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Abstract Perivascular adipose tissue is a visceral fat depot
with an anatomical and functional contiguity to the vascula-
ture system. Recent evidence suggests that perivascular adi-
pose tissue could mechanically and functionally affect the
vasculature, thereby possibly playing a role in adiposity-
related atherosclerosis. Experimental and clinical observations
suggest both favorable and unfavorable effects of perivascular
fat. This review focuses on the emerging physiological and
pathophysiological aspects of the perivascular fat and its role
in vascular disease, insulin resistance and diabetes.
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Introduction

A growing body of evidence suggests that regional fat distri-
bution plays an important part in the development of an
unfavorable metabolic and cardiovascular risk profile. Thus,
the increased accumulation of visceral fat is now widely seen
as a defining characteristic of the so-called metabolic syn-
drome [1, 2]. The recognition that adipose tissue is a highly
complex endocrine organ that generates various molecules
with profound local and systemic effects has spawned a re-
markable interest in adipose-tissue research [3, 4]. Despite
their similar qualitative properties, different types of adipose
tissue, particularly subcutaneous and visceral adipose depots,

are now recognized as having distinct quantitative character-
istics [5, 6]. While much of the interest has focused on the
importance of intra-abdominal visceral fat, some extra-
abdominal visceral fat depots, including epicardial [7–9] and
perivascular fat, have also been studied [10]. In this review
paper we focus on the biomolecular properties of perivascular
adipose tissue (PAT), and its role as cardiovascular risk factor.

Anatomy of Perivascular Fat

All vascular vessels are surrounded by a perivascular sheath of
adipose tissue called perivascular fat. Histologically, the
perivascular fat differs according to which type of vessel they
are surrounding: white adipose tissue in resistance vessels,
whereas white and brown adipose tissue (BAT) in larger
vessels like aorta [11]. At first it was suggested that this depot
would offer mechanical support for the vasculature system,
but as it has been discovered this is also an active endocrine
organ which is thoroughly related to muscle tone control.

Physiology of Perivascular Fat

PAT plays a fundamental role in the “brain-vessel axis” con-
trol of vascular muscle tone [12]. The control of vascular
function is dual, and depends on the stimuli around the vessel
[13]. Vascular tone control by PAT is a complicated network
of vasoactive substances, pathways and cellular subtypes that
have recently begun to be described [14, 15, 16•, 17, 18].
Adipose-derived substances can modulate vascular tone. In-
sulin can also exert a dual role inmodulating the vascular tone,
by controlling endothelin-1 secretion via ERK1/2 (extracellu-
lar signal regulated kinases) and endothelial derived nitric oxide
(eNOS) activation with subsequent production of NO via
phosphatidylinositol-3-kinase and protein kinase B (PI3K/Akt)
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[14]. Vascular tone also depends on adipose-derived relaxing
factors (ADRFs) which are capable of activating inward rectify-
ing K+ channels to inhibit vasoconstriction [19]. Leptin and
adiponectin have been considered to function as ADRFs. Sahin
et al. [20] reported that leptin was capable of inducing vessel
relaxation via endothelium derived nitric oxide (AMPK and Akt
phosphorylation of eNOS), hydrogen peroxide, and also by
inducing endothelium-derived hyperpolarizing factor [21],
mechanisms which are exacerbated during the initial adapting
period during over-nutrition and obesity to preserve vascular tone
[22]. On the other hand, adiponectin is known to open K chan-
nels through its receptors adiponectin receptor 1 (AdipoR1) and
AdipoR2 inducing relaxation in aortic and mesenteric rings [23].
Other relaxing factors include Angiotensin, which induces vaso-
dilation by antagonizing angiotensin 1 (AT1) receptors in a
bradykinin-NO pathway [24], and H2O2 through activation of
several types of K+ channels (calcium-dependent [25••], ATP-
dependent [26], and voltage-dependent [27]). In summary, PAT
has been recognized as a very active metabolic organ responsible
for mechanical and functional tasks. PAT offers mechanical
support during the arterial wave pulse and it can even maintain
the integrity of the vascular wall during the pathological expan-
sion during the formation of an atheromatous plaque.

Pathophysiology of Perivascular Fat

PAT & Atherosclerosis

Atherosclerosis and its consequent coronary artery disease
(CAD) are the leading cause of death worldwide [28]. Current
evidence has suggested that the basic pathogenesis includes
lipid metabolism abnormalities and an awry immune response
characterized by increased leukocyte trafficking, enhanced
inflammatory microenvironment and progressive plaque for-
mation [29]. Given the close anatomical proximity and its
importance in vessel embryology, PAT has been placed in a
very compromising place, with evidence that points to a local
source of adipokines that seems to be the culprit of the very
initial vascular dysfunction that ends in atherosclerosis.

PAT & Adipokines

PAT secretes adipokines that modulate and affect vascular
function. Inflammatory cell infiltration is markedly increased
in PAT surrounding atherosclerotic human aorta as compared
with a non-diseased aorta, and the inflammatory gene expres-
sion is upregulated in this location [30]. PAT is able to promote
constriction via induction of NADPH and synthesis of super-
oxide anion, which enhances mitogen activated protein
kinase/extracellular signal regulated kinases (MAPK/ERK)
pathway [31], suggesting a never ending battle of control of
vascular tone; only when one is truly defective will the other

be able to sustain its corresponding effect. Additionally, su-
peroxide anion is capable of uncoupling the eNOS activity,
maintaining only the enzymes production of superoxide,
which is an actual intermediary in the synthesis of NO [32].
The overproduction of superoxide anion and oxygen singlet
(ROS) enhances the levels of nitrogen species such as
peroxynitrite, which is a potent vasoconstrictor and inductor
of apoptosis in cardiomyocytes, endothelium and vascular
smooth muscle [33]. Additionally, PAT can secrete a number
of constrictors like angiotensin-II (Ang-II), resistin and
visfatin.

Ang-II is not only a potent vasoconstrictor via AT1 [34],
but also an inductor of nictotinamides adenine dinucleotide
(NADPH) activity and superoxide production [35]. Moreover,
this hormone is capable of inducing CD44 and C chemokine
receptor 5 (CCR5) in Tcells and production of regulated upon
activation normal T cell expressed and secreted (RANTES) in
vascular endothelium, creating a migration gradient for CD4+

and in a lesser extent to CD8+, although 30 % of T cells
present in perivascular fat are CD4-CD8- [36], capable of
secreting IL-17 - a proinflammatory cytokine [37]. These
CCR5+CD44hi cells are in fact effector T cells with a lower
threshold for activation, releasing TNF-alpha and IFN-gamma
which contribute to endothelial dysfunction and hypertension
[36]. Ang-II has also been related to the formation of
“neoantigens”, such as heat shock protein (HSP) 70 and
HSP25 [38], responsible for the production of autoantibodies
in an endothelial-injury manner and enhanced atherogenesis
in animal models [39, 40].

Resistin, another adipokine fairly recently added to the
adipocyte secretome, has been linked to type 2 diabetes and
insulin resistance [41]. Several pro-atherogenic properties
have been described, including inducing oxidative stress via
uncoupling of eNOS and activation of Jun N-terminal protein
kinase (JNK) [42], vascular smooth muscle cell hyperplasia
promotion with subsequent thickening of the intima [43],
increased expression of IL-1beta, IL-6, TNF-alpha,
alpha4beta1 integrin (VLA-4) and vascular cell adhesion mol-
ecule 1 (VCAM-1) [44•], becoming a useful marker for vas-
cular inflammation [45•] and acute coronary syndrome [46].
Another adipokine involved in this scenario is visfatin (pre–B
ce l l co lony enhanc ing fac to r o r n i co t inamide
phosphoribosyltransferase [Nampt]), a controversial protein
with catalytic activity, capable of improving insulin sensitivity
[47], inducing B cell differentiation [48], and mediating vessel
relaxation through NO synthetized by endothelial cells [49].
Even though these properties seem beneficial, during type 2
diabetes and obesity visfatin has been related to impairment of
vasodilation due to stimulation of NADPH via its Nampt
activity [50] and synthesis of proinflammatory cytokines
(IL-6 and C-reactive Protein) from VAT during obesity
[51], using as main source incoming and circulating
leukocytes [52].
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Leptin also has a principal role in PAT physiology. As
previously reported, leptin induces vasodilation, yet there is
a concept – the “leptin paradox” – where this cytokine is
associated with inhibition of NO-dependent relaxation [53].
Tune and Considine [53] reported that the vasodilating effects
of leptin are dose-dependent, where leptin at 10–90 ng/ml
impairs acetylcholine-mediated relaxation, yet at levels higher
than 160 ng/ml induces vasodilation. These authors conclude
that leptin induced vasodilation might just be a pharmacolog-
ical phenomenon, nevertheless, other studies advocate for a
physiological role [54–56]. There are other novel adipokines
[57] that have vascular tone modulating functions like
omentin (described previously), chemerin, vaspin, and
nesfatin. Chemerin is a protein which has been described as
a potent chemoattractant for macrophages and immature den-
dritic cells [58]. This adipokine has been related to degree of
coronary atherosclerosis and epicardial fat [59], arterial stiff-
ness [60], severity of coronary arterial disease in patients with
metabolic syndrome [61], and insulin resistance and glucose
intolerance [62, 63]. Its ability to attract immunocytes to the
subendothelium, contributes to the progression of atheroscle-
rosis plaque and the vicious circle of localized insulin resis-
tance (see the following section). Vaspin (SERPIN12) is an
adipocyte-derived serine protease inhibitor with insulin sensi-
tizing properties [64] and capable of protecting endothelial
cells from apoptosis via PI3K/Akt pathway [65] protecting
them from lipid toxicity. Hypovaspinemia has been related to
ischemic cardiovascular events [66] and severity of CAD [67],
while normal secretion inhibits TNF-alpha-induced expres-
sion of ICAM-1 preventing the subsequent activation of NF-
kB and PKC protecting the vascular smooth muscle cells from
an inflammatory profile [68]. Finally, nesfatin is an anorexi-
genic hormone with influence in the energy expenditure con-
trol circuit [69], and capable of inducing glucagon secretion
[70]. It has been recently published that it can also inhibit
soluble guanylate cyclase, which reduces NO-dependent va-
sodilation, contributing to vascular dysfunction [71].

PAT & Vascular Smooth Muscle Cells

There is an undeniable relationship between vascular smooth
muscle cells and the white adipose tissue sheath that surrounds
them. These cells are the basic motor units of the vessels, but
they are also capable of altering its structure and modifying
the extracellular matrix composition. Their phenotypes vary
according to different stimuli and are considered not terminal-
ly differentiated, being classified into 2 classes: the spindle-
shaped and the epithelioid vascular smooth muscle cells. The
crosstalk between PAT and vascular smooth muscle cells is
very complex and fairly new in concept. PAT is capable of
modulating neointimal hyperplasia by increased secretion of
TNF-alpha with parallel decreased secretion of adiponectin
[72•]. Free fatty acids are released which can induce

inflammation, as was proven using oleic acid in an
adipocyte-conditioned media, where NF-kB and mTOR path-
ways are activated inducing proliferation of the smooth mus-
cle cells [73, 74]. Insulin-like growth factor-I is able to induce
vascular muscle cells migration via ERK1/2, signaling which
is inhibited by adiponectin implicating AMPK activation [75].
Interestingly, PAT can also modulate the local renin-
angiotensin-aldosterone system by inducing JNK, p38MAPK,
and ERK1/2 via mineralocorticoid receptor, glucocorticoid
receptor and AT1 receptor [76, 77].

PAT & Localized Insulin Resistance

Obesity is a disease closely associated with an array of cardio-
vascular risk factors such as diabetes, hypertension, proinflam-
matory and prothrombotic states, and obstructive sleep apnea.
Remarkably these five risk factors are also related to insulin
resistance [78–82]. Obesity milieu induces inflammation of the
PAT, with the subsequent release of adipocytokines and the start
and amplification of several pathways that will conclude in the
development of the atherosclerotic plaque and the risk of rupture
[83]. In fact, Rittig et al. [84] reported that PAT is an independent
player in insulin resistance and it correlates negatively with
insulin sensitivity. Moreover, they also reported that PAT secrets
higher amounts of angiogenic factors like MC-1, insulin-like
growth factor-binding protein-3, thrombospondin-1, fibroblastic
growth factor and hepatocyte growth factor [85•], contributing to
plaque rupture risk [86]. Obesity has systemic effects which
affect short and long axis loops during the development of the
disease, but at the vascular level obesity has an ample role in its
pathophysiology like enhanced vasoconstriction, functional hy-
peremia, sympathetic neural hyperactivity, microvascular rare-
faction, vascular remodeling, and local inflammation [87]. Insu-
lin is a Janus-type controller in tone control: it can induce
vasodilation via PKB/Akt and eNOS induction [88], while it
induces vasoconstriction via MAPK and ERK1/2 pathways
culminating in endothelin-1 synthesis [88]; nevertheless, the
overall result is vasodilation [89]. As insulin resistance develops
hyperinsulinemia occurs, stimulating MAPK pathways while
PI3K/Akt is blunted, inducing an increase production of
endothelin-1 and enhanced arterial and terminal arterioles con-
striction. This phenomenon alters the uptake of glucose and
perfusion of the vascular muscles, describing a vicious circle
concerning local insulin resistance and vascular tone control [90].

Conclusions

The general hypothesis for atherosclerosis is an “inside-out”
model which is focused on lipid accumulation and monocyte
attraction toward vascular intima. However, accumulating
evidence supports an outside-in hypothesis in which the vas-
cular adventitia promotes vascular inflammation and tone
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deregulation [91] which would suggest that PAT have a role in
this signaling landscape. Results from in vitro, ex vivo, animal
and clinical studies support the double role of PAT in the
pathogenesis of atherosclerosis. It is possible that a mass-
dependent mechanism could influence the equilibrium be-
tween harmful and protective effects of this fat depot; howev-
er, a causal effect of PAT on atherosclerosis remains to be
demonstrated. Therefore, future studies in this direction are
needed to confirm or refute the relationship between PAT and
cardiovascular risk.
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