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Abstract A usual way to construct block ciphers is to apply several rounds of a given struc-
ture. Many kinds of attacks are mounted against block ciphers. Among them, differential
and linear attacks are widely used. Vaudenay showed that ciphers achieving perfect pair-
wise decorrelation are secure against linear and differential attacks. It is possible to obtain
such schemes by introducing at least one random affine permutation as a round function
in the design of the scheme. In this paper, we study attacks on schemes based on classical
Feistel schemes where we introduce one or two affine permutations. Since these schemes
resist against linear and differential attacks, we will study attacks based on specific equa-
tions on 4-tuples of plaintext/ciphertext messages. We show that these schemes are stronger
than classical Feistel schemes.
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1 Introduction

Many schemes have been designed in order to construct pseudo-random permutations using
round functions. Examples of such schemes are given by classical Feistel schemes with ran-
dom functions [7, 8, 14] or random permutations [6, 17], unbalanced Feistel schemes with
expanding [5, 16, 21] or contracting functions [13, 15], Misty schemes [3, 11], generalized
Feistel schemes of type 1, 2 and 3 [12]. Also, generic attacks on these different kinds of
block ciphers have been extensively studied. By generic attacks, we mean that the keys are
random functions.

In [18, 19], Vaudenay showed that if a block cipher has perfect pairwise decorrela-
tion, then it is secure against linear and differential attacks. Moreover, adding an affine
permutation as a round function in the construction of a block cipher allows to obtain per-
fect pairwise decorrelation and thus to prevent from linear and differential cryptanalysis.
COCONUT and PEANUT [18] are examples of such schemes: they use any cipher then an
affine permutation followed again by any cipher. In [13], the authors propose schemes for
which there is first a pairwise independent permutation (an affine permutation is an exam-
ple of a pairwise independent permutation) followed by a classical Feistel scheme or an
unbalanced Feistel scheme with contracting functions, and with or without another affine
permutation at the end. In [13], the security of these schemes is studied.

This is why it is quite natural and interesting to study generic attacks on schemes where
we have a classical Feistel structure with several rounds together with one or two affine
permutations as a round functions introduced at some stage of the construction. This defines
a family of schemes that we will denote by A-Feistel schemes. For example, it is possible to
apply first an affine permutation and then several rounds of a Feistel scheme. We can also
begin with a Feistel scheme and end with an affine permutation. Another possibility is to
introduce an affine permutation after several rounds of a Feistel scheme and then to go on
with a Feistel scheme. It is also possible to have first an affine permutation then a Feistel
scheme and again a random permutation. As far as we know, no systematic study of attacks
has been done. This is the aim of this paper.

We will study Known Plaintext Attacks (KPA) and non adaptive Chosen Plaintext
Attacks (CPA-1). Since we introduce an affine permutation at the beginning, at the end,
inside the Feistel scheme, or both at the beginning and at the end, by symmetry, we will
obtain results for Known Ciphertext Attacks (KCA) and non adaptive Chosen Ciphertext
Attacks (CCA-1). The aim of our attacks is to distinguish a random permutation from a ran-
dom permutation produced by the schemes. For some of our attacks, we will make a precise
analysis of standard deviations.

The paper is organized as follows. In Section 2, we defineA-Feistel schemes. In Section 3,
we describe our best KPA and CPA-1 on schemes with one affine permutation. We show that
it is possible to attack up to 3 rounds (for the Feistel scheme) with a number of messages less
than 22n when the affine permutation is placed at the beginning or at the end of the scheme.
When the affine permutation is situated between two Feistel schemes, we can attack up to
4 rounds with less than 22n messages (this means that when we add the number of rounds
for each Feistel scheme, we obtain 4 rounds). Then we describe attacks against generators
of permutations. We did some simulations of our attacks. The results of these simulations
are given in Section 3.3. In Section 4, we present attacks on schemes for which we apply
first an affine permutation, then a Feistel scheme with several rounds and then an affine
permutation. Section 5 is devoted to the computation of standard deviations in the case of A-
Feistel schemes since the computation for randoms permutation can be done automatically
as we will explain in the next section.
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2 Definition of A-Feistel schemes and overview of the attacks

We use the following standard notations. The number of messages is denoted by m. The set
of the 2n binary strings of length n is denoted by {0, 1}n. For a, b ∈ {0, 1}n, [a, b] will be
the string of length 2n of {0, 1}2n which is the concatenation of a and b. For a, b ∈ {0, 1}n,
a ⊕ b stands for bit by bit exclusive or of a and b. The composition of functions is denoted
by ◦. The set of all functions from {0, 1}n to {0, 1}n is Fn. Let f be a function of Fn.
Let L, R, S and T be elements of {0, 1}n. One round of A-Feistel scheme is defined by

Ψ (f )[L,R] = [S, T ] def⇔ (S = R and T = L ⊕ f (R)). More generally, let f1, f2, . . . , fd

be d functions of Fn. Then by definition: Ψ d(f1, . . . , fd) = Ψ (fd) ◦ · · · ◦ Ψ (f2) ◦ Ψ (f1).
The permutation Ψ d(f1, . . . , fd) is called a “Feistel scheme with d rounds” and is denoted
by Ψ d .

We now define A-Feistel Schemes. We consider an affine permutation from {0, 1}2n to
{0, 1}2n. It is written under the form ϕ : M → A·M ⊕ C where A ∈ GL(2n, F2) and
C ∈ {0, 1}2n. In order to construct an A-Feistel scheme with “d rounds”, we use one or two
affine permutations and a classical Feistel scheme with d rounds. Here d is related to the
Feistel scheme. Let ϕ and ϕ′ be affine permutations, an A-Feistel scheme with d rounds is
one of the following permutations: Ψ d ◦ ϕ, ϕ ◦ Ψ d , Ψ d2 ◦ ϕ ◦ Ψ d1 with d1 + d2 = d or
ϕ′ ◦ Ψ d ◦ ϕ. Since A is a linear permutation from {0, 1}2n to {0, 1}2n, it can be represented

by a matrix, still denoted by A. We will write A under the form:

(
A1 A2
A3 A4

)
where each

Ai ∈ M(n × n,F2). We also set C = [C1, C2] where Ci ∈ {0, 1}n.

Perfect pairwise decorrelation of affine permutations In [18, 19], Vaudenay showed
how to construct perfect pairwise decorrelated ciphers on a field structure F by F(M) =
K1 + K2·M where (K1,K2) ∈ F × F∗. When the functions are defined on {0, 1}2n, the
operations are taken over GF(22n). We can also consider GF(22n) as a vector space over
{0, 1}. The function M 	→ K2·M is linear and can be represented by a matrix. If we want
to express this matrix in the canonical basis, the coordinates of K2 are on the first column
of the matrix. In this paper, we consider that any invertible matrix can be used as the linear
part of the affine permutation we are using. We still have perfect pairwise decorrelation: for
any M,M ′ such that M 
= M ′ the random variable (ϕ(M), ϕ(M ′)) is uniformly distributed
among all the pairs (Y, Y ′) such that Y 
= Y ′.

Notation for A-Feistel schemes

1. Ψ d ◦ ϕ

[L,R] ϕ−→ [P,Q] Ψ (f1)−→ [Q, X1] Ψ (f2)−→ [X1, X2] . . .

Ψ (fd−1)−→ [Xd−2, Xd−1] Ψ (fd )−→ [S, T ]
Thus we have introduced internal variables: P = A1·L ⊕ A2·R ⊕ C1, Q = A3·L ⊕
A4·R⊕C2,X1 = P⊕f1(Q),X2 = Q⊕f2(X

1) and for j ≥ 3,Xj = Xj−2⊕fj (X
j−1).

2. ϕ ◦ Ψ d

[L, R] Ψ (f1)−→ [R, X1] Ψ (f2)−→ [X1, X2] . . .
Ψ (fd−1)−→ [Xd−2, Xd−1] Ψ (fd )−→ [Xd−1, Xd ] ϕ−→ [S, T ]

The internal variables are: X1 = L ⊕ f1(R), X2 = R ⊕ f2(X
1) and for j ≥ 3, Xj =

Xj−2⊕fj (X
j−1). Since we apply ϕ at the end, we have: S = A1·Xd−1⊕A2·Xd ⊕C1,

T = A3·Xd−1 ⊕ A4·Xd ⊕ C2.
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3. Ψ d2 ◦ ϕ ◦ Ψ d1 with d1 + d2 = d

[L,R] Ψ (f1)−→ [R,X1] Ψ (f2)−→ [X1, X2] . . . Ψ (fd1 )−→ [Xd1−1, Xd1 ]

ϕ−→ [P, Q] Ψ (fd1+1)−→ [Q, Xd1+1] Ψ (fd1+2)−→ [Xd1+1, Xd1+2] . . . Ψ (fd1+d2 )−→ [S, T ]
The internal variables are: X1 = L ⊕ f1(R), X2 = R ⊕ f2(X

1) and for 3 ≤ j ≤ d1,
Xj = Xj−2⊕fj (X

j−1), P = A1·Xd1−1⊕A2·Xd1⊕C1,Q = A3·Xd1−1⊕A4·Xd1⊕C2,
Xd1+1 = P ⊕fd1+1(Q), Xd1+2 = Q⊕fd1+2(X

d1+1). For d1+3 ≤ j ≤ d1+d2, Xj =
Xj−2 ⊕ fj (X

j−1).
4. ϕ′ ◦ Ψ d ◦ ϕ

[L,R] ϕ−→ [P,Q] Ψ (f1)−→ [Q, X1] Ψ (f2)−→ [X1, X2] . . .

Ψ (fd−1)−→ [Xd−2, Xd−1] Ψ (fd )−→ [Xd−1, Xd ] ϕ′
−→ [S, T ]

With the internal variables: P = A1·L ⊕ A2·R ⊕ C1, Q = A3·L ⊕ A4·R ⊕ C2,
X1 = P ⊕ f1(Q), X2 = Q ⊕ f2(X

1) and for j ≥ 3, Xj = Xj−2 ⊕ fj (X
j−1). Finally

S = A′
1·Xd−1 ⊕ A′

2·Xd ⊕ C′
1, T = A′

3·Xd−1 ⊕ A′
4·Xd ⊕ C′

2.

Overview of the attacks We present attacks that allow us to distinguish a permutation
computed by the scheme from a random permutation. Depending on the number of rounds,
it is possible to find some relations between the input and output variables. These relations
hold conditionally to equalities on some internal variables due to the structure of the Feistel
scheme.

Our attacks consist in using plaintext/ciphertexts 4-tuples and in counting the number
N of these 4-tuples that satisfy the relations between the input and output variables. We
then compare Nscheme, the number of such 4-tuples we obtain with an A-Feistel scheme,
withNperm, the corresponding number for a random permutation. The attack is successful,
i.e. we are able to distinguish a permutation generated by an A-Feistel scheme from a ran-
dom permutation, if the difference |E(Nscheme) − E(Nperm)| is larger than both standard
deviations σ(Nperm) and σ(Nscheme), where E denotes the expectation.

Indeed, thanks to the Chebychev formula, which states that for any random variable X,
and any α > 0, we have P (|X − E(X)| ≥ ασ(X)) ≤ 1

α2 , it is then possible to construct
a prediction interval for Nscheme for example, in which future computations will fall, with
a good probability.This gives the number of messages needed for the attack. In order to
compute E and σ for a scheme and a random permutation, we need to take into account the
fact that the structures obtained from the plaintext/ciphertext 4-tuples are not independent.

However, their mutual dependence is very small. To compute σ(Nperm) and σ(Nscheme),
we will use this well-known formula (see [4], p.97), that we will call the “Covariance
Formula”: if x1, . . . xn, are random variables, then if V represents the variance, we have

V

(
n∑

i=1

xi

)
=

n∑
i=1

V (xi) + 2
n−1∑
i=1

n∑
j=i+1

[
E(xi xj ) − E(xi)E(xj )

]
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Recently, a tool has been developed in order to compute expectations and variances for
Nperm. This is a computer program that allows to avoid tedious computations. We will
always use it throughout this paper. It is available at the following link: http://volte.u-cergy.
fr/SitePerso/Articles/program.zip. This is also explained in [20].

3 A-Feistel schemes with one affine permutation

3.1 Preliminaries

Our attacks use 4-tuples of plaintext/ciphertexts. Suppose that we have 4 inputs
[Li, Ri], [Lj ,Rj ], [Lk, Rk], [L�,R�]. The conditions on the inputs will be: Li = Lj ,
Lk = L� 
= Li ,Ri = Rk ,Rj = R� 
= Ri , see Fig. 1. The corresponding outputs are denoted
by [Si, Ti], [Sj , Tj ], [Sk, Tk], [S�, T�]. According to the construction of the scheme, we will
set some conditions on the outputs.

As we have seen in the previous section, the affine permutation can be used as the first
round, the last round, or any intermediate round. Notice that with an affine permutation, the
two branches of the input are mixed, unlike with one round of a Feistel scheme where the
right branch is only shifted. This will affect the choice of the conditions on the outputs.

When the affine permutation is used as the first or an intermediate round, the structure
of the Feistel scheme will be dominant and the condition on the output will be: Si ⊕ Sj ⊕
Sk ⊕ S� = 0. When the affine permutation is used as the last round, it will be dominant and
we will have 2 conditions on the outputs: Si ⊕Sj ⊕Sk ⊕S� = 0 and Ti ⊕Tj ⊕Tk ⊕T� = 0.

3.2 One affine permutation and a Feistel scheme with one round

Ψ (f1)◦ϕ: CPA-1 with 4 messages and KPA with 2
n
2 messages Let [L, R] denote the

input. The output is denoted by [S, T ]. After the affine permutation, the output is denoted
by [P, Q] where P = A1·L ⊕ A2·R ⊕ C1, and Q = A3·L ⊕ A4·R ⊕ C2. Then we apply a
Feistel scheme and the output is given by [S, T ] where S = Q and T = X1 = P ⊕ f1(Q)

where f1 ∈R Fn. Here, we have: S = A3·L ⊕ A4·R ⊕ C2.
We first describe a CPA-1 with 4 messages.We chooseL1, L2, R1, R2 such thatL1 
= L2

and R1 
= R2. Then we construct the four following messages: [L1, R1], [L1, R2], [L2, R1]
and [L2, R2]. Let us write [S1, T1] = ϕ[L1, R1], [S′

1, T
′
1] = ϕ[L1, R2], [S2, T2] =

ϕ[L2, R2] and [S′
2, T

′
2] = ϕ[L2, R1]. With an A-Feistel scheme, the probability to obtain

S1 ⊕ S′
1 ⊕ S2 ⊕ S′

2 = 0 is equal to one. For a random permutation, the same probability is

Fig. 1 Equalities in L and R for
the 4 inputs

http://volte.u-cergy.fr/SitePerso/Articles/program.zip
http://volte.u-cergy.fr/SitePerso/Articles/program.zip
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about 1
2n . Thus we need 4 messages to distinguish a random permutation from a permutation

of the form Ψ (f1) ◦ ϕ.
We now give a KPA. If we have m messages, the number of (i, j, k, �) such that Li ⊕

Lj ⊕ Lk ⊕ L� = 0 and Ri ⊕ Rj ⊕ Rk ⊕ R� = 0 is about m4

22n
. Thus, when m 
 2

n
2 , the

probability to obtain a 4-tuple satisfying the above conditions is non-negligible. For such a
4-tuple, we check if Si ⊕ Sj ⊕ Sk ⊕ S� = 0. The probability is 1 for an A-Feistel scheme
and 1

2n for a random permutation.

Remark 1 In this KPA, we can notice that the complexity in time is much bigger, because, in
order to find such 4 messages, we have to consider all couples of messages (i, j) with i < j

and compute Li ⊕Lj , then look for collisions in this list. This is about
m×(m−1)

2 ×m lnm =
O(m3 lnm) = O(n21.5n) operations.

ϕ ◦Ψ (f1): CPA-1 with 4 messages and KPA with (n+1)2
n
2 messages The CPA-1 is

similar to the previous one except that the conditions on the outputs are S1⊕S′
1⊕S2⊕S′

2 = 0
and T1 ⊕ T ′

1 ⊕ T2 ⊕ T ′
2 = 0, since ϕ is at the end of the structure. For the KPA, if we have

2
n
3 messages then, by the birthday paradox, we can find, with a good probability, a pair

[Li, Ri], [Lj ,Rj ] such that Ri = Rj . Let d1 = Li ⊕ Lj , d2 = Si ⊕ Sj and d3 = Ti ⊕ Tj .
Then we have: d2 = A2(d1) and d3 = A4(d1). This gives 2n (or a little less if A2 and A4 are
not invertible) linear equations in the 2n2 unknown coefficients of A2 and A4. If we have
n2

n
2 known plaintexts, we can expect to find n pairs with equal R-parts. This shows that we

get enough linear equations to determine A2 and A4 completely. Then we can distinguish
the permutation generated by the A-Feistel from a random permutation by taking one more
pair with Ri = Rj and check, if they satisfy the linear system given by the known A2 and
A4. This provides a KPA with about (n + 1)2

n
2 messages.

3.3 One affine permutation and a Feistel scheme with two rounds

Ψ (f2) ◦ Ψ (f1) ◦ ϕ: CPA-1 with 2
n
2 messages and KPA with 2

5n
4 messages Here, the

output is given by [S, T ] with S = X1 = P ⊕ f1(Q) and T = X2 = Q ⊕ f2(P ⊕ f1(Q))

where f1, f2 ∈R Fn. Remind that P = A1·L ⊕ A2·R ⊕ C1, and Q = A3·L ⊕ A4·R ⊕ C2.
We first mount a CPA-1 with 2

n
2 messages. We take only 2 distinct values for L: L1

and L2. Then, we choose m messages of the form [L1, Ri], [L2, Ri], 1 ≤ i ≤ m
2 . We

count the numberN of (Ri, Rj ) values, Ri 
= Rj such that with the 4 following messages,
i : [L1, Ri], i′ : [L2, Ri] j : [L1, Rj ], j ′ : [L2, Rj ], we have Si ⊕Sj ⊕Si′ ⊕Sj ′ =
0. The number of such 4-tuples is about m2

4 . Indeed, there are m
2 possibilities for Ri and(

m
2 − 1

)
possibilities for Rj . Then the other inputs are fixed. This shows thatNperm 
 m2

4·2n .
We now explain the computation of the mean value for an A-Feistel scheme. We will use

the following proposition whose proof is straightforward.

Proposition 1 Let i, j, k, � be four distinct indices. Suppose that Li = Lj , Lk = L� 
= Li ,
Ri = Rk and Rj = R� 
= Ri and we apply ϕ. Then we have the following properties:

– Qi = Qj ⇔ A4(Ri ⊕ Rj ) = 0. Thus if A4 is invertible, this condition will never
be satisfied since Ri 
= Rj . If A4 is not invertible, then the probability to have (2) is
greater than 1

2n . Indeed, it is easy to check that if dim ker(A4) = t then the probability

that Ri ⊕ Rj ∈ ker(A4) = 2t

2n = 1
2n−t ≥ 1

2n .
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– Qi = Qk ⇔ A3(Li ⊕ Lk) = 0. Thus if A3 is invertible, this condition will never be
satisfied since Li 
= Lk . Again, if A3 is not invertible the probability to have (3) is
greater than 1

2n .
– Condition (4) is not related to conditions on the dimension of the kernels of either A3

or A4. Thus, this condition is satisfied with probability about 1
2n .

We suppose that A3 and A4 are invertible. The other cases are quite similar. The
conditions on the inputs imply that:

Pi ⊕ Pj ⊕ Pi′ ⊕ Pj ′ = 0 and Qi ⊕ Qj ⊕ Qi′ ⊕ Qj ′ = 0 (1)

Thus we get Si ⊕ Sj ⊕ Si′ ⊕ Sj ′ = f1(Qi) ⊕ f1(Qj ) ⊕ f1(Qi′) ⊕ f1(Qj ′). The equality
(1) implies the following equivalences:

Qi = Qj ⇔ Qi′ = Qj ′ (2)

Qi = Qi′ ⇔ Qj = Qj ′ (3)

Qi = Qj ′ ⇔ Qi′ = Qj (4)

Thus if we have Qi = Qj or Qi = Qi′ , or Qi = Qj ′ , we will obtain Si ⊕Sj ⊕Si′ ⊕Sj ′ = 0.
To obtain Si ⊕ Sj ⊕ Si′ ⊕ Sj ′ = 0, we have to possibilities:

1. Qi = Qj ′ ⇔ Qi′ = Qj

2. Qi 
= Qj ′ ⇔ Qi′ 
= Qj and Si ⊕ Sj ⊕ Si′ ⊕ Sj ′ = 0.

Then we obtain:

P(Si ⊕ Sj ⊕ Si′ ⊕ Sj ′ = 0) = P(Si ⊕ Sj ⊕ Si′ ⊕ Sj ′ = 0/Qi = Qj ′)P(Qi = Qj ′)

+P(Si ⊕ Sj ⊕ Si′ ⊕ Sj ′0/Qi 
= Qj ′)P(Qi 
= Qj ′)

This shows that Nscheme 
 m2

4

(
1
2n + 1

2n

(
1 − 1

2n

))
. Thus Nscheme 
 m2

4

(
2
2n − 1

22n

)
and Nscheme 
 Nperm. Then we will be able to distinguish when the probability to have
Nperm ≥ 1 is non-negligible, i.e. when m ≥ 2

n
2 . Remark that we can also try another

[L1, L2]; for each [L1, L2] the probability of success of this attack is non-negligible. We
have obtain a CPA-1 with m 
 2

n
2 messages.

Remark 2 We can explain this computation as follows: we consider that the condition Si ⊕
Sj ⊕ Si′ ⊕ Sj ′ = 0 appears at random or due to equalities that are satisfied by internal
variables. In the sequel, we will not perform all the computations but the ideas are the same.

Remark 3 In [13], it is proved that for d = 2, there is security against all adaptive chosen
plaintext attacks (CPA-2) when the number of queries is m ≤ 2

n
2 . Since for d = 2, we

have a CPA-1 with 2
n
2 messages, the bound is tight. In their scheme, the authors use first a

pairwise independent permutation and then a Feistel Scheme with 2 rounds. As said before,
an affine permutation is an example of a pairwise independent permutation.

The previous attack can be transformed into a KPA with complexity O(2
5n
4 ): we count

the numberN of (i, j, k, �) such that{
Li = Lj

Lk = L� 
= Li
and

{
Ri = Rk

Rj = R� 
= Ri
and Si ⊕ Sj ⊕ Sk ⊕ S� = 0
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Notice that there are
(
m
4

)×(4
2

)
possibilities to obtain two distinct couples of pairs (i, j), (k, �)

with m indices. Thus, we have Nperm 
 m4

4·25n and Nscheme 
 m4

2·25n for an A-Feistel

permutation. Therefore, this KPA succeeds when m ≥ 2
5n
4 .

ϕ ◦ Ψ (f2) ◦ Ψ (f1): CPA-1 with 2
n
2 messages and KPA with 2

5n
4 messages Here,

after one round the output is [R, L ⊕ f1(R)]. Let X1 = L ⊕ f1(R). After the second round
of a Feistel scheme, the output is [X1, X2] where X2 = R ⊕ f2(X

1). Then, after the affine
permutation, we obtain S = A1·X1 ⊕ A2·X2 ⊕ C1 and T = A3·X1 ⊕ A4·X2 ⊕ C2.

We first describe a CPA-1 with 2
n
2 messages. The inputs are chosen as in the previous

attack, but since ϕ is at the end of the structure, the conditions on the outputs are: Si ⊕ Sj ⊕
Si′ ⊕ Sj ′ = 0 and Ti ⊕ Tj ⊕ Ti′ ⊕ Tj ′ = 0. With an A-Feistel scheme, the conditions on the
inputs imply that X1

i ⊕ X1
i′ ⊕ X1

j ⊕ X1
j ′ = 0. If we impose for example X1

i = X1
j ′ , then we

will obtain X2
i ⊕ X2

i′ ⊕ X2
j ⊕ X2

j ′ = 0 and the conditions on the outputs will be satisfied.

The probability to have X1
i = X1

j ′ is about 1
2n . Notice that the conditions on the outputs

may also happen at random and in that case the probability is about 1
22n

. Thus Nscheme 

m2

4·2n + O( m2

22n
). For a random permutation, the probability to get Si ⊕ Sj ⊕ Si′ ⊕ Sj ′ = 0

and Ti ⊕ Tj ⊕ Ti′ ⊕ Tj ′ = 0 is about 1
22n

and we have Nperm 
 m2

4·22n . Thus with m 
 2
n
2

messages, the attack succeeds and we can distinguish an A-Feistel scheme from a random
permutation.

As usual, this CPA-1 can be transformed into a KPA with 2
5n
4 messages.

Ψ (f2) ◦ϕ ◦Ψ (f1): CPA-1 with 4 messages and KPA with 2
n
2 messages Let as usual

[L, R] denote the input. Then we have: S = Q = A3·R ⊕ A4(L ⊕ f1(R)) ⊕ C2 and
T = P ⊕ f2(Q) with P = A1·R ⊕ A2(L ⊕ f1(R)) ⊕ C1.

We have the following CPA-1 with 4 messages. We choose 4 messages [L1, R1],
[L1, R2], [L2, R1], [L2, R2] such that L1 
= L2 and R1 
= R2. Then again we check if
S1 ⊕ S′

1 ⊕ S2 ⊕ S′
2 = Q1 ⊕ Q′

1 ⊕ Q2 ⊕ Q′
2 = 0.

Again, this CPA-1 can be transformed into a KPA with 2
n
2 messages.

3.4 One affine permutation and a Feistel scheme with three rounds

Ψ (f3) ◦ Ψ (f2) ◦ Ψ (f1) ◦ ϕ: KPA with 2
7n
4 messages and CPA-1 with 2

3n
2 messages

We have the following values: [L,R] −→ [P, Q] −→ [Q, X1] −→ [X1, X2] −→ [S, T ].
Here,the output is given by [S, T ] with S = X2 = Q⊕f2(X

1) and T = X3 = X1⊕f3(X
2)

where f1, f2, f3 ∈R Fn. Remind that P = A1·L ⊕ A2·R ⊕ C1, Q = A3·L ⊕ A4·R ⊕ C2
and X1 = P ⊕ f1(Q).

We begin with a KPA. We want count the numberN of (i, j, k, �) such that{
Li = Lj

Lk = L� 
= Li
and

{
Ri = Rk

Rj = R� 
= Ri
and Si ⊕ Sj ⊕ Sk ⊕ S� = 0

When we have a random permutation, the computations have been done with the computer

program as explained in Section 2 and we have obtained E(Nperm) 
 m4

4·25n , σ(Nperm) =
O

(
m2

2
5n
2

)
. With an A-Feistel scheme, these equalities may happen at random or because
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there are some conditions which can be satisfied by internal variables. For example, we may
have the following conditions:

{
Li = Lj

Lk = L� 
= Li
and

{
Ri = Rk

Rj = R� 
= Ri
and

{
Qi = Q�

X1
i = X1

j

Here we have condition (4) on the Qi values. There are no conditions on the kernels. But
we could also impose the other conditions since A3 and A4 are not invertible with a non-
negligible probability. Moreover, when we have Qi = Q�, it is also possible to have X1

i =
X1

k . We may also have no condition on the Qi values and 2 conditions on the X1
i values (for

example X1
i = X1

j and X1
k = X1

� ). Thus, using the computations performed in Section 5, we

get E(Nscheme) 
 m4

4.25n
+α m4

26n
, where α depends on the properties of the kernels of A3 and

A4 (2 ≤ α ≤ 9). We note here E(Nscheme) 
 m4

4.25n
+ O

(
m4

26n

)
. As computed in Section 5,

again σ(Nscheme) = O

(
m2

2
5n
2

)
. We can distinguish as soon as the difference of the mean

values is greater than both standard deviations, i.e. m4

26n
≥ m2

2
5n
2
. This means we must have

m 
 2
7n
4 .

Then we transform the previous KPA into a CPA-1 as follows. We choose all the possi-

ble [L, R] such that the first n
2 bits of L are equal to 0. Therefore we have 2

n
2 · 2n = 2

3n
2

possible inputs. We keep the same input and output conditions. Here E(Nperm) 
 m4

4.24n
and

σ(Nperm) = O( m2

22n
) since each collision on L has probability about 1

2n/2 . The computation
of the variance is similar to the computation done for the KPA. For an A-Feistel scheme,

we get E(Nscheme) 
 m4

4·24n + α m4

4·25n and σ(Nscheme) = O
(

m2

22n

)
. This shows that we can

distinguish a random permutation from an A-Feistel permutation as soon as m4

25n
≥ m2

22n
.

This gives a CPA-1 with 2
3n
2 messages.

Computer simulations We have made computer simulations for this attack in the following
way: for all values (or almost all values) of L, and all values of R, we compute S, T . Then
for all i, j such that Li = Lj and Ri < Rj , we add to a list the 3-tuple (Si ⊕ Sj , Ri, Rj ).
Finally we count how many collisions we have in this list. These simulations confirm our
theoretical results (see Table 1). Here N̄ stands for the expectation for either a random
permutation, or a Ψ 3 ◦ ϕ permutation.

Table 1 Simulation results

n 4 6 8

Number of tries 100000 10000 10000

Random cipher N̄ = 899.9 N̄ = 15624 N̄ = 257042

V = 848.5 V = 15481 V = 259744

Ψ 3 ◦ ϕ N̄ = 972 N̄ = 15717 N̄ = 257146

V = 3436 V = 19717 V = 264051

(% good distinction) – ( % false alarm) +77.4% +38.5% +10.9%
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ϕ ◦ Ψ (f3) ◦ Ψ (f2) ◦ Ψ (f1): CPA-1 with 2n messages and KPA with 2
3n
2 messages

We have the following values: [L, R] −→ [R,X1] −→ [X1, X2] −→ [X2, X3] −→
[S, T ] with X1 = L ⊕ f1(R),X2 = R ⊕ f2(X

1),X3 = X1 ⊕ f3(X
2), S = A1·X2 ⊕

A2·X3 ⊕ C1 and T = A3·X2 ⊕ A4·X3 ⊕ C2. Let us describe a CPA-1 with 2n messages.
We take only 2 distinct values for L: L1 and L2. Then, we choose m messages of the form
[L1, Ri], [L2, Ri], 1 ≤ i ≤ m

2 . We count the number N of (Ri, Rj ) values, Ri 
= Rj such
that with the 4 following messages, i : [L1, Ri], i′ : [L2, Ri] j : [L1, Rj ], j ′ :
[L2, Rj ], we have Si ⊕ Sj ⊕ Si′ ⊕ Sj ′ = 0 and Ti ⊕ Tj ⊕ Ti′ ⊕ Tj ′ = 0.

When we have an A-Feistel scheme, these two equalities may happen at random with
probability about 1

22n
. But we may also have equalities on the internal variables that will

imply the equalities on the outputs.
The conditions on the inputs imply that X1

i ⊕ X1
i′ ⊕ X1

j ⊕ X1
j ′ = 0. Moreover, some

equalities between the X1 values may be satisfied. For example, we may have X1
i = X1

j ⇔
X1

i′ = X1
j ′ or X1

i = X1
j ′ ⇔ X1

i′ = X1
j but we cannot have X1

i = X1
i′ ⇔ X1

j = X1
j ′ because

this will imply L1 = L2. Suppose that we have X1
i = X1

j ′ ⇔ X1
i′ = X1

j , which happens

with probability about 1
2n . Then we get X2

i ⊕ X2
i′ ⊕ X2

j ⊕ X2
j ′ = 0. Again, some equalities

on the X2 values will imply X3
i ⊕ X3

i′ ⊕ X3
j ⊕ X3

j ′ = 0 and then the properties of the affine
permutation will give the required conditions on the outputs.

We explain now the conditions on X2. Suppose that we have X1
i = X1

j ′ ⇔ X1
i′ = X1

j .

Then it is possible to impose X2
i = X2

j ⇔ X2
i′ = X1

j ′ for example and again the probability

that this condition is satisfied is about 1
2n . Notice that we cannot impose X2

i = X2
j ′ since

this will imply Ri = Rj . With a random permutation, the conditions on the outputs will
only appear at random.

Thus we getNperm 
 m2

4·22n andNscheme 
 m2

2·22n . This shows that when m 
 2n we can
distinguish a random permutation from a permutation produced by an A-Feistel scheme.

This CPA-1 can be transformed into a KPA with 2
3n
2 messages.

Ψ (f3) ◦ Ψ (f2) ◦ ϕ ◦ Ψ (f1) or Ψ (f3) ◦ ϕ ◦ Ψ (f2) ◦ Ψ (f1): CPA-1 with 2
n
2 messages

and KPA with 2
5n
4 messages The attack is similar to the previous one, except that the

conditions on the output is Si ⊕ Sj ⊕ Sk ⊕ S� = 0. We obtain E(Nperm) 
 m2

4·2n and

E(Nscheme) 
 m2

2·2n . Thus when m 
 2
n
2 , we can distinguish a random permutation from a

permutation generated by an A-Feistel scheme. This CPA-1 can be transformed easily into

a KPA with 2
5n
4 messages.

3.5 One affine permutation and a Feistel scheme with four rounds

Ψ (f4) ◦ Ψ (f3) ◦ Ψ (f2) ◦ Ψ (f1) ◦ ϕ: attacks on generators of permutations Here
we are going to attack generators of permutations and not only a single permutation.
Thus we want to distinguish a generator of random permutations from a generator of A-
Feistel permutations. We suppose that we have μ permutations. The values are given by:
[L, R] −→ [P, Q] −→ [Q, X1] −→ [X1, X2] −→ [X2, X3] −→ [S, T ]. After round 4,
the output is given by [S, T ] where S = X3 and T = X4 = X2 ⊕ f4(X

3). Remind that
P = A1·L ⊕ A2·R ⊕ C1, Q = A3·L ⊕ A4·R ⊕ C2, X1 = P ⊕ f1(Q),X2 = Q ⊕ f2(X

1)

and X3 = X1 ⊕ f3(X
2). Again, we want to count the numberN of (i, j, k, �) such that{

Li = Lj

Lk = L� 
= Li
and

{
Ri = Rk

Rj = R� 
= Ri
and Si ⊕ Sj ⊕ Sk ⊕ S� = 0
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When we have μ random permutations, E(Nperm) 
 μ m4

4·25n and σ(Nperm) =
O

(√
μ m2

2
5n
2

)
. With an A-Feistel scheme, these equalities may happen at random or because

there are some conditions which can be satisfied by internal variables. For example, we may
have (other conditions are possible):

{
Li = Lj

Lk = L� 
= Li
and

{
Ri = Rk

Rj = R� 
= Ri
and

⎧⎨
⎩

Qi = Q�

X1
i = X1

j

X2
i = X2

k

For μ permutations produced be an A-Feistel scheme, we obtain E(Nscheme) 
 μ m4

25n
+

O
(
μ m4

27n

)
and σ(Nscheme) = O

(√
μ m2

2
5n
2

)
. We can distinguish when μ m4

27n
≥ √

μ m2

2
5n
2
. If

we take the maximum number of messages (i.e. 22n), we obtain μ = 2n and the number of
needed computations is given by λ = μ · 22n = 23n.

Remark 4 It is not possible to have the same kind of conditions on successive variables. For
example, we choose Qi = Q� and then we have to change. If we impose again X1

i = X1
� ,

then this will imply Pi = P� and we obtain a contradiction since we have permutations and
[Li, Ri] 
= [L�,R�].

ϕ ◦ Ψ (f4) ◦ Ψ (f3) ◦ Ψ (f2) ◦ Ψ (f1): KPA with 22n messages We have the following
values:

[L, R] −→ [R, X1] −→ [X1, X2] −→ [X2, X3] −→ [X3, X4] −→ [S, T ]
with X1 = L ⊕ f1(R),X2 = R ⊕ f2(X

1),X3 = X1 ⊕ f3(X
2),X4 = X2 ⊕ f4(X

3),
S = A1.X

3 ⊕ A2.X
4 ⊕ C1 and S = A3·X3 ⊕ A4·X4 ⊕ C2. We give here an attack which

needs the maximal number of messages, i.e. 22n. We count the numberN of (i, j, k, �) such
that {

Li = Lj

Lk = L� 
= Li
and

{
Ri = Rk

Rj = R� 
= Ri
and

{
Si ⊕ Sj ⊕ Sk ⊕ S� = 0
Ti ⊕ Tj ⊕ Tk ⊕ T� = 0

Here we have E(Nperm) 
 m4

4·26n , σ(Nperm) = O
(

m2

23n

)
and E(Nscheme) 
 m4

4·26n +O
(

m4

27n

)

and σ(Nscheme) = O
(

m2

23n

)
. We can distinguish when m4

27n
≥ m2

23n
. Thus the attack succeeds

when m 
 22n.

Ψ (f4) ◦ Ψ (f3) ◦ Ψ (f2) ◦ ϕ ◦ Ψ (f1) or Ψ (f4) ◦ Ψ (f3) ◦ ϕ ◦ Ψ (f2) ◦ Ψ (f1) or
Ψ (f4) ◦ ϕ ◦ Ψ (f3) ◦ Ψ (f2) ◦ Ψ (f1): KPA with 2

7n
4 messages and CPA-1 with 2

3n
2

messages We only give the sketch of the attacks for Ψ (f4) ◦ Ψ (f3) ◦ Ψ (f2) ◦ ϕ ◦ Ψ (f1).

The other cases are quite similar. We can mount a KPA with 2
7n
4 messages as follows. We

count the numberN of (i, j, k, �) such that{
Li = Lj

Lk = L� 
= Li
and

{
Ri = Rk

Rj = R� 
= Ri
and Si ⊕ Sj ⊕ Sk ⊕ S� = 0

When we have a random permutation, we obtain from the computer program, that

E(Nperm) 
 m4

4·25n and σ(Nperm) = O

(
m2

2
5n
2

)
. With an A-Feistel scheme, these equali-
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tites may happen at random or because there are some conditions which can be satisfied by
internal variables. For example, we may have the following conditions:{

Li = Lj

Lk = L� 
= Li
and

{
Ri = Rk

Rj = R� 
= Ri
and

{
Qi = Q�

X2
i = X2

j

Thus, using the computations similar to those performed in Section 5, we get we get

E(Nscheme) 
 m4

4·25n + O
(

m4

26n

)
and σ(Nscheme) = O

(
m2

2
5n
2

)
. We can distinguish an

soon as the difference of the mean values is greater than both standard deviations, i.e.
m4

26n
≥ m2

2
5n
2
. This means we must have m 
 2

7n
4 . We now transform this KPA into a

CPA-1. We choose all the possible [L, R] such that the first n
2 bits of L are equal to 0.

Therefore we have 2
n
2 · 2n = 2

3n
2 possible inputs. We keep the same input and output

conditions. Here E(Nperm) 
 m4

4·24n and σ(Nperm) = O
(

m2

22n

)
since each collision on L

has probability about 1
2n/2 . The computation of the variance is similar to the computation

done for the KPA. For an A-Feistel scheme, we get E(Nscheme) 
 m4

4·24n + O
(

m4

4·25n
)
and

σ(Nscheme) = O
(

m2

22n

)
. This shows that we can distinguish a random permutation from an

A-Feistel permutation as soon as m4

25n
≥ m2

22n
. This gives a CPA-1 with 2

3n
2 messages.

3.6 Complexities of attacks on A-Feistel with one affine permutation

For the following rounds, we always have to add one more condition on the internal vari-
ables and we perform the same computations. We need to alternate the conditions on the
indices. For d ≥ 5, the features of the attacks are summarized in Table 2.

The we have the following property:

Complexity(Ψ d ◦ ϕ) = 2nComplexity(ϕ ◦ Ψ d) = 22nComplexity(Ψ d2 ◦ ϕ ◦ Ψ d1)

This comes from the fact that we have one more condition on the output of ϕ◦Ψ d compared
with the output of Ψ d ◦ ϕ and that there is one more internal condition on Ψ d ◦ ϕ compared
with Ψ d2 ◦ ϕ ◦ Ψ d1 .

The complexities of our attacks are summarized in Table 3 (A-Feistel). We also mention
the results for classical Feistel schemes Ψ d [14]. As said before we only give the results

Table 2 Attacks for d ≥ 5 with μ permutations

Scheme Conditions Expectation μ Complexity

Ψ d ◦ ϕ 4 conditions on the inputs μ m4

4·25n 2(2d−7)n 2(2d−5)n

1 condition on the ouptut +O
(
μ m4

2(d+3)n

)
d − 1 internal conditions

Ψ d2 ◦ ϕ ◦ Ψ d1 4 conditions on the inputs μ m4

4·25n 2(2d−9)n 2(2d−7)n

d1 + d2 = d 1 condition on the ouptut +O
(
μ m4

2(d+2)n

)
d − 2 internal conditions

ϕ ◦ Ψ d 4 conditions on the inputs μ m4

4·26n 2(2d−8)n 2(2d−6)n

2 conditions on the ouptut +O
(
μ m4

2(d+3)n

)
d − 1 internal conditions
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Table 3 Complexities of attacks on A-Feistel with one affine permutation and on classical Feistel schemes
Ψ d

for KPA and CPA-1. By symmetry, we obtain the corresponding complexities of a KCA
and CCA-1: for example the complexity of KPA on Ψ 3 ◦ ϕ is the complexity of a KCA on
ϕ ◦ Ψ 3 and so on. For d ≥ 5, we attack generators of permutations and not only a single
permutation. Notice that for the same d, the scheme is stronger when the affine permutation
is used as the first round. This comes from the fact that an affine permutation mixes the
branches better than a Feistel scheme with one round.

4 A-Feistel schemes with two affine permutations

This Section is devoted to attacks on schemes for which we have first an affine permutation,
then a Feistel scheme with several rounds, and finally an affine permutation. The attacks
are very similar to the ones in Section 3. We will give an example and provide the general
results. We explain a CPA-1 and a KPA when we apply first an affine function ϕ, then a
Feistel scheme with 2 rounds and we finish with an affine permutation ϕ′. We have the
following values: [L, R] −→ [P, Q] −→ [Q, X1] −→ [X1, X2] −→ [S, T ], with P =
A1·L ⊕ A2·R ⊕ C1, Q = A3·L ⊕ A4·R ⊕ C2, X1 = P ⊕ f1(Q),X2 = Q ⊕ f2(X

1),
S = A′

1·X1⊕A′
2·X2⊕C′

1, T = A′
3·X1⊕A′

4·X2⊕C′
2. For the CPA-1, we take only 2 distinct

values for L: L1 and L2. Then, we choose m messages of the form [L1, Ri], [L2, Ri], 1 ≤
i ≤ m

2 . We count the numberN of (Ri, Rj ) values, Ri 
= Rj such that with the 4 following
messages, i : [L1, Ri], i′ : [L2, Ri] j : [L1, Rj ], j ′ : [L2, Rj ], we have Si ⊕
Sj ⊕ Si′ ⊕ Sj ′ = 0 and Ti ⊕ Tj ⊕ Ti′ ⊕ Tj ′ = 0. Then, we obtain: E(Nperm) 
 m2

4·22n
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and E(Nscheme) 
 m2

2·22n . This shows that it is possible to distinguish a random permutation
from a permutation produced by an A-Feistel scheme with 2 affine permutations when

m 
 2n. As usual, this CPA-1 can be transformed into a KPA with m 
 2
3n
2 . The results

of our attacks (CPA-1 and KPA) are given in Table 4. By symmetry, we also get the results
for KCA and CCA-1. For d ≥ 4, we give the complexity of the attacks on generators of
permutations and on a single permutation.

Remark 5 Another possibility would be to alternate affine permutation and Feistel scheme
with one round. This does not secure the scheme. Indeed, the diffusion is too slow. For
example, we get the same complexities for Ψ 3 ◦ ϕ and Ψ 1 ◦ ϕ ◦ Ψ 1 ◦ ϕ ◦ Ψ 1 ◦ ϕ. We have
the same complexities for ϕ′ ◦ Ψ 2 ◦ ϕ and ϕ ◦ Ψ 1 ◦ ϕ ◦ Ψ 1 ◦ ϕ as well.

5 Computation of the mean value and the variance for a Ψ 3 ◦ ϕ
permutation

Here we compute the mean value and the standard deviation for a Ψ 3 ◦ϕ permutation. With
an A-Feistel scheme, the equalities that we want to be satisfied may happen at random or
because there are some conditions which are verified by the internal variables. We consider
a KPA such that:{

Li = Lj

Lk = L� 
= Li
and

{
Ri = Rk

Rj = R� 
= Ri
and Si ⊕ Sj ⊕ Sk ⊕ S� = 0

Let δijk� be the Bernoulli variable that is equal to 1 when the above conditions are satisfied
and 0 otherwise. Then by using the symmetries of the conditions, we have: Nscheme =
m(m−1)(m−2)(m−3)

4 δijk�.

5.1 Computation of the mean value

Here we have Si ⊕ Sj ⊕ Sk ⊕ S� = Qi ⊕ Qj ⊕ Qk ⊕ Q� ⊕ f2(X
1
i ) ⊕ f2(X

1
j ) ⊕ f2(X

1
k ) ⊕

f2(X
1
�). Since Qi ⊕ Qj ⊕ Qk ⊕ Q� = 0 (by the conditions on the input variables), we get

Si ⊕ Sj ⊕ Sk ⊕ S� = 0 ⇔ f2(X
1
i ) ⊕ f2(X

1
j ) ⊕ f2(X

1
k ) ⊕ f2(X

1
�) = 0 (∗). Thus this may

happen at random, or due to conditions satisfied by internal variables.

A3 and A4 are invertible As stated in Proposition 1, the conditions that may appear on
the internal variables depend on the properties of the kernels ofA3 andA4. Here we suppose

that A3 and A4 are invertible. We want to have f2
(
X1

i

)⊕f2

(
X1

j

)
⊕f2

(
X1

k

)⊕f2
(
X1

�

) = 0.

In our attacks, we use the difference between the mean value obtained when we have a
random permutation and the one obtained with a scheme. Thus we will compute the first

Table 4 Complexities of attacks
on A-Feistel with two affine
permutations

Structure KPA CPA-1

ϕ′ ◦ Ψ 1 ◦ ϕ 2
5n
4 2

n
2

ϕ′ ◦ Ψ 2 ◦ ϕ 2
3n
2 2n

ϕ′ ◦ Ψ 3 ◦ ϕ 22n 22n

ϕ′ ◦ Ψ d ◦ ϕ, d ≥ 4 2(2d−4)n
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terms of the mean value. We now look at the conditions on the internal variables that will
imply (∗):

1. Equalities on the Q variables. Since A3 and A4 are invertible, the only possibility is
Qi = Q� ⇔ Qj = Qk . This happens with probability 1

2n . This impliesX1
i ⊕X1

j ⊕X1
k ⊕

X1
� = 0. Then we may have X1

i = X1
j ⇔ X1

k = X1
� . The probability is 1

2n . It is also

possible to have X1
i = X1

k ⇔ X1
j = X1

� but it is not possible to have X1
i = X1

� since
this implies Pi = P�. Remember that Qi = Q� and we have an affine permutation.
Then we multiply by the probability of Qi = Q�. The probability in this case is 2

22n
.

2. We now suppose that Qi 
= Q� ⇔ Qj 
= Qk . We want to have f2
(
X1

i

) ⊕ f2

(
X1

j

)
⊕

f2
(
X1

k

) ⊕ f2
(
X1

�

) = 0. Then we can get (∗) if we have X1
i = X1

j and X1
k = X1

� or

X1
i = X1

k and X1
j = X1

� or X1
i = X1

� and X1
j = X1

k . The probability in that case is

given by 3 ×
(
1 − 1

2n

)
× 1

22n
.

3. We are not in the previous case and we have (∗). Here the probability is(
1 − 2

22n
− 3

(
1 − 1

2n

)
1
22n

)
1
2n = 1

2n − 5
23n

+ 3
24n

.

Thus the probability to get (∗) is 1
2n + 5

22n
− 8

23n
+ 3

24n
. In order to compute the

mean value, we have to consider the conditions on the inputs. The probability that the
inputs satisfy the conditions is computed with the help of the computer program men-

tioned in Section 2 and is given by 1
24n

(
1 − 2

2n + 13
22n

− 24
23n

+ 98
24n

+ O
(

1
25n

))
. Thus we

get E(δijk�) = 1
25n

(
1 + 3

2n − 5
22n

+ O
(

1
23n

))
and E(Nscheme) 
 m(m−1)(m−2)(m−3)

4·25n(
1 + 3

2n − 5
22n

+ O
(

1
23n

))
.

A3 is invertible and A4 is not invertible The case where A3 in not invertible and A4
is invertible is similar. If A4 is not invertible, we can have Qi = Qj , since this is equiva-
lent to have Ri ⊕ Rj ∈ ker(A4) whose probability is about 1

2n−t where t = dim(ker(A4)).
Moreover, when we have Qi = Qj then we get X1

i ⊕ X1
j ⊕ X1

k ⊕ X1
� = 0 and we

obtain (∗) by setting X1
i = X1

k or X1
i = X1

� . The conditions on the inputs do not

change. Here, we obtain E(δijk�) = 1
25n

(
1 + 2

2n−t + 3
2n + O

(
1

22n−t

))
and E(Nscheme) 


m(m−1)(m−2)(m−3)
4·25n

(
1 + 2

2n−t + 3
2n + O

(
1

22n−t

))
. In that case, the difference of the mean

values (for a random permutation and for a scheme) is 2
2n−t . Thus if t > 0 then the attack

will be better than the attack in the case where A3 and A4 are invertible.

A3 and A4 are not invertible Since A3 is not invertible, we can have
Qi = Qk . This is equivalent to Li ⊕ Lk ∈ ker(A3) and the probability
is about 1

2n−t ′ where t ′ = dim(ker(A3)). We proceed as previously and we

obtain E(δijk�) = 1
25n

(
1 + 2

2n−t + 2
2n−t ′ + 3

2n + O
(

1
22n−max(t ′,t)

))
and E(Nscheme) 


m(m−1)(m−2)(m−3)
4·25n

(
1 + 2

2n−t + 2
2n−t ′ + 3

2n + O
(

1
22n−max(t,t ′)

))
. The difference of the mean

values (for a random permutation and for a scheme) is min
(

2
2n−t ,

2
2n−t ′

)
.
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5.2 Computation of the variance

We will make use of the “Covariance Formula” given in Section 2.

A3 and A4 are invertible Here E(δijk�)E(δpqrs) = 1
210n

(
1 + 6

2n − 1
22n

+ O
(

1
23n

))
.

Now, in order to compute the variance, the main issue is to know the value of E(δijk�δpqrs).
Again, we have to consider several cases. Our aim is to show that the variance behaves like
the mean value. For example, when in {i, j, k, �, p, q, r, s} we have 8 pairwise distinct val-

ues, we want the dominant term in the covariance part of the covariance formula m4

25n
. This

shows that we must not have terms in m8

210n
and in m8

211n
. We have to look carefully on the first

two terms of E(δijk�δpqrs) − E(δijk�)E(δpqrs).

Case 1. In {i, j, k, �, p, q, r, s}, there are 8 pairwise distinct values. We are looking for

the terms in m8

210n
and in m8

211n
when computing E(δijk�δpqrs). We still have the following

conditions on the inputs:

Li = Lj , Ri = Rk, Lp = Lq, Rp = Rr

Lk = L� 
= Li, Rj = R� 
= Ri, Lr = Ls 
= Lp, Rq = Rs 
= Rp

Then we add

f2

(
X1

i

)
⊕ f2

(
X1

j

)
⊕ f2

(
X1

k

)
⊕ f2

(
X1

�

)
= 0 (5)

f2

(
X1

p

)
⊕ f2

(
X1

q

)
⊕ f2

(
X1

r

)
⊕ f2

(
X1

s

)
= 0 (6)

In order to get the first two terms of E(δijk�δpqrs), we have to consider the following
cases:

1. (Qi = Q� and X1
i = X1

j ) or (Qi = Q� and X1
i = X1

k ) and there is no condition

on the internal variables Qp,Qq,Qr,Qs,X
1
p,X1

q,X1
r , X

1
s except (6). In that case,

the probability is given by 2
22n

(
1 − 5

22n
− 3

23n

)
1
2n . Since there is also a symmetry in

i, j, k, � and p, q, r, s, we obtain 4
23n

(
1 − 5

22n
− 3

23n

)
.

2. Here we have Qi 
= Q�, (X1
i = X1

j and X1
k = X1

� ) or (X
1
i = X1

k and X1
j = X1

� )

or (X1
i = X1

� and X1
j = X1

k ) and there is no condition on the internal variables

Qp,Qq,Qr,Qs,X
1
p,X1

q,X1
r , X

1
s except (6). Again there is also a symmetry in

i, j, k, � and p, q, r, s. The probability is 6
23n

(
1 − 1

2n

) (
1 − 5

22n
− 3

23n

)
.

3. We do not have any conditions on Qi,Qj ,Qk,Q�,X
1
i , X

1
j , X

1
k , X

1
� and

Qp,Qq,Qr,Qs,X
1
p,X1

q,X1
r , X

1
s but we have (5) and (6). In that case, the proba-

bility is
(
1 − 10

23n
− 50

25n
+ 18

27n

)2
1
22n

.
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Thus the probability to get (5) and (6) is 1
22n

(
1 + 10

2n − 60
23n

+ O
(

1
24n

))
. In order to com-

pute the mean value, we have to consider the conditions on the inputs. The probability
on the inputs is obtained thanks to the computer program again and is given by

22n(2n − 1)2(2n − 2)(2n − 3)(22n + 3 × 2n − 6)

22n(22n − 1)(22n − 2)(22n − 3)(22n − 4)(22n − 5)(22n − 6)(22n − 7)

The computation gives: 1
22n

(
1 − 4

2n + 18
22n

− 36
23n

+ 0
(

1
24n

))
Thus we getE(δijk�δpqrs) =

1
210n

(
1 + 6

2n − 22
22n

+ O
(

1
23n

))
. In that case, the dominant term in E(δijk�δpqrs) −

E(δijk�)E(δpqrs), is in O
(

1
212n

)
and when m 
 2

7n
4 , we will have m4

25n

 m8

212n
. In that

case, we have V (δijk�) = O
(

1
25n

)
.

Remark 6 There are other possibilities on the internal variables in order to get (5) and
(6), but they involve too many equations and this is not useful since we are interested in
finding the first two leading terms. For example, it is possible to have no conditions on

Qi,Qj ,Qk,Q�, Qp, Qq, Qr, Qs , but Xi = Xj , Xk = X� and
(
X1

i , X
1
j , X

1
k , X

1
�

)
=(

X1
p, X1

q,X1
r , X

1
s

)
.

Case 2. In {i, j, k, �, p, q, r, s}, there are 7 pairwise distinct values. We may assume for
example that i = p (there are 16 possibilities of equalities between the indices). We have
the following relations:⎧⎪⎪⎨

⎪⎪⎩
Li = Lj = Lq, Ri = Rk = Rr, f2

(
X1

i

) ⊕ f2

(
X1

j

)
⊕ f2

(
X1

k

) ⊕ f2
(
X1

�

) = 0

Lk = L� 
= Li, Rj = R� 
= Ri, f2
(
X1

i

) ⊕ f2

(
X1

q

)
⊕ f2

(
X1

r

) ⊕ f2
(
X1

s

) = 0

Lr = Ls 
= Li, Rq = Rs 
= Ri,

The number of inputs is given by 23n(2n − 1)2(2n − 2).
In that case, we just have to check that there is no term in 1

210n
in E(δijk�δpqrs) −

E(δijk�)E(δpqrs). This is the easy part of the computation, since the term in 1
210n

appears
when there is no relations between the internal variables. Thus the dominant term in
E(δijk�δpqrs) − E(δijk�)E(δpqrs), is in O

(
1

211n

)
and V (δijk�) = O

(
1
25n

)
.

Case 3. In {i, j, k, �, p, q, r, s}, there are 6 pairwise distinct values. The dominant term

in E(δijk�δpqrs) − E(δijk�)E(δpqrs) is in O
(

1
26n

)
.

Finally, from cases 1, 2 and 3, we have V (Nscheme) = O
(

m4

25n

)
+ O

(
m6

29n

)
and when

m ≤ 2
7n
4 , we have V (Nscheme) = O

(
m4

25n

)
. Then the difference of the mean values will

be greater than the standard deviations and again the attack succeeds.

Remark 7 The conditions on the inputs imply that it is not possible to have 5 distinct indices
in {i, j, k, �, p, q, r, s}.

A3 is invertible and A4 is not invertible Here we are interested in obtaining the first
three terms of E(δijk�δpqrs), i.e the terms in 1

210n
+ 1

211n−t + 1
211n

. We will show that the

dominant term in E(δijk�δpqrs) − E(δijk�)E(δpqrs) is in O
(

1
212n−2t

)
. Thus if m 
 2

7n−2t
4 ,

we will get that the variance behave like the mean value and the attack will succeed if the
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difference of the mean value is greater than both standard deviations. This will be the case

if m = O(2
7n−2t

4 ). In order to get this result, we proceed as in the case where A3 and A4 are
invertible. When in {i, j, k, �, p, q, r, s}, there are 8 pairwise distinct values, we study the
conditions in the internal variables in order to get (5) and (6). Again we take into account
the cases that do not involve too many equations. We consider the same possibilities as in

the previous case. The probability to get (5) and (6) is 1
22n

(
1 + 4

2n−t + 10
2n + O

(
1

22n−2t

))
.

In order to compute the mean value, we have to consider the conditions on the inputs. We

obtain E(δijk�δpqrs) = 1
210n

(
1 + 4

2n−t + 6
2n + O

(
1

22n−2t

))
. In that case, the dominant term

in E(δijk�δpqrs) − E(δijk�)E(δpqrs), is in O
(

1
212n−2t

)
when m 
 2

7n−2t
4 , and we will have

m4

25n

 m8

212n−2t . When in {i, j, k, �, p, q, r, s}, there are 7 or 6 pairwise distinct values, the

computations are similar. Finally, whenm 
 2
7n−2t

4 , we obtain and V (Nscheme) = O
(

m4

25n

)
.

Then the difference of the mean values will be greater than the standard deviations and
again the attack succeeds.

A3 and A4 are not invertible The computations are very similar to those performed
previously. We just have to add the possibility to get the equality Qk = Q�. Then we

obtain E(δijk�δpqrs) = 1
210n

(
1 + 4

2n−t + 4
2n−t ′ + 6

2n + O
(
min

(
1

22n−2t ,
1

22n−2t ′
)))

. When

m 
 min(2
7n−2t

4 , 2
7n−2t ′

4 ), the dominant term in the variance will be in m4

25n
. Then the dif-

ference of the mean values will be greater than the standard deviations and again the attack
succeeds.

6 Conclusion

In this paper, we provided 4-point attacks on A-Feistel schemes. Our results are given in
Tables 2 and 3. With 4-point attacks, it is more difficult to attack A-Feistel schemes than
classical Feistel schemes. Simulations of our attacks given in Table 1 (Section 3.4) con-
firm our theoretical analysis for the complexity of these attacks. The analysis of the attacks
requires to study the standard deviations of random variables and the use of a computer
program that gives exact values for expectations and standard deviations.
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