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Abstract Traditional single-user security models do not necessarily capture the power of
real-world attackers. A scheme that is secure in the single-user setting may not be as
secure in the multi-user setting. Inspired by the recent analysis of Schnorr signatures in the
multi-user setting, we analyse Boneh-Lynn-Shacham (BLS) signatures and Boneh-Gentry-
Lynn-Shacham (BGLS) aggregate signatures in the multi-user setting. We obtain a tight
reduction from the security of key-prefixed BLS in the multi-user model to normal BLS
in the single-user model. We introduce a multi-user security model for general aggregate
signature schemes, in contrast to the original “chosen-key” security model of BGLS that is
analogous to the single-user setting of a signature scheme. We obtain a tight reduction from
the security of multi-user key-prefixed BGLS to the security of multi-user key-prefixed
BLS. Finally, we apply a technique of Katz and Wang to present a tight security reduction
from a variant of multi-user key-prefixed BGLS to the computational co-Diffie-Hellman
(co-CDH) problem. All of our results for BLS and BGLS use type III pairings.

Keywords Security models · Signatures · Aggregate signatures · Multi-user · Reduction

Mathematics Subject Classifications (2010) 94A60 · 68P25

1 Introduction

It is important to have security models that reflect real-world conditions. Proving that a
scheme is secure against a particular type of adversary is less valuable when it does not
correspond to the adversary of such a system deployed in the real world. While single-user
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settings are much easier to analyse, they do not capture many real-world attacks. For exam-
ple, computing the greatest common divisors of RSA moduli from different public keys
makes it possible to recover their corresponding private keys if these moduli share a prime
factor [12]. A generic MAC scheme’s security in the multi-user setting is not equivalent to
its security in the single-user setting—aMAC forger in the multi-user setting has an advantage
over a MAC forger in the single-user setting by a factor of the number of users, n [9].

Although digital signatures have existed for over 30 years, there is still debate about the
most appropriate security models and how to interpret security reductions when choosing
security parameters. As recently as late 2015, the security of Schnorr signatures in the multi-
user setting relative to their security in the single-user setting was not well understood [4,
5, 15]. This discussion about the security of Schnorr signatures inspired our analysis of two
more signature schemes.

1.1 Overview and our contributions

In this paper, we analyse the multi-user security of two related signature schemes: the
Boneh-Lynn-Shacham (BLS) signature scheme [7] and the Boneh-Gentry-Lynn-Shacham
(BGLS) aggregate signature scheme [6]. In Sections 1.2–1.4, we review Schnorr and
BLS signatures, unforgeability, and single-user vs. multi-user settings. In Section 1.5, we
summarize the history of multi-user Schnorr signature security and related work.

Next, in Section 2, we present a reduction from multi-user BLS security to single-user
BLS security. It is not tight; the gap is about min{n, qs +1}. We go on to show in Theorem 1
that with key-prefixing, the security of multi-user BLS does tightly reduce to the security
of single-user BLS. Although we were unable to obtain a tight reduction from the security
of multi-user BLS to single-user BLS without key-prefixing—which does not eliminate the
possibility that multi-user forgery is easier—it is in fact known that, in the random oracle
model, multi-user BLS has the same tightness loss as single-user BLS when it is reduced
directly to the co-CDH problem [14]. We explain this in more detail at the end of Section 2.

In Section 3, we consider BGLS, a natural extension of BLS and the first proposed
aggregate signature scheme. We introduce a truly multi-user security model for general
aggregate signature schemes, as opposed to the chosen-key model of BGLS, in Section 3.1.
In Theorem 2, we present a tight reduction from key-prefixed multi-user BGLS security to
key-prefixed multi-user BLS security in the random-oracle model. Finally, in Theorem 3,
we present a tight security reduction for the key-prefixed BGLS scheme in the multi-user
setting, also in the random oracle model, by further modifying BGLS to use a technique of
Katz and Wang [13].

Figure 1 summarizes our results and shows where they fit in relation to known results.
The tightness of reductions is indicated with “tight” or with the tightness gap. “KP” indicates
the variant where keys are prefixed to messages before signing, and “KW” indicates the
Katz-Wang variants, where a random bit is prefixed to a message before signing. Reductions
are in the standard model unless otherwise indicated with “RO” for “random oracle.”

1.2 Review of Schnorr and BLS signatures, notation

See Table 1 for an overview of the Schnorr [19] and BLS [7] signature schemes. For simplic-
ity, we omit the role of the security parameter in Setup. Schnorr signatures are mentioned
in this paper for illustrative purposes; although we contribute no results about Schnorr
signatures, the history of their security models inspired this work.
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Fig. 1 Overview of our results for BLS and BGLS and how they compare to reductions in the single-user setting

Although the BLS scheme was introduced for symmetric pairings, where G1 = G2, we
use the modified scheme due to Chatterjee et al. [8] that also works for asymmetric pairings
where no efficiently computable isomorphism fromG2 toG1 is known (“type III” pairings).

The security of the BLS signature scheme with type III pairings depends on the hard-
ness of the computational co-Diffie-Hellman (co-CDH) problem in G1 × G2: given
(g1

x, g2
x) ∈ G1 × G2 and h ∈ G1, compute hx ∈ G1. We say that a problem is (t, ε)-hard

if there exists no adversary that can solve it in time at most t with probability at least ε,
where the probability is taken over all possible instances of the problem and any coin flips
the adversary makes.

Table 1 Summary of the Schnorr and BLS signature schemes

Schnorr [19] BLS [7]

Setup G = 〈g〉, prime order p G1 = 〈g1〉, G2 = 〈g2〉, GT , prime order p

H : {0, 1}∗ → Zp , full-domain H : {0, 1}∗ → G1, full-domain

e : G1 × G2 → GT , bilinear

KeyGen x ←$ Zp x ←$ Zp

sk = x ∈ Zp sk = x ∈ Zp

pk = gx ∈ G pk = (y1, y2) = (g1
x , g2

x) ∈ G1 × G2

Sign(sk,m) k ←$ Zp σ = H(m)sk ∈ G1

σ = (h, s)

= (H(gk ||m), sk·h + k)

∈ Zp × Zp

Ver(pk, σ,m) h
?= H(gs ·pk−h||m) e(H(m), y2)

?= e(σ, g2)
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Note that BLS public keys contain both g1
x and g2

x , but only the latter is used for
verification. Without g1

x , it is unknown [8] whether there is a reduction from BLS forgery
to solving the co-CDH problem (the opposite direction of that which we examine in this
paper). If a forger receives a public key (g1

x, g2
x), it is straightforward to see that, given

a co-CDH solver, it can forge a signature on any message without even making a single
signing query.

We let tm and te represent the times required to compute a multiplication or exponen-
tiation in G1 or G2. We write [n] for the set of integers {1, . . . , n}. We write x ←$ S to
denote picking a value of x uniformly at random from the set S. We let x||y denote the con-
catenation of (the binary representations of) x and y. A multi-set is a set that may contain
repetitions.

1.3 Standard and strong unforgeability

The widely-accepted notion of security for a digital signature scheme is resistance to exis-
tential forgery under adaptive chosen-message attacks, formalized by Goldwasser, Micali,
and Rivest in 1988 [11]. A digital signature scheme is (single-user) (t, ε,qs)-existentially
unforgeable under adaptive chosen-message attacks (EUF-CMA) if there exists no forger
F that, given one challenge public key generated by KeyGen and adaptively making at
most qs queries to a signing oracle, runs in time at most t and can produce with probability
at least ε a signature on a message it did not submit to the signing oracle. See Fig. 2a for a
diagram representing the EUF-CMA experiment.

(a) experiment (b) experiment

(c) experiment (d) experiment

Fig. 2 Four types of existential forgery experiments in the standard model. The public keys are generated
with KeyGen. Similar experiments exist in the random oracle model, where the forgers can also make at most
qh queries to a hashing oracle
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For probabilistic signature schemes, there exists a variant of existential unforgeability:
“strong unforgeability,” introduced by An, Dodis, and Rabin in 2002 [1]. A digital signa-
ture scheme is (single-user) strongly (t, ε,qs)-existentially unforgeable under adaptive
chosen-message attacks (SEUF-CMA) if there is no forger F , with the same properties
as above, that can produce a new signature on any message, including the messages it
submitted to the signing oracle. (See Fig. 2b.)

Although the notions of standard and strong unforgeability are identical for BLS, the
difference is important in understanding the history of the security models of Schnorr
signatures.

1.4 Single-user and multi-user settings

In the standard and strong unforgeability models, the adversary receives one target public
key for which it must forge a signature. However, since public keys are public, a real-
world adversary has the choice of which public key to target. Perhaps it is easier to forge a
signature for any public key from a set rather than one specific public key. That is, perhaps
forgery in the multi-user setting, where the adversary chooses which public key to target, is
easier than forgery in the single-user setting. We will compare these two settings.

The study of signature schemes in the multi-user setting was initiated by Menezes and
Smart in 2001 [18]. A digital signature scheme is (multi-user) (t, ε,n, qs)-existentially
unforgeable under adaptive chosen-message attacks (MU-EUF-CMA) if there exists no
forgerF that, given n challenge public keys generated by KeyGen and adaptively making at
most qs queries to a signing oracle, runs in time at most t and with probability at least ε, can
produce a signature for one of the n users on a message that it did not submit to the signing
oracle for this user. (See Fig. 2c.) For probabilistic signature schemes, there is again a strong
unforgeability variant of multi-user security. A digital signature scheme is (multi-user)
strongly (t, ε,n,qs)-existentially unforgeable under adaptive chosen-message attacks
(MU-SEUF-CMA) if there is no forger F , with the same properties as above, that can pro-
duce a new signature on any message by any of the users, including messages submitted to
the signing oracle for this user. (See Fig. 2d.)

1.5 A brief history of multi-user schnorr signature security and related work

In this section, we review the security of Schnorr signatures in the multi-user model. We
will employ similar techniques to develop a reduction for BLS signatures in the multi-user
setting.

In 2002, Galbraith, Malone-Lee, and Smart claimed that single-user unforgeability
(EUF-CMA) tightly implies multi-user unforgeability (MU-EUF-CMA) for any Schnorr-like
signature scheme [10]. However, the GMLS reduction, which explains how to construct a
single-user forger given a multi-user forger, contains an error, pointed out by Bernstein in
October 2015 [5]. The error arises from the single-user forger F1 using its challenge pub-
lic key y to create each of the public keys it gives the multi-user forger Fn. To answer
each of Fn’s signature queries, F1 must always query its own signing oracle for y with the
same message. The analysis of F1’s success probability overlooks the possibility that Fn’s
forgery is for a message with which it previously queried the signing oracle (for any of the
users). In addition to pointing out the error, Bernstein proved that single-user security for
Schnorr signatures (EUF-CMA) tightly implies multi-user security for key-prefixed Schnorr
signatures (MU-EUF-CMA) in the standard model. He also argued that such a reduction for
Schnorr signatures without key-prefixing is unlikely to exist.
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In November 2015, Kiltz, Masny, and Pan gave a reduction showing that strong single-
user security (SEUF-CMA) tightly implies strong multi-user security (MU-SEUF-CMA) for
Schnorr signatures in the random oracle model [15]. In response, Bernstein pointed out that
the assumption of strong unforgeability is less well-understood: “Having to assume ‘strong’
unforgeability isn’t as good as assuming standard unforgeability—there could be huge dif-
ferences in security between these two attack targets” [4]. This work by Bernstein, Kiltz,
Masny, and Pan was in the context of IETF standardization of elliptic-curve based signa-
ture schemes. Their results played a role in the Crypto Forum Research Group (CFRG)’s
selection of a proposal [4], illustrating the importance of appropriate security models and
highlighting the difficulty of interpreting security reductions when implementing schemes.

Kiltz, Masny, and Pan later generalized their work to reduce the security of signature
schemes obtained from identification schemes via the Fiat-Shamir transform in the multi-
user setting to the security of their underlying identification schemes [16]. The tightness
of this security reduction is independent of the number of users and does not require
key-prefixing. Other recent work proved that a tightness loss in the number of users is
unavoidable for some signature schemes when reducing security in the multi-user setting to
the single-user setting [2]. This result applies to adversaries who can corrupt (i.e., learn the
private key of) all but one of the users.

2 BLS signatures

The security reduction for BLS signatures in the single-user setting loses tightness by a
factor of qs , the number of signature queries a forger can make. We restate the result here,
and note that the tightness loss of qs is optimal in the sense that there exists no tighter
reduction [17].

[BLS security reduction [7, 8] If solving the co-CDH problem in G1 × G2 is (t ′, ε′)-
hard, then the BLS signature scheme is (t, ε, qh, qs)-secure against (single-user) existential
forgery under adaptive chosen-message attacks, for

t = t ′ − (qh + qs)te − qhtm, and

ε = ε′e(qs + 1).

For the multi-user security of any signature scheme, it is known that there exists a non-
tight reduction to single-user security, where the tightness loss is the number of users [10].
A natural question is whether a tighter reduction exists for BLS. Although we were not
able to find a tight reduction in the standard model without key-prefixing, our reduction—
illustrated in Fig. 3—loses tightness by a factor of about min{n, qs + 1}. We omit the
details of this non-tight reduction and instead supplement Fig. 3 with some intuition and an
overview of the proof.

The single-user forger F1 embeds its challenge public key into a fraction α of the n pub-
lic keys it provides to the multi-user forger Fn. When Fn queries the signing oracle for a
signature by a user whose public key does not depend on F1’s challenge public key, F1
can simply compute the signature. Otherwise, it answers Fn’s signature query by forward-
ing it to its own signing oracle and multiplying the result by the appropriate power of the
message’s hash.

Although F1 can always answer Fn’s signature queries, the reduction can fail even if
Fn successfully forges a signature. For F1 to succeed as well, two more conditions must
be met: user i∗ must have a pk-dependent key, and Fn must not have requested a signature
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Fig. 3 Reduction from multi-user security to single-user security for BLS

on m∗ by any user with a pk-dependent key. Given that Fn succeeded, the first condition
is met with probability at least α. Given Fn’s success and the first condition being met,
the second condition is met with probability at least (1− α)min{n−1,qs }, since the number of
signatures Fn can request on m∗ is limited by the number of users and the total number of
signatures it can request. Therefore, given Fn’s success, F1 succeeds with probability at
least α · (1− α)min{n−1,qs }, which is maximized for α = 1/min{n, qs + 1} and corresponds
to a tightness gap of about e · min{n, qs + 1}.

This non-tight reduction leaves open the question of whether there is an attack on multi-
user BLS that is much faster than on single-user BLS. Recall that for Schnorr signatures,
there were two approaches to making a multi-user to single-user security reduction tight:
strong unforgeability and prefixing keys to messages. Since BLS signatures are not proba-
bilistic, we try the second approach: we establish a reduction from multi-user key-prefixed
BLS security to single-user BLS security. Let BLS-KP refer to the key-prefixed variant of
BLS, whose details are in Table 2. We obtain a result for BLS analogous to Bernstein’s for
Schnorr signatures. See Fig. 4 for an illustration of this tight reduction and Theorem 1 for
its details.

Theorem 1 (Reduction from multi-user BLS-KP security to single-user BLS security)
If the BLS signature scheme is resistant to (t ′, ε, qs)-existential forgery under adaptive
chosen-message attacks in the single-user setting (EUF-CMA), then BLS-KP is resistant
to (t, ε, n, qs)-existential forgery under adaptive chosen-message attacks in the multi-user
setting (MU-EUF-CMA), for any t, n,and qs satisfying

t = t ′ + (2n + qs + 1)(tm + te).

Table 2 Summary of the
BLS-KP signature scheme Setup,KeyGen Same as BLS (Table 1)

Sign(sk,m) σ = H(pk||m)sk ∈ G1

Ver(pk, σ,m) e(H(pk||m), y2)
?= e(σ, g2)
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Fig. 4 Reduction from multi-user BLS-KP security to single-user BLS security

Proof We proceed in the usual manner, by proving the contrapositive: given a multi-user
(t, ε, n, qs)-forger Fn for BLS-KP, we build a single-user (t ′, ε, qs)-forger F1 for BLS.
F1 receives a challenge public key pk = (y1, y2) and has access to a signing oracle �1 for
pk. F1 gives Fn the following n public keys:

pki = (y1,i , y2,i ) = (y1 · g1
ri , y2 · g2

ri )

where ri ←$ Zp. F1 records (i, ri) for each of the n public keys.
F1 must simulate responses from a signing oracle for Fn, which can make qs signa-

ture queries. To answer the query (m, i) for a signature on m by the user with key pki ,
F1 requests a signature on the message pki ||m from �1 and then computes Sign′

i (m) =
Sign(pki ||m) · H(pki ||m)ri . This signature is valid:

e(Sign(pki ||m) · H(pki ||m)ri , g2) = e(Sign(pki ||m), g2) · e(H(pki ||m), g2
ri )

= e(H(pki ||m), y2) · e(H(pki ||m), g2
ri )

= e(H(pki ||m), y2,i ).

After time at most t and with probability at least ε, Fn outputs a forgery (σ,m∗, i∗) that
is new and valid: (m∗, i∗) was not queried to �n and Ver(pki∗ , σ, m∗) = 1, specifically,
e(σ, g2) = e(H(pki∗ ||m∗), y2,i∗). Then, F1 computes σ ′ = σ ·H(pki∗ ||m∗)−ri∗ and outputs
the forgery (σ ′, pki∗ ||m∗). This signature is a valid forgery on pki∗ ||m∗ by the user with
public key pk since

e(σ ′, g2) = e(σ, g2) · e(H(pki∗ ||m∗)−ri∗ , g2)

= e(H(pki∗ ||m∗), y2,i∗) · e(H(pki∗ ||m∗), g2−ri∗ )

= e(H(pki∗ ||m∗), y2 · g2
ri∗ · g2

−ri∗ )

= e(H(pki∗ ||m∗), y2).

There is a one-to-one correspondence between the signing queries of F1 and Fn, so F1
made exactly qs signing queries and never queried �1 with pki∗ ||m∗ sinceFn never queried
�′

n with (m∗, i∗). F1’s success probability is exactly Fn’s success probability ε. Finally,
F1’s only additional work was computing 2n + qs + 1 multiplications and 2n + qs + 1
exponentiations in G1 or G2, so t ′ = t + (2n + qs + 1)(tm + te), giving the required
bounds.
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By composing the BLS security reduction and Theorem 1, we can obtain a security
reduction for BLS in the multi-user setting with key-prefixing. One might be tempted to
conclude that key-prefixing is necessary to preserve BLS security in a multi-user setting,
but it is not. In fact, the security of BLS in the multi-user setting can be directly reduced to
the hardness of the co-CDH problem, with the same tightness loss as BLS in the single-user
setting [14]. To see this, first consider the single-user BLS security reduction. The co-CDH
solver embeds one part of the co-CDH instance in the public key it gives to the forger,
and the other part in a particular fraction of the message hashes. It succeeds if it was able
to answer all of the forger’s signature queries, if the forger succeeded, and if the message
on which the forger forged a signature was one of the special fraction of messages. In the
multi-user BLS security reduction, the co-CDH solver can simply embed the first part of
the co-CDH instance in all of the public keys it provides the BLS forger. The rest of the
reduction (and thus, the analysis) is the same.

Now that we have a tight reduction relating the security of multi-user BLS (with key-
prefixing) and single-user BLS, we turn our attention to the BGLS aggregate signature
scheme.

3 Aggregate signatures

Aggregate signature schemes combine multiple users’ signatures on multiple (possibly dif-
ferent) messages. Their current chosen-key security model does not reflect the possibility
that an adversary may consider it sufficient to forge a signature involving any one user,
rather than a given user.

Boneh, Gentry, Lynn, and Shacham introduced aggregate signatures in 2003 [6]. These
schemes allow compressing many signatures into one signature of shorter length, some-
times even independent of the number of included signatures. A general aggregate signature
scheme comprises five algorithms (Setup,KeyGen,Sign,Agg,AggVer) on four sets (public
keys, secret keys, messages, and signatures). Setup, KeyGen, and Sign work exactly as they
do in a normal signature scheme, except that KeyGen is run once for each user. Agg takes
two or more signatures and outputs one (aggregate) signature. AggVer takes a signature, a
multi-set of k � nmax public key-message pairs, and outputs 1 if the signature is a valid
aggregate. While sequential aggregate signature schemes exist, we consider only general
aggregate signature schemes where aggregation can be performed by anyone in any order. In
the following experiments, we always assume without loss of generality that the messages
in each aggregate signature are numbered so that the first one corresponds to the non-trivial
component of that signature, as we describe below.

3.1 General aggregate signature security model

The original security model is the “aggregate chosen-key security model” [6], in which
the adversary receives one public key generated with KeyGen and can adaptively query a
signing oracle with messages of its choice. Its goal is to output a valid, non-trivial aggregate
signature on k ∈ [nmax] messages for which it chose k − 1 of the public keys. “Non-trivial”
means that the first message (corresponding to the challenge public key) was not queried to
the signing oracle. See Fig. 5a for a diagram of this experiment, the aggregate existential
unforgeability under adaptive chosen-message attacks (A-EUF-CMA) experiment. We write
pk or pki for public keys generated using KeyGen, and pk′

j for public keys chosen by the
adversary. The keys it choosesmay or may not be equal to some of the keys it received as input.
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Fig. 5 Two types of aggregate existential forgery experiments in the random oracle model. The public keys
pk and pk1, . . . , pkn are generated with KeyGen

We believe the chosen-key security model is analogous to the single-user setting for (non-
aggregate) digital signatures: the adversary is given one public key to target. We propose a
new security model that is truly a multi-user model—the forger receives n challenge public
keys generated by KeyGen and it can choose which one or ones to target, eventually forging
an aggregate signature on at most nmax messages. A valid, non-trivial aggregate signature
in this model must include at least one message signed by a user with one of the challenge
public keys, and the forger must not have requested a signature on this message by this
user from the signing oracle. The other public keys, if any, may be challenge keys or they
may have been generated by the forger. We call this model “multi-user aggregate existential
forgery under adaptive chosen-message attacks” (MU-A-EUF-CMA). (See Fig. 5b.)

Chosen-key aggregate forgery is at least as hard as multi-user aggregate forgery: an
aggregate forger in the chosen-key model can easily be translated to an aggregate forger in
the multi-user model. For the converse, however, we do not know of a tight reduction, only
one that loses tightness by a factor of the number of users, n. This straightforward, general
result does not require the random oracle model.

Proposition 1 (Reduction from multi-user to chosen-key aggregate signature secu-
rity) If an aggregate signature scheme is resistant to aggregate (t, ε, nmax, qs)-existential
forgery under adaptive chosen-message attacks (A-EUF-CMA), then it is resistant to multi-
user aggregate (t, ε, n, nmax, qs)-existential forgery under adaptive chosen-message attacks
(MU-A-EUF-CMA) for any t , ε, n, nmax , and qs satisfying

t = t ′ − qstSign − (n − 1)tKeyGen, and

ε = ε′n

where tSign and tKeyGen are the times required to run Sign and KeyGen.

This result applies to any general aggregate signature scheme, and could be composed
with a security reduction in the A-EUF-CMAmodel to obtain a security reduction in theMU-
A-EUF-CMA model. For BGLS, however, it is possible to obtain a tighter security reduction
by first reducing security to the underlying signature scheme, BLS, in the multi-user model.
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Our reductions involving BGLS aggregate forgers are in the random oracle model. We
make the following simplifying assumptions:

– When a forger requests a signature on a message from a signing oracle, it has already
obtained the hash of this message from the hashing oracle.

– A forger never makes the same query twice.
– When a forger outputs a signature on a message (or messages), every message was

previously hashed.

3.2 BGLS and key-prefixing

Recall that we used key-prefixing to obtain a tight reduction from multi-user BLS-KP secu-
rity to single-user BLS security, as did Bernstein for Schnorr signatures [5]. Key-prefixing
is also relevant to BGLS signatures, but for a different reason: to prevent a rogue-key attack.
In such an attack, a malicious user claims its public key is some function of an honest user’s
public key, but without actually knowing the associated secret key. Table 3 summarizes the
basic BGLS scheme, which must be modified or restricted to prevent a rogue-key attack.

The rogue key attack, identified in the original BGLS paper [6], works as follows. Sup-
pose honest user 1 has public key pk1 = (y1,1, y2,1). Malicious user 2 can pick any integer
x ∈ Zp and publish pk2 = (g1

x · y1,1
−1, g2

x · y2,1
−1) as its public key. Then, user 2 can

compute σA = H(m)x for any message m and claim that it is an aggregate signature on m

comprising signatures by both itself and honest user 1. This signature is valid since

e
(
H(m), y2,1

) · e
(
H(m), y2,2

) = e
(
H(m), y2,1 · g2

x · y2,1
−1

)

= e
(
H(m), g2

x
)

= e (σA, g2) .

This attack applies to the basic BGLS scheme as defined in Table 3 in both the original A-
EUF-CMA model and our new MU-A-EUF-CMA model. Boneh, Gentry, Lynn, and Shacham
suggested applying one of the following three countermeasures:

– Require users to prove knowledge of their private keys (e.g., by disclosing their private
keys to a trusted party).

Table 3 Basic BGLS aggregate signature scheme [6]

Setup G1 = 〈g1〉, G2 = 〈g2〉, GT , prime order p

H : {0, 1}∗ → G1, full-domain

e : G1 × G2 → GT , bilinear

KeyGen x ←$ Zp

sk = x ∈ Zp

pk = (y1, y2) = (g1
x , g2

x) ∈ G1 × G2

Sign(sk,m) σ = H(m)sk ∈ G1

Agg(σ1, . . . , σk) σA = ∏k
i=1 σi ∈ G1

AggVer(σA, (pk1,m1), . . . , (pkk,mk))
∏k

i=1 e(H(mi), y2,i )
?= e(σA, g2)



52 Cryptogr. Commun. (2018) 10:41–58

– Require users to prove possession of their private keys (e.g., by signing random
messages that will never be used in practice).

– Require all of the messages in one aggregate signature to be distinct.

The authors suggested that the last option might be the simplest, and further suggested that
to achieve distinctness of messages, a user could simply prefix its public key to a message,
creating an “enhanced” or “key-prefixed” message, before hashing it. Then, the distinctness
requirement would apply only to each user’s messages in the aggregate, rather than all
messages in the aggregate.

In their 2007 paper, Bellare, Namprempre, and Neven pointed out that while hashing
enhanced messages eliminates the rogue-key attack, the requirement for distinct enhanced
messages is restrictive and unnecessary [3]. There may be applications where multiple sig-
natures by the same user on the same message need to be aggregated. They suggested that
an “unrestricted” scheme—with no requirement for enhanced messages to be distinct—is
more practical and is sufficient for preventing the rogue-key attack. See Table 4 for this
unrestricted, key-prefixed variant “BGLS-KP.”

Bellare, Namprempre, and Neven presented a tight reduction from the unforgeability of
BGLS-KP to the unforgeability of BLS in the random oracle model [3]. Composing this
reduction with the standard BLS security reduction yields a security reduction for BGLS-
KP that loses tightness by a factor of qs . Then, using a technique of Katz and Wang [13],
they presented a tight security reduction for a variant of BGLS with key-prefixing, “BGLS-
KP-KW,” where each signer further enhances a message before hashing and signing it by
also prefixing a random bit of its choice (Table 5).

In the next section, we determine whether similar results hold for BGLS in our multi-user
security model. First, we examine whether there is also a tight reduction from BGLS-KP
security in the multi-user model to BLS-KP security in the multi-user model. Next, we
determine whether the Katz-Wang trick is enough to yield a tight security reduction for
BGLS-KP-KW in the multi-user model.

3.3 BGLS security in a truly multi-user setting

In the standard model, it is not obvious how to reduce the security of multi-user BGLS-KP
to the security of multi-user BLS-KP: a BLS forger would need to isolate one component
of the BGLS forger’s aggregate signature, which requires being able to compute signatures
on messages by users whose keys are chosen by the BGLS-KP forger. In the random oracle
model, however, it is possible to obtain a tight reduction from BGLS-KP to BLS-KP security
in the multi-user setting, as the next theorem proves. See Fig. 6 for an illustration of the
reduction.

Theorem 2 (Reduction from multi-user BGLS-KP security to multi-user BLS-KP
security) If the BLS-KP signature scheme is resistant to multi-user (t ′, ε, n, qh, q

′
s)-

existential forgery under adaptive chosen-message attacks (MU-EUF-CMA), then the BGLS-
KP aggregate signature scheme is resistant to multi-user (t, ε, n, nmax, qh, qs)-existential

Table 4 BGLS-KP aggregate signature scheme [3]

Setup,KeyGen,Agg Same as BGLS (Table 3)

Sign(sk,m) Same as BLS-KP (Table 2)

AggVer(σA, (pk1,m1), . . . , (pkk,mk))
∏k

i=1 e(H(pki ||mi), y2,1)
?= e(σA, g2)
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Table 5 BGLS-KP-KW aggregate signature scheme [3]

Setup,KeyGen Same as BGLS (Table 3)

Sign(sk,m) (σ = H(b||pk||m)sk, b) ∈ G1 × {0, 1}
Agg((σ1, b1), . . . , (σn, bk)) (σA = ∏k

i=1 σi , b1, . . . , bk) ∈ G1 × {0, 1}k
AggVer(σA, (pk1,m1), . . . , (pkk,mk), b1, . . . , bk)

∏k
i=1 e(H(bi ||pki ||mi), y2,i )

?= e(σA, g2)

aggregate forgery under adaptive chosen-message attacks (MU-A-EUF-CMA), for any
t, ε, n, nmax, qh,and qs satisfying

t = t ′ − (qh + nmax + 1)te + (nmax − 1)tm and

qs = q ′
s − nmax + 1.

Proof We proceed by proving the contrapositive: given a multi-user BGLS-KP
(t, ε, n, nmax, qh, qs)-aggregate forgerFA, we build a multi-user (t ′, ε, n, qh, q

′
s)-forgerF

for BLS-KP. F receives n challenge public keys (pk1, . . . , pkn) and can query a hashing
oracle H and a signing oracle �n. F gives FA the same n public keys and must simulate a
hashing oracle H′ and signing oracle �′

n. When FA makes a hash query, the reply depends
on the message’s format:

H′(m) =
{
H(m′) if m = pk||m′ for some pk ∈ {pk1, . . . , pkn}
g1

r , r ←$ Zp else.

In the first case, F must query H. In the second case, F records (m, r). When FA queries
�′

n with (m, i), F in turn queries �n with (m, i) and replies to FA with Sign′
i (m) =

Signi (m).

Fig. 6 Reduction from multi-user BGLS-KP security to multi-user BLS-KP security
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After time at most t and with probability at least ε, FA outputs a valid aggregate forgery
(σ ∗

A,m∗
1, . . . , m

∗
k, i∗, pk′

2, . . . , pk
′
k) for some k ∈ [nmax], where (m∗

1, i
∗) was not queried to

�′
n. For simplicity, let pk′

1 = pki∗ . Partition the indices [k] into the following three sets of
“duplicates,” “new keys,” and “given keys”:

– ID := {i ∈ [k] : m∗
i = m∗

1 and pk′
i = pk′

1}
– INK := {i ∈ [k] : pk′

i /∈ {pk1, . . . , pkn}}
– IGK := {i ∈ [k] \ ID : pk′

i = pkgki
for some gki ∈ [n]}

The set ID contains at least one element, 1. For each i in INK , F looks up the logarithm of
H′(pk′

i ||m∗
i ) to base g1, i.e., the value of rnki

such that H′(pk′
i ||m∗

i ) = g1
rnki . For each i in

IGK , F queries the signing oracle �n with (m∗
i , gki) to get Signgki

(m∗
i ). Since FA output

a valid forgery, σ ∗
A satisfies the following equations:

e(σ ∗
A, g2)

=
∏

i∈ID

e(H(pki∗ ||m∗
1), y2,i∗) ·

∏

i∈INK

e(g1
rnki , y′

2,i ) ·
∏

i∈IGK

e(H(pkgki
||m∗

i ), y2,gki
)

= e(H(pki∗ ||m∗
1), y2,i∗)

|ID | ·
∏

i∈INK

e(y′
1,i

rnki , g2) ·
∏

i∈IGK

e(Signgki
(m∗

i ), g2)

= e(H(pki∗ ||m∗
1)

|ID |, y2,i∗) · e

⎛

⎝
∏

i∈INK

y′
1,i

rnki ·
∏

i∈IGK

Signgki
(m∗

i ), g2

⎞

⎠ .

Therefore, F is able to compute the following signature on (m∗
1, i

∗):

σ ∗ =
⎛

⎜
⎝σ ∗

A ·
⎛

⎝
∏

i∈INK

y′
1,i

rnki ·
∏

i∈IGK

Signgki
(m∗

i )

⎞

⎠

−1
⎞

⎟
⎠

|ID |−1 mod p

.

|ID|−1 mod p exists as long as |ID| < p, which is a reasonable assumption since otherwise
F could find a secret key by trial exponentiation. F outputs (σ ∗, m∗

1, i
∗), which is valid

because e(σ ∗, g2) = e(H(pki∗ ||m∗
1), y2,i∗)).

The additional work done by F was computing at most qh + nmax + 1 exponentiations
and nmax − 1 multiplications in G1, so t ′ � t + (qh + nmax + 1)te + (nmax − 1)tm. F
made at most as many hashing queries as FA, qh, and it made q ′

s � qs + nmax − 1 signing
queries. It always succeeds whenever FA succeeds, so ε′ = ε. Thus, we have built a multi-
user forger for BLS-KP given a multi-user aggregate forger for BGLS-KP with the required
time and query bounds.

The previous reduction is tight. We can compose it with the reduction from multi-user
BLS-KP security to single-user BLS security (Theorem 1) and the security reduction for
single-user BLS security. The result is a security reduction for BGLS-KP based on the
co-CDH problem that has a tightness gap of about qs .

Given that there is a tight security reduction for BGLS in the chosen-key model due to
Katz and Wang, it is natural to wonder whether this result can be lifted to the multi-user
model. Our last theorem provides an affirmative answer for this variant of BGLS-KP: there
is a tight security reduction, illustrated in Fig. 7, for BGLS-KP-KW in the multi-user setting.

Theorem 3 (Security reduction for multi-user BGLS-KP-KW) If the co-CDH prob-
lem is (t ′, ε′)-hard in G1 × G2, then the BGLS-KP-KW aggregate signature scheme is
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Fig. 7 Security reduction for multi-user BGLS-KP-KW

resistant to multi-user (t, ε, n, nmax, qh, qs)-existential aggregate forgery under adaptive
chosen-message attacks (MU-A-EUF-CMA), for any t, ε, n, nmax, qh,and qs satisfying

t = t ′ − (2n + qh + qs + 2nmax + 1)te + (2n + qh + qs + 2n)tm and

ε = 2ε′.

Proof We show how to build a solver S for the co-CDH problem given an aggregate
forger FA for BGLS-KP-KW. S receives an instance of the co-CDH problem, a triple
(h, g1

x∗
, g2

x∗
) ∈ G1 × G1 × G2, for some unknown integer x∗ ∈ Zp . It must compute

hx∗ ∈ G1. First, S gives FA n public keys of the form pki = (g1
x∗ · g1

ri , g2
x∗ · g2

ri ),
where ri ←$ Zp . For each of these i, S records (i, ri). When FA requests the hash of a
message m, S ’s reply depends on the message’s format:

H(m) =
{

hb
⊕

bm′,i · g1
s if m = b||pk||m′ where b ∈ {0, 1}, pk = pki for an i ∈ [n]

g1
s else

for some s ←$ Zp, where bm′,i ←$ {0, 1}. In the first case, S stores (m′, i, bm′,i ) and
(m′, i, b, s); in the second case, S stores (m, s).

When FA queries the signing oracle �n with (m, i), S always chooses to sign with b =
bm,i . It looks up the value of s corresponding to (m, i, b) and returns Signi (m) = (b, (g1

x∗ ·
g1

ri )s), which is a valid signature since (g1
x∗ · g1

ri )s = (g1
s)x

∗+ri = H(b||pki ||n)x
∗+ri .
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After time at most t and with probability at least ε, FA outputs a valid aggregate
forgery (σ ∗

A,m∗
1, . . . , m

∗
k, i∗, pk′

2, . . . , pk
′
k, b

∗
1, . . . , b

∗
k ) for some k ∈ [nmax], where �n

never answered a query for (m∗
1, i

∗) with b = b∗
1. For ease of notation, let pk

′
1 = pki∗ . Par-

tition the indices [k] into the following three sets corresponding to “new keys,” “random
hashes,” and “h-dependent hashes”:

– INK := {i ∈ [k] : pk′
i /∈ {pk1, . . . , pkn}}

– IRH := {i ∈ [k] \ INK : pk′
i = pkgki

for some gki ∈ [n] and b∗
i = bm∗

i ,i
}

– IHH := {i ∈ [k] \ INK : pk′
i = pkgki

for some gki ∈ [n] and b∗
i 	= bm∗

i ,i
}

With probability 1/2, b∗
1 	= bm∗

1,i
∗ and therefore 1 ∈ IHH . (If not, then S aborts.) For each

i ∈ INK ∪ IRH , S can look up the value of si such that H′(b∗
i ||pk′

i ||m∗
i ) = g1

si . Similarly,
for each i ∈ IHH , S can look up the value of si such that H′(b∗

i ||pk′
i ||m∗

i ) = hg1
si . Since

FA output a valid forgery, σ ∗
A satisfies the following equations:

e(σ ∗
A, g2)

=
∏

i∈INK

e(g1
si , y′

2,i ) ·
∏

i∈IRH

e(g1
si , y2,gki

) ·
∏

i∈IHH

e(h·g1si , y2,gki
) ·

= e

⎛

⎝
∏

i∈INK

y′
1,i

si ·
∏

i∈IRH

y1,gki

si ·
∏

i∈IHH

(h·g1si )skgki , g2

⎞

⎠

= e

⎛

⎝
∏

i∈INK

y′
1,i

si ·
∏

i∈IRH

y1,gki

si ·
∏

i∈IHH

(h·g1si )x
∗+rgki , g2

⎞

⎠

= e

⎛

⎝hx∗|IHH | ·
∏

i∈INK

y′
1,i

si ·
∏

i∈IRH

y1,gki

si ·
∏

i∈IHH

hrgki (g1
x∗

)si g1
si rgki , g2

⎞

⎠ .

|IHH |−1 mod p exists if |IHH | < p, a reasonable assumption, in which case the co-CDH
solver S can compute the desired value:

hx∗ =
⎛

⎜
⎝σ ∗

A

⎛

⎝
∏

i∈INK

y′
1,i

si
∏

i∈IRH

y1,gki

si
∏

i∈IHH

hrgki (g1
x∗

)si g1
si rgki

⎞

⎠

−1
⎞

⎟
⎠

|IHH |−1

.

S had to compute 2n + qh + qs + 2nmax + 1 exponentiations and 2n + qh + qs + 2n
multiplications in G1 or G2. S succeeds whenever FA does and b∗

1 	= bm∗
1,i

∗ , so ε′ ≥ ε/2,
as required.

Although the length of a BGLS-KP-KW aggregate signature increases by 1 bit for each
component, Bellare, Namprempre, and Neven argue that the BGLS-KP-KW scheme could
be as efficient as BGLS-KP: the tighter reduction means that a smaller prime p can be used
for the same level of security [3].

4 Conclusions

Inspired by the recent analysis of Schnorr signatures in the multi-user setting, we exam-
ined reductions for BLS and BGLS signatures in the multi-user setting. We obtained a tight
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reduction from the multi-user security of BLS-KP, a key-prefixed variant of BLS, to BLS
in the single-user setting. We introduced a notion of security (MU-A-EUF-CMA) for general
aggregate signature schemes in the multi-user setting, which we believe is more realistic
than the current standard. The security of any general aggregate signature scheme in this
new multi-user setting reduces to its security in the original chosen-key setting with a tight-
ness loss of the number of users. For BGLS, it is possible to do better: we presented a
tight reduction from multi-user BGLS-KP security to multi-user BLS-KP security in the
random-oracle model. BGLS-KP is not only a natural extension of BLS-KP, which has a
tight reduction to single-user BLS, but BGLS-KP also avoids a known rogue-key attack
and has no requirement for the distinctness of (enhanced) messages. Composing this reduc-
tion with our first result—the tight multi-user BLS-KP to single-user BLS reduction—and
with the standard BLS security reduction yields a security reduction for BGLS-KP with
a tightness gap of qs . Finally, we presented a tight security reduction for BGLS-KP-KW,
the Katz-Wang variant of BGLS with key-prefixing, in the multi-user setting. The tightness
gap of this reduction is only 2, but it is in the random oracle model. It would be interest-
ing to perform a similar analysis on the security models for sequential aggregate signature
schemes.

Although the importance of developing appropriate security models may be well known,
interpreting the tightness of security reductions is still difficult. In this paper, we proved that
prefixing a random bit to each enhanced message makes the BGLS-KP security reduction
tight in the random oracle model. However, without these single bits, which are sent in the
clear with the signature, the security reduction may lose tightness by a factor of up to qs ,
the number of signature queries an adversary can make—which could be as much as 220.
The question of which of these two results should guide the choice of parameter sizes in
practice is difficult to answer.
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