labor in-
tensive, and require a trained examiner. To address these chal-
lenges, some researchers have turned to imaging, as many of
these protocols can be noninvasive and reproducible. Imaging
also allows in vivo evaluation, accounting for other intra-
articular structures such as ligament, meniscus, and cartilage.
In this article, we will discuss some of the emerging
methods of measuring biomechanics and laxity in ACL
injured knees using advanced imaging, the advantages
and disadvantages, and their use and potential in expanding
to the clinical setting.

Radiography

Different radiographic techniques are widely used to research
stability in ACL deficient and reconstructed knees. Stress
radiography in particular has been used as a diagnostic tool
to assess knee instability in all directions, but because it only
provides two dimensional (2D) and static images, its use is
limited in measuring dynamic functional knee assessment.
Combining radiography with magnetic resonance imaging
(MRI) and computed tomography (CT) can provide three di-
mensional (3D) geometry and motion of the knee, but most of
them are often limited to static conditions. Despite these lim-
itations, radiographic techniques such as fluoroscopic imaging
techniques can still provide a dynamic way of measuring joint
kinematics.

Passive stress radiography

Passive stress radiography offers an objective, quantifiable,
noninvasive, and retrievable data for the diagnosis and assess-
ment of knee ligamentous injuries. To date, numerous stress
radiographic techniques have been reported for assessing knee
instability. A systematic review of literature showed at least 16
stress techniques described for passive stress radiography of
the knee, and the diagnosis of ACL injury showed excellent
reliability and correlation with results of the pivot shift test
[10]. Several techniques were used for measurements involv-
ing more than one plane of stability, such as the Telos device
(Metax, Hungen-Obbornhofen, Germany) [11]. But there is
still a lack of consensus as to which technique is best for
assessing multiple knee instability parameters including rota-
tional instability, one of the main concerns addressed in ACL
surgery. The fact that passive stress radiography can only pro-
vide 2D, and static images would limit its further use for the
functional assessment of knee kinematics unless newer tech-
niques are explored.

Dynamic stereo-radiographic and fluoroscopic imaging
techniques

Dynamic stereo-radiographic and fluoroscopic imaging tech-
niques have also been used to measure human knee joint mo-
tion in vivo. All of these techniques are more complex, expen-
sive, and invasive, including radiation exposure, but can pro-
vide high-precision measurement of knee kinematics which
may be better than surface marker techniques [12, 13].

A number of these techniques require metallic marker im-
plantation such as tantalum markers in both the femur and
tibia bones prior to testing [14, 15]. These fixed markers are
visible on X-ray images, helping to determine the joint posi-
tions and orientations during knee motion. This technique can
evaluate tibial rotation and tibio femoral translational data in
knee joint motion with relatively high accuracy. Using im-
planted tantalum markers and high-speed dynamic stereo X-
ray images, altered landing kinematics were observed in ACL-
reconstructed knees, including decreased flexion angle (20.9°
vs 28.4°), increased tibial external rotation (12.2° vs 6.5°), and
increased tibial medial translation (3.8 vs 2.3 mm) noted dur-
ing single-legged hopping 5 months after ACL reconstruction
when compared to the contralateral knees. These differences
decreased over time, due to changes in both the ACL-
reconstructed and contralateral ACL-intact limbs [10]. The
invasive procedure of metallic marker implantation, however,
may limit its wide clinical use.

Other new techniques without implanted markers have
been set up for measuring dynamic motion of the knee, most
of which include the 2D–3D image matching method [13,
16–18]. This method has been proposed for the accurate re-
production of the positions and orientations of the knee by
registering the known 3D surface models of the femur and
tibia to the captured dynamic fluoroscopic images during ac-
tual activities. 3D knee models could be based on 3D-MRI
[16–19, 20•, 21, 22] or 3D-CT [23, 24•, 25] images, and a
local coordinate system is created for each bone. Some of the
more commonly used techniques are described below.

The dual fluoroscopic imaging techniques are widely used
to examine ACL-related knee kinematics for higher accuracy
and precision. Most recent dual fluoroscopic imaging tech-
niques include an automatic 2D–3D image matching method
that can automatically register the 3D surface models of the
knee onto fluoroscopic images [17, 19, 20•]. When there is
large range of motion about the knee joint, the fluoroscope
may not be able to capture the entire knee joint image because
of its limited image size. These incomplete fluoroscopic
images may affect the reproduced joint positions. But with
automatic matching method, even if only parts of the knee
joint are available from fluoroscopy, it can still accurately
reproduce knee joint positions. The dynamic spatial
positions of the femur and tibia could be determined with an
accuracy and precision of less than 0.15–0.23 mm in
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translation and 0.40°–0.43° in orientation [17, 26]. Using 3D
MRI-based dual fluoroscopic technique, DeFrate et al. found
that the ACL-deficient knee demonstrated an anterior shift
(approximately 3 mm) and an internal rotation of the tibia
(approximately 2°) at low flexion angles during a quasi-static
lunge, as well as a medial translation of the tibia (approximately
1 mm) between 15 and 90° of flexion [16]. Chen et al. also
found that ACL-deficient knees showed higher flexion angles
and higher anterior tibial translation compared to the intact
contralateral knees during the stance phase of the gait [22].
Using this technique, Hosseini et al. obtained images at differ-
ent flexion angles as the patient performed a single-leg quasi-
static lunge before and after transtibial bone-patellar tendon-
bone (B-PT-B) ACL reconstruction. The results showed that
reconstruction of ACL restored some of the in vivo cartilage
contact biomechanics of the tibiofemoral joint back to normal.
However, an abnormal posterior and lateral shift of cartilage
contact location to a thinner tibial cartilage area at lower flexion
angles persisted in ACL-reconstructed knees, a finding which
had been described previously in ACL-deficient knees [18, 21].
Another study by Hosseini et al. demonstrated that combined
ACL/meniscus injuries could alter the kinematics of the knee in
a different way compared to isolated ACL injuries depending
on the different patterns of meniscus tears [16].

The principle of the dynamic stereo-radiography with 2D–
3D image matching method is similar with the dual fluoro-
scopic imaging technique and also widely used in ACL-
related knee kinematics studies [24•, 25]. The main difference
between these two techniques may be that dual fluoroscopy is
mostly used for relatively low-demand tasks while dynamic
stereo-radiography can provide short imaging times and high
frame rates for more strenuous activities (Fig. 3) [13, 25].With
3D-CT bone model-based dynamic stereo X-ray, Hoshino et
al. found that greater tibial internal rotation was associated
with larger magnitude of sliding motion in the medial com-
partment during downhill running [21]. They also observed
that although anterior tibial translation was reduced in ACL-
reconstructed knees, knee rotation increased compared to the
contralateral knees in both SB and DB groups; therefore, the
authors concluded neither SB nor DB ACL reconstruction
restored normal knee kinematics or medial joint sliding [20•].

Thus far, most of the findings described by dynamic radio-
graphic studies suggest abnormal kinematics in both ACL
deficient and reconstructed knees, such as different flexion
angles, excessive rotation either externally or internally, in-
creased medial translation of the tibia, and abnormal cartilage
contact areas during running or walking. These results suggest
that kinematics is only partially restored after ACL reconstruc-
tion, and this may contribute as one of the causes of subse-
quent cartilage degeneration. These radiographic methods are
becoming more widely available and are likely to provide
further answers for better dynamic joint function and stability
in ACL-related studies.

Computed tomography

3D reconstructions of CT scans are often combined with
stereo-radiographic and fluoroscopic imaging techniques such
as those in studies described above. 3D-CT-based bone shape
analysis has also shown reliability in repeated measurements,
which is required when measuring relevant morphologic
features in clinical assessment and further research. Through
knee 3D-CT analysis, Hoshino et al. found that femoral
condyle offset ratio (COR) is a unique morphological feature
that is measureable by 3D-CT. COR is larger in women and
could be a possible risk indicator for ACL injury in the female
population [27]. ACL studies using 3D-CT of the knee are
mostly related to bone morphology and ACL injury risks
and rarely involve kinematics [28, 29]. Possible reasons may
be the limitation to static conditions, the lack of soft tissue
visibility by CT scan, and more radiation exposure. Further
utilization of 3D-CT imaging in knee kinematics assessment
related to ACL research could be considered with higher
resolutions.

Magnetic resonance imaging

MRI is used routinely to evaluate ACL tears and for pre-
surgical planning, allowing visualization and evaluation of
soft tissues that act to stabilize the joint, such as the
meniscus and the other ligaments. It also allows good
visualization of bone. Like CT scans, MRI can provide
3D reconstructions of the joint, but this can be expand-
ed to include the soft tissues, offering additional ways
of evaluating the functional stability of the knee. Both
static and dynamic measures are possible using closed and
open MRI.

Closed MRI scanners can provide measurements for ante-
rior translation and rotation of the tibia with respect to the
femur that may not be easily detected by physical examina-
tions alone. Because of the details available in multiple slices,
biomechanical measurements lower than 5 mm, which may be
difficult to assess manually on exam, can be taken. There are
several ways of calculating these biomechanical parameters.
One is to take measurements on individual slices [30, 31],
while others create a 3D model of the joint to estimate the
bony positions. As such, anterior translation and rotation of
the tibia can be evaluated in various ways. Tanaka et al. used a
method of estimating tibial translation by taking measure-
ments on single individual slices in the sagittal plane, selecting
specific slices from the medial and lateral compartments that
meet certain criteria. They found significant differences in the
anterior subluxation of tibia between normal knees, ACL-
deficient knees, and failed ACL-reconstructed knees [32].
On the other hand, in addition to measuring tibial subluxation,
Vassalou et al. used axial images to measure tibial rotation to
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compare ACL-deficient knees with a control group [33].
These single slice measurement techniques have also been
useful in the evaluation of different surgical techniques. Yau
et al. used both axial and sagittal sequences to estimate the
femoral tunnel position and found that transportal technique
showed better results than transtibial technique at 1 year
follow-up [34]. In another study, Noh et al. also used sagittal
images but used a different method to determine the femoral
tunnel aperture and position [35]. These methods of using
individual slices for measurements are relatively simple, inex-
pensive, repeatable, and reproducible, but anatomic variability
between individuals may potentially introduce inaccuracies
into the measurements.

3D reconstructions of MRI is another option, often using
modeling and bony landmarks as reference [36–38, 39•, 40,
41]. These models can be used on various anatomical variants,
albeit to different degrees depending on the method, and can
offer a series of comprehensive measurements in various
planes (Fig. 1). Scanlan et al. used 3D surface modeling from
MRI segmentations to estimate the anterior translation of tibia
and correlate this with loss of extension after ACL reconstruc-
tion using the transtibial technique [40]. Lansdown et al. in-
troduced a method of measuring tibial translation and rotation
using a semi-automatic segmentation method with high

reliability [42]. A limitation of using closed MRI is that the
patient is supine during the scan, and this may represent an
inaccurate estimation of biomechanical measurements in a
weight-bearing limb. However, these groups have addressed
this limitation by creating MRI compatible devices, such as a
pulley system to apply axial force, as substitutes for ground
reaction force present during weight-bearing activities [42].
Devices are also used to place anteriorly directed force on
the tibia to measure anterior translation, although this may
differ from simulating weight-bearing conditions [30].

Open MRIs offer the advantage of acquiring images at
various positions, including standing positions during actual
weight-bearing, referred also as upright MRIs. Tracking
methods are employed to collect consecutive images from
the same knee, allowing motion by the subject. Apparatuses
designed to apply standardized forces across the joint may at
times be employed as well [43, 44]. Patients may be upright
and gradually flex their knees while the scanner acquires im-
ages at set flexion angles [45, 46]. Open MRIs, however, have
the disadvantage of lower spatial resolution, but Olender et al.
was able to combine data from open MRI with closed MRI
with much higher resolution using a cadaver knee [47]. As
mentioned above, fluoroscopy could also provide valuable
details that cannot be acquired by open MRI. Lenhart et al.
used data from static MRI and closed MRI while combining
these imaging data with dynamic musculoskeletal modeling,
while also using an apparatus to mimic weight-bearing [48•].
While this may be a very comprehensive method of

Fig. 1 3D cloud points are
generated from semi-automatic
segmentations on T2 FSE images
to generate a 3D representation of
the tibia. Image courtesy of
Musculoskeletal Quantitative
Imaging Research, University of
California, San Francisco

0ms 100ms
Fig. 2 Colormap of T1ρ relaxation times which correlate with proteoglycan
content within the articular cartilage. Image courtesy of Musculoskeletal
Quantitative Imaging Research, University of California, San Francisco

0ms 60ms

Fig. 3 Left image shows high-resolution 3D FSE showing meniscus tear
in the posterior horn of the lateral meniscus. Right image shows T1ρ-
weighted image shows a color map overlay of T1ρ relaxation times
corresponding to the tear. Image courtesy of Musculoskeletal
Quantitative Imaging Research, University of California, San Francisco
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understanding knee dynamics and multiple interactions be-
tween the knee structures, the studywas limited to one subject.
Despite the use of these semi-dynamic MRIs, these active
movements may not reflect the complexities of higher level
activities such as cutting. Likewise, studies that combining
MRI measurements with other data such as motion analysis
and physical exammaneuvers like pivot shift tests may bridge
the imaging measurements with more complex, real-life
movements.

MRIs offer additional options of studying biomechanics by
visualizing the soft tissues. The menisci, which are also stabi-
lizers of the knee joint, can be assessed to evaluate laxity.
Shefelbine et al. used 3D modeling to estimate the position
of the menisci using manual segmentation on sagittal slices
and interpolation in ACL-deficient knees [49]. More recently,
Nagazaki et al. analyzed changes in meniscus positions after
ACL reconstruction. By taking measurements on individual
slices, they found significant differences between pre- and
postoperative measures [50, 51]. Other studies have focused
on soft tissue characteristics as surrogates that can be correlat-
ed to knee laxity described by physical exams. The position
and status of the reconstructed ligament itself has been ex-
plored as indicators of laxity [52, 53]. ACL characteristics
such as signal intensity and graft obliquity were correlated to
physical exam findings from the Lachman test [54]. In addi-
tion to meniscus and ligaments, cartilage compression and
deformation may also be viewed as surrogates of unusual
loading patterns. Sutter et al. used compression seen in carti-
lage to understand the mechanics involved in hopping activi-
ties by creating a 3D surface model [55].

Quantitative MR (qMR) adds further ability to assess soft
tissues of cartilage and meniscus by measuring quantifiable
parameters of the extracellular matrices themselves. The
changes seen within cartilage or menisci have been studied
in its relationship to biomechanical findings under the hypoth-
esis that development of early cartilage degeneration seen in
ACL-injured patients is due to altered biomechanics [56, 57].
Various qMR techniques have been applied. Neuman et al.
used gadolinium-enhanced magnetic resonance imaging of
cartilage (dGEMRIC) to compare cartilage of ACL copers to
normal individuals [58]. Zaid et al. used T1ρ and T2 relaxation
times and found moderate correlation between these measure-
ments in cartilage and altered biomechanics (Fig. 2) [39•]. In
addition to cartilage, Wang et al. also found elevation of T1ρ
and T2 in the menisci of ACL-injured knees (Fig. 3) [59].
While these measurements themselves may not be considered
Bfunctional^ in the traditional biomechanical sense, this may
provide an alternative to estimate joint laxity and the its
proceding consequences. Perhaps, one of the greatest advan-
tages of MRI is the acquisition of numerous data at the same
time. Different sequences can offer information on different
tissues and measurements from multiple planes, and this can
be performed in one sitting.

Conclusions

This article has focused on measuring the functionality of the
knee with emphasis on changes in biomechanics seen after
ACL injuries. The use of advanced imaging is very exciting,
but there are currently no standardized methods between the
various techniques. In addition, imaging equipment and image
processing software may vary between institutions, making
standardization and comparisons difficult. The cost is also a
factor that could influence the availability of these modalities.
As 3D data and soft tissue details can be acquired by advanced
imaging, laxity measurements using these methods can pro-
vide comprehensive information regarding the knee joint. An
establishment of uniform measurements may help expand this
technology to wider use and perhaps to routine clinical prac-
tice. We do believe that advanced imaging of joint kinematics
have and continue to lead to improvement in management of
ACL injuries.
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