
Cryptogr. Commun. (2018) 10:27–39
DOI 10.1007/s12095-017-0243-8

Cryptanalysis of a homomorphic encryption scheme

Sonia Bogos1 · John Gaspoz1 ·Serge Vaudenay1

Received: 29 November 2016 / Accepted: 6 July 2017 / Published online: 17 July 2017
© Springer Science+Business Media, LLC 2017

Abstract Homomorphic encryption allows to make specific operations on private data
which stays encrypted. While applications such as cloud computing require to have a prac-
tical solution, the encryption scheme must be secure. In this article, we detail and analyze
in-depth the homomorphic encryption scheme proposed by Zhou and Wornell (2014). From
the analysis of the encryption scheme, we are able to mount three attacks. The first attack
enables to recover a secret plaintext message broadcasted to multiple users. The second
attack performs a chosen ciphertext key recovery attack. The last attack is a related chosen
plaintext decryption attack.

Keywords Homomorphic encryption · Public key cryptography · Cryptanalysis ·
Key switching

Mathematics Subject Classification (2010) 94A60

1 Introduction

Homomorphic encryption enables operations directly in the encrypted domain. The notion
of homomorphic encryption was first introduced by Rivest et al. [15] in 1978.While this was

This article is part of the Topical Collection on Recent Trends in Cryptography

Sonia Bogos is supported by a grant of the Swiss National Science Foundation, 200021 143899/1.

� Sonia Bogos
soniamihaela.bogos@epfl.ch

John Gaspoz
john.gaspoz@epfl.ch

Serge Vaudenay
serge.vaudenay@epfl.ch

1 EPFL, CH-1015 Lausanne, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-017-0243-8&domain=pdf
http://orcid.org/0000-0002-2857-0123
mailto:soniamihaela.bogos@epfl.ch
mailto:john.gaspoz@epfl.ch
mailto:serge.vaudenay@epfl.ch

28 Cryptogr. Commun. (2018) 10:27–39

instantiated at first only for addition or multiplication, a breakthrough in this area was done
by Gentry [7] that introduced the first Fully Homomorphic Encryption (FHE) scheme. An
FHE scheme is one that can support computation of any arbitrary functions in the encrypted
domain. While there is an extensive work done in this area [1–10, 16–18], FHE is not
yet practical and many applications do not require such a strong primitive. Instead, there
are many schemes that offer a limited number of homomorphic operations. While more
restrictive, these schemes may offer practical solutions depending on the application (e.g.
database queries, protection of medical data).

The encryption scheme proposed in [20] is a homomorphic encryption scheme that
supports three operations: addition, linear transformation and weighted inner products.
Moreover, based on the three fundamental operations, the scheme enables to compute arbi-
trary polynomials. As stated in [20], these operations can be useful in applications where
tasks as feature extraction, recognition, classification, and data aggregation are needed. This
scheme is a natural generalization of the PVW scheme [13] from binary vectors to inte-
ger vectors where techniques as ciphertext packing [1] and key switching [3] are employed
to optimize the scheme. Working with plaintexts that are integer vectors (and not bits) is
efficient and attractive from a practical point of view.

Our contribution It is desired by the cryptographic community and by many research
communities (e.g. big data, medical research, cloud computing) to have a practical, secure
homomorphic encryption scheme. While we believe that a lot of research should be invested
in the area of homomorphic encryption, it is also essential to analyse and filter those
schemes whose security is questionable.

In this article, we first formalize the homomorphic encryption scheme from [20]. The pre-
sentation in the original paper is not very intuitive nor easy to follow. As the devil is in the
details, we believe it is important to be rigorous and careful with every step of the scheme. A
clear description allows us to further discover weaknesses. Thus, we are able to mount three
attacks: a broadcast encryption, a chosen ciphertext key recovery attack and a related cho-
sen plaintext attack against this scheme. These attacks, together with an incomplete security
analysis in the original work, suggest that another approach and work is required in order to
be able to construct a homomorphic scheme that works with vectors of integers.

Structure of the paper In Section 2, we formalize the encryption scheme from [20] and
describe the operations which are possible in the encrypted domain. In Section 3, we present
three attacks against this encryption scheme. Finally we conclude with Section 4.

Notations We will use small bold letters for vectors and capital bold letters for matrices
(i.e a is a column vector). We define |a| to be the L∞-norm and �a� the round up of a to the
nearest integer. The notation vec(A) denotes the vector that consists of all the entries in a
matrix A, where the values are taken column by column. Given a domain D, we denote by

x
U←− D the fact that x is drawn uniformly at random from D.

2 Encryption scheme on integer vectors

In this section we introduce the encryption scheme from [20] and the homomorphic opera-
tions that it supports. The presentation differs from the original description. Our goal is to
properly formalize the scheme and eliminate any ambiguity.

The scheme from [20] encrypts vectors of integers and supports three homomorphic
operations that are going to be presented later in this Section.

Cryptogr. Commun. (2018) 10:27–39 29

As noted in the original work [20], the scheme relies on the idea of key switching [3].
Given a pair of public key/secret key, (pk, sk), and a different secret key sk′ one is able to
generate the new public key pk′ that corresponds to sk′. In terms of encryption, a ciphertext
c, encryption of plaintext m under the public key pk, can be switched to a new ciphertext c′
that will decrypt correctly to m under the key sk′. We will formalize the scheme following
the line of this concept.

We first present some methods that will ease the explanation of the encryption scheme.
The first method, that we denote Bin, is taking a vector c where all the components are
smaller than 2�. The method is constructing c∗, the binary representation of c, where each
component of c is represented by � bits.

The Dev procedure takes a matrix S ∈ Z
m×n and an integer �, and it constructs the matrix

S∗ ∈Z
m×n� such that each value Sij is transformed into a block S∗

ij = [
Sij , Sij2, . . . , Sij2�−1

]
.

Given the description of these two procedures, we can state the following Lemma.

Lemma 1 Given a matrix S ∈ Z
m×n, an integer � and an integer vector c ∈ Z

n such that
0 ≤ |c| < 2�, we have that Sc = Dev(S, �) · Bin(c, �).

Proof We write S∗ = Dev(S, �) and c∗ = Bin(c, �). We observe that for each block of
values S∗

ij of S∗ and c∗
j of c∗ we have

S∗
ij c

∗
j = [

Sij 2Sij · · · 2�−1Sij

]

⎡

⎢⎢
⎣

cj0
cj1
.
.
.

cj (�−1)

⎤

⎥⎥
⎦

= Sij cj0 + 2Sij cj1 + . . . + 2�−1Sij cj (�−1)

= Sij (cj0 + 2cj1 + . . . + 2�−1cj (�−1))

= Sij cj

Hence we have that Sc = S∗c∗ = Dev(S, �)Bin(c, �).

30 Cryptogr. Commun. (2018) 10:27–39

The three generic algorithms of the encryption scheme from [20], i.e. key generation,
encryption and decryption, are described below.

2.1 Key generation

As a first step, the user generates the public and secret keys that will be used for encryption
and decryption. The key generation algorithm is described in Algorithm 3. Once the random
matrices T and A and the noise matrix E, drawn from a noise distribution χ on Zq , are
sampled, the secret key S and the public key M are computed. The public key M is defined
such that SM = Dev(I, �) + E (mod q) is verified.

Conditions imposed on the parameters �, m, n, p, q, w are the ones described in Algo-
rithm 3. In the original work [20], the authors propose a set of parameters: � = 28,m =
27, n = 28, p = 28, q ≈ 250, w = 220.

2.2 Encryption

Given the public key M, the public parameter w, and the plaintext x ∈ Z
m, the encryption

algorithm outputs the ciphertext c that is computed as in Algorithm 4.

2.3 Decryption

At decryption, the user receives c and knows the value of the secret key S and the public
parameter w. In order to decrypt, one reduces modulo q the value of Sc. Once we change
the domain from Zq to Z, by a mapping that maps i ∈ Zq to i ∈ Z, we perform division by
w and round up to the nearest integer to obtain the plaintext x.

Cryptogr. Commun. (2018) 10:27–39 31

Correctness The encryption scheme described above is correct, i.e., if c is the encryption
of a plaintext x as above, then one decrypts c to x, provided that he knows the secret key S.
This is possible when the noise is under a given threshold.

In order to prove the correctness of the scheme we need the following result that describes
the relation that a valid encryption satisfies.

Theorem 1 We assume that q > w|x| and we have the plaintext x ∈ Z
m. We define � =

�log2(q)�. We take the distribution χ such that x ← χ is such that x < w
2m�

with high
probability. We assume that the output of the key generation is (S,M). The vector c ∈ Z

n
q is

the ciphertext of x with length n > m. We have

Sc = qk + wx + e (1)

for some integer vectors k and e such that |e| < w
2 .

Proof We have defined the secret key S = [I,T] ∈ Z
m×n
q and the public key

M ≡
(−TA + Dev(I, �) + E

A

)
(mod q)

We have
SM ≡ Dev(I, �) + E (mod q)

so,
SM = qkSM + Dev(I, �) + E

with kSM an integer matrix.
From Algorithm 4, the ciphertext c is computed as

c ≡ MBin(wx, �) (mod q)

c = qk∗ + MBin(wx, �)

where k∗ is an integer vector and |k∗| is much smaller than q when |T| is much smaller
than q.

Finally, we have

Sc = qSk∗ + SMBin(wx, �)
= qSk∗ + (qkSM + Dev(I, �) + E)Bin(wx, �)
= q(Sk∗ + kSMBin(wx, �)) + wx + EBin(wx, �)
= qk + wx + EBin(wx, �)
= qk + wx + e

32 Cryptogr. Commun. (2018) 10:27–39

with Dev(I, �)Bin(wx, �) = wx (by Lemma 1), k = Sk∗ + kSMBin(wx, �) integer vector
and e = EBin(wx, �) the noise vector. E is sampled from distribution χ and we have
|EBin(wx, �)| < w

2 . This is a required condition on (1) as this boundary will have an
important role during the decryption.

We can now prove the correctness of the scheme.

Lemma 2 (Correctness) We assume that q > w|x| and that (M, S) is a pair of public-secret
key. We assume c is a valid encryption of the plaintext x under key M, i.e. it satisfies the
relation Sc = qk + wx + e with |e| < w

2 . Then c decrypts correctly to x under key S.

Proof If we follow the steps of the decryption algorithm we can see that by applying the
modulo on Sc we remove the qk value. Since we assume that w|x| < q, the value wx does
not get modified by the modulo operation. We have

Sc ≡ wx + e (mod q)

After the division in Z we obtain
Sc
w

= x + e
w

By performing the round up to the nearest integer we obtain
⌈
Sc
w

⌋
=

⌈
x + e

w

⌋
= �x� +

⌈ e
w

⌋
= x

Since |e| < w
2 , we have that

ej

w
<

w

2w
⇒ ej <

1

2
, ∀ 1 ≤ j ≤ m

Thus, the decryption algorithm correctly recovers the plaintext x.

2.4 Key-switching technique

As aforementioned, the encryption scheme relies on the concept of key-switching. We are
given two secret keys S, S′ ∈ Z

m×n
q . The ciphertext c ∈ Z

n
q decrypts to the plaintext x ∈ Z

m
p

under the key S. We would like to compute a new matrix M′, that will produce a new
ciphertext c′ such that the secret key S′ will decrypt c′ to the same x.

We describe below the two methods that perform this task.

The matrix M′ is generated such that
S′M′ = Dev(S, �) + E′ (mod q)

Cryptogr. Commun. (2018) 10:27–39 33

Lemma 3 Let c be a valid encryption of the plaintext x. Let M′ ← SwitchS(S, S′) and
c′ ← SwitchC(c,M′). Then we have that Dec(S′, c′) = Dec(S, c) = x given that |Sc −
wx mod q| + n�|E′| ≤ w

2 .

Proof We have

S′c′ = S′M′ × Bin(c, �) (mod q)

= (Dev(S, �) + E′) × Bin(c, �) (mod q)

= Dev(S, �)Bin(c, �) + E′ × Bin(c, �) (mod q)

= Sc + E′ × Bin(c, �) (mod q)

= wx + e1 + E′ × Bin(c, �) (mod q)

= wx + e′ (mod q)

where Sc = wx + e1 (mod q), e′ = e1 + E′ × Bin(c, �). We see that the noise has been
increased.

In order to have Dec(S′, c′) = Dec(S, c), it is sufficient that |e1| + n�|E′| < w
2 due to

Lemma 2.

Using the key-switching technique we can rephrase the key generation and the encryption
algorithms as:

Gen() → {S,M}
S = [I,T]
M = SwitchS(I, S)

Enc(M, w, x) → c
c = SwitchC(wx,M)

2.5 Operations on encrypted data

Three types of fundamental operations on integer vectors can be performed based on the
encryption scheme from [20]: addition, linear transformation and weighted inner products.
We assume that all the plaintext values are between zero and � q

w
� in order to avoid integer

overflows.

2.5.1 Addition

Let c1 and c2 be the two ciphertexts of the integer vectors x1 and x2, respectively. The
addition operation x1 + x2 is straightforward if c1 and c2 have the same secret key S. In this
situation we have that c′ = c1 + c2 (mod q) is the encryption of x1 + x2.

In the case c1 and c2 do not have the same key, we need to switch one secret key to the
other.

34 Cryptogr. Commun. (2018) 10:27–39

To guarantee a valid decryption after an addition in the encrypted domain, we need to
have |e1 + e2| < w

2 .

2.5.2 Linear transformation

The linear transformation Gx1 follows the observation that

GSc1 = qGk1 + wGx1 + Ge1

So if |G| is much smaller than q, we can treat c′ = c1 as the ciphertext ofGx1 with secret
key GS and error Ge1. Hence to perform the linear transformation we have to compute
Dec(GS, c′) = Gx.

The resulting noise after the transformation and the key-switching will be Ge1 = GE ×
Bin(wx, �). Hence, to ensure a valid operation we must have |GE × Bin(wx, �)| < w

2 .

2.5.3 Weighted inner products

Given two plaintexts, x1 and x2, encrypted as c1 and c2 with the keys S1 and S2 and a matrix
H, we can compute the weighted inner products x1T Hx2.

Let
S′ = vec(ST1HS2)T

be the new secret key, and let

c′ =
⌈

vec(c1cT2)

w
(mod q)

⌋

be the new ciphertext. By decrypting c′ with the secret key S′, we compute the weighted
inner products xT

1 Hx2. The proof of this result is presented in [19, 20].
Again, in order for the decryption to work, we need to ensure that the noise level after

this operation in under the w
2 threshold.

As presented in [20] these three operation combined allow to compute arbitrary polyno-
mial on integers. Note that every operation will increase the resulting noise. Hence, only a
limited number of operations can be chained.

3 Attacking the scheme

We present in this section three attacks on the encryption scheme from [20]. These attacks
were implemented and tested to certify their validity.

3.1 Attack on broadcast encryption

We can notice that the encryption algorithm performs the multiplication between the pub-
lic key M and the binary representation of the vector wx. We have that M ∈ Z

n×m�
q and

Bin(wx, �) ∈ {0, 1}m�. This means we have n equations in Zq and m� unknowns, where
n < m�. If we have access to �m�

n
� equations c′

i = Mi × Bin(wx, �), where Mi and c′
i are

different at each equation but the same Bin(wx, �) is used, then we could solve the system
of equations by Gaussian elimination and recover the value of x.

Let us assume we have a network of more than �m�
n

� users where every user i has its
own public key Mi. Now, let us assume that a user, e.g. Bob, wants to broadcast a secret

Cryptogr. Commun. (2018) 10:27–39 35

information x to the users using the fixed parameters p, q,w. Hence, Bob will compute
c′
i = Mi × Bin(wx, �) for all the users. By listening to the traffic, an adversary A could
obtain all the values c′

i broadcasted by Bob and he would have enough information to solve
the system.

Indeed, the attackerA could use all the gathered information to produce

M̃ =

⎛

⎜
⎜
⎜
⎝

M1
M2
...

Mz

⎞

⎟
⎟
⎟
⎠

∈ Z
zn×m�
q

and

c̃ =

⎛

⎜
⎜
⎜
⎝

c1
c2
...

cz

⎞

⎟
⎟
⎟
⎠

∈ Z
m�
q

where z > �m�
n

�.
Hence, the attacker could solve the system M̃ × Bin(wx, �) = c̃ using a Gaussian

elimination algorithm inO((m�)3).1

This attack can be seen as similar to the broadcast encryption in RSA with small keys
[11]. The difference is that our attack should always work as m�

n
should not be too large.

Using the parameters proposed in the work of Zhou and Warnell [20], we obtain m�
n

=
27∗28
28

= 14 which is a small number of users that an adversary needs to spy on.
A valid scenario for this attack would be one where a service provider has to send an

activation key to its customers. For our scenario, the activation key is the same for all the
customers. In such case, when the service provider has to send the encrypted activation key
to enough customers, an unauthorized user could recover the activation key.

3.2 Chosen ciphertext key recovery attack

In this attack we assume that the adversary has access to an oracle that decrypts a given
ciphertext. His goal is to retrieve the secret key S.

We recall that the secret key is of the form S = [I,T] ∈ Z
m×n
q , with I ∈ Z

m×m the identity

matrix and T ∈ Z
m×(n−m)
q a random matrix. Let us define T =

⎛

⎜⎜
⎜
⎝

ta1 ta2 . . . ta(n−m)

tb1 tb2 . . . tb(n−m)

...
...

...
...

tm1 tm2 . . . tm(n−m)

⎞

⎟⎟
⎟
⎠
.

An attacker could construct n − m ciphertexts ci, with i ∈ [1, n − m] and where ci is a
vector of size n that contains zeros except a value w at the (m + i)th position.

With these special ci we have that Sci =

⎛

⎜
⎜⎜
⎝

wtai

wtbi

...

wtmi

⎞

⎟
⎟⎟
⎠
.

1This attack has even a lower complexity if we use optimized matrix inversion algorithms.

36 Cryptogr. Commun. (2018) 10:27–39

The attacker could ask for decryption of every ci which would result in

Dec(S, w, ci) = xi =

⎛

⎜
⎜
⎜
⎝

xi1
xi2
...

xim

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

�wtai

w
�

�wtbi

w
�

...

�wtmi

w
�

⎞

⎟
⎟
⎟
⎠

The second equality holds if w|T| < q. As described in [20] the matrix T is chosen such
that |T | � w and that w < q. Thus, with a high probability we have that w|T| < q. The
decryption algorithm will output the vector

xi =

⎛

⎜
⎜
⎜
⎝

�wtai

w
�

�wtbi

w
�

...

�wtmi

w
�

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

tai

tbi

...

tmi

⎞

⎟
⎟
⎟
⎠

Hence, by asking for the decryption of the n − m ci ciphertexts, we can recover the T
matrix, hence the entire secret key S. The attack has a complexity of (m − n) requests to
the decryption oracle. With the parameters proposed in the original work [20] this means 27

requests. With a small complexity and by observing some special properties of the scheme,
the attacker is able to recover the secret key. Even though this setting looks less practical
than the broadcast attack, this attack is important and shows that the scheme by Zhou and
Wornell [20] does not provide the security we would want to have.

We stress that our attack is a key recovery attack. Chosen ciphertext decryption attacks
are trivial and unavoidable for homomorphic schemes. But key recovery attacks are
devastating and should not be possible.

3.3 Chosen related plaintext attack

In order to describe the following attack, we first introduce the notions we need.

Definition 1 Given two integers a and b, we define

carry(a, b) = (a + b) ⊕ a ⊕ b

where ⊕ denotes the bitwise exclusive OR.

We similarly define carry(a, b) for integer vectors component-wise.

Lemma 4 Given two integers a and b, where their binary decomposition is a = a0+a1∗2+
. . . + an2n and b = b0 + b1 ∗ 2 + . . . + bn2n, we have

(a + b)i = ai + bi + carry(a, b)i − 2 · carry(a, b)i+1.

Proof The binary addition is defined as follows:

Cryptogr. Commun. (2018) 10:27–39 37

So, by induction we have ci = carry(a, b)i at each iteration.

Lemma 5 Given two integer vectors x and y, we have

Bin(x + y, �) = Bin(x, �) + Bin(y, �) + (I − 2J) · Bin(carry(x, y), �),

where |x|, |y| < 2�, I is the identity matrix and J is the block diagonal matrix having blocks
with a diagonal of 1 just over the main diagonal, i.e.

⎛

⎜
⎜
⎜⎜⎜
⎝

0 1 · · · 0 0
0 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 1
0 · · · 0 0 0

⎞

⎟
⎟
⎟⎟⎟
⎠

Theorem 2 Given two integer vectors x and y, we have

Enc(x + y) = Enc(x) + Enc(y) + M(I − 2J)Bin(carry(wx, wy), �),

where M is the public key and I and J are defined in Lemma 5.

We recall that the encryption scheme from [20] is homomorphic for the addition. This
means that we expect to have Enc(x + y) = Enc(x) + Enc(y). But, since the ciphertext
space is larger than the plaintext one, several ciphertexts map to the same plaintext. We have
that M(I − 2J)Bin(carry(wx, wy), �) is an encryption of the zero vector. Thus the relation
from above is valid and it can be translated to Enc(x + y) = Enc(x) + Enc(y) + Enc(0).

In the attack we propose, we assume there is a secret x and that the adversary can obtain
Enc(x + y) for many chosen y values. The purpose is to recover x. Interestingly, the adver-
sary will take advantage in getting the encryption of x + y which is not Enc(x) + Enc(y).
In clear, we will see that the y → M(I − 2J)Bin(carry(wx, wy), �) function leaks.

In the scheme we analyse here, the parameter w is not so large. So, its Hamming weight
is small. Let us denote it by ν = HW(w). For example, in [20] we have w = 220, so ν = 1.
We assume that w is an odd multiple of 2λ of weight ν.

First, we precompute the list Li of all possible c = carry(u,w2i), for every possible i.
We note that the size of Li is bounded by �ν .

For each i and j , we set ti,j = [0, . . . , 0, 2i , 0, . . . , 0] (where 2i is at position j). Then,
we insert c in the list Ti,j [M(I − 2J)Bin(ct0,j, �)] = c for all c ∈ Li . We obtain many
tables Ti,j .

Having Enc(x), Enc(ti,j) and Enc(x + ti,j) and the hash tables Ti,j , we can obtain the
value

γi,j = M(I − 2J)Bin(carry(wx, wti,j), �).

If all the elements of Ti,j [γi,j] end with λ+i+2 zero bits, we deduce that the (λ+i+1)th
least significant bit of wxj is zero. If all elements of Ti,j [γi,j] end with a bit 1 followed by

38 Cryptogr. Commun. (2018) 10:27–39

λ + i + 1 zero bits, we deduce that the (λ + i + 1)th least significant bit of wxj is one. In
other cases, we cannot conclude, but these cases are unlikely to occur.

Note that the λ first least significant bits of wxj are all zero.
By repeating this for all i and j , we recover the bits of wx and thus recover the secret x.
The complexity of this attack consists in computing the carry for the lists Li and filling

in the hash tables Ti,j . The size of the Li is bounded by �ν . Thus, we need to compute at
most log2(p)�ν carries. Once we have these values we can construct the hash tables. We
have m log2(p) tables and each table has at most �ν elements. For each element in the table
we need to compute the valueM(I −2J)Bin(ct0,j, �). Given the special structure of I −2J ,
we performO(nm�) operations in Zq . For all tables we performO(nm2�ν+1 log2(p)) oper-
ations in Zq . In order to recover one bit of one element from x we request one encryption
and compare the result with the hash tables. This means that we need to request m log2(p)

encryptions. With the proposed parameters this means O(235) operations in Z250 and 210

accesses to the oracle.
This attack can easily be improved to reduce the number of chosen related plaintexts and

the complexity.
Even tough the concrete impact of this attack is unknown, so far, it clearly shows that an

encryption oracle leaks much more than expected.

Implementation To experiment with the encryption scheme and to test these three attacks,
we developed an implementation of the scheme in Matlab. The implementation offers all the
high level functions described in Section 2 such as Gen(), Dev(S, �), Enc(M, w, x), etc.,
which enables an easy use of the encryption scheme. We implemented the three attacks. For
the chosen ciphertext attack we tested the attack with several parameters, including those
provided in [20]. Our tests certify that we can recover the secret key. We ran tests for the
third attack and we were able to recover the unknown plaintext.

4 Conclusion

In this article we have formalized and analysed the scheme from [20]. The analysis of
the homomorphic encryption scheme showed some weaknesses which resulted into three
attacks. The attacks rely on realistic scenarios and enable an attacker to retrieve sensitive
information such as the plaintext or the secret key.

We have shown, in particular, that chosen ciphertext attacks are devastating (as they
reveal the secret key) and that encryption leaks more than expected.

References

1. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in lwe-based homomorphic encryption. In:
Kurosawa, K., Hanaoka, G. (eds.) Public-Key Cryptography - PKC 2013 - 16th International Confer-
ence on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26–March 1, 2013.
Proceedings, vol. 7778 of Lecture Notes in Computer Science, pp. 1–13. Springer (2013)

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without boot-
strapping. In: Goldwasser, S. (ed.) Innovations in Theoretical Computer Science 2012, Cambridge, MA,
USA, January 8–10, 2012, pp. 309–325. ACM (2012)

3. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In:
Ostrovsky, R. (ed.) [12] IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22–25, 2011, pp. 97–106 (2011)

Cryptogr. Commun. (2018) 10:27–39 39

4. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homo-
morphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26–30, 2013. Proceedings, vol. 7881 of Lecture Notes in
Computer Science, pp. 315–335. Springer (2013)

5. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the inte-
gers with shorter public keys. In: Rogaway, P. (ed.) Advances in Cryptology - CRYPTO 2011 - 31St
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14–18, 2011. Proceedings, vol. 6841
of Lecture Notes in Computer Science, pp. 487–504. Springer (2011)

6. Coron, J.-S., Naccache, D., Tibouchi, M.: Public Key Compression and Modulus Switching for Fully
Homomorphic Encryption over the Integers. In: Pointcheval, D., Johansson, T. (eds.) [14] Advances in
Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Cambridge, UK, April 15–19, 2012. Proceedings, pp. 446–464
(2012)

7. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Mitzenmacher, M. (ed.) Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31–June 2, 2009, pp. 169–178. ACM (2009)

8. Gentry, C., Halevi, S.: Fully Homomorphic Encryption without Squashing Using Depth-3 Arithmetic
Circuits. In: Ostrovsky R. (ed.) [12] IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22–25, 2011, pp. 107–109 (2011)

9. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson,
K.G. (ed.) Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15–19, 2011. Proceedings,
vol. 6632 of Lecture Notes in Computer Science, pp. 129–148. Springer (2011)

10. Gentry, C., Halevi, S., Smart, N.P.: Fully Homomorphic Encryption with Polylog Overhead. In:
Pointcheval, D., Johansson, T. (eds.) [14] Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15–19, 2012. Proceedings, pp. 465–482 (2012)

11. Hastad, J.: On using rsa with low exponent in a public key network. In: Lecture Notes in Computer
Sciences; 218 on Advances in Cryptology—CRYPTO 85, pp. 403–408. Springer New York, Inc, New
York, NY, USA (1986)

12. Ostrovsky, R. (ed.): IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS Palm
Springs, CA, USA, October 22–25, 2011. IEEE Computer Society (2011)

13. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer.
In: Wagner, D. (ed.) Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 17–21, 2008. Proceedings, vol. 5157 of Lecture Notes in
Computer Science, pp. 554–571. Springer (2008)

14. Pointcheval, D., Johansson, T. (eds.): Advances in Cryptology - EUROCRYPT 2012 - 31st Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings, vol. 7237 of Lecture Notes in Computer Science. Springer (2012)

15. Rivest, R.L., Adleman, L., Dertouzos, M.: On Data Banks and Privacy Homomorphisms, pp. 169–179.
Foundations of Secure Computation, Academia Press (1978)

16. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext
sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptography - PKC 2010, 13th Interna-
tional Conference on Practice and Theory in Public Key Cryptography, Paris, France, May 26–28, 2010.
Proceedings, vol. 6056 of Lecture Notes in Computer Science, pp. 420–443. Springer (2010)

17. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptography 71(1),
57–81 (2014)

18. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the inte-
gers. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30–June
3, 2010. Proceedings, vol. 6110 of Lecture Notes in Computer Science, pp. 24–43. Springer (2010)

19. Yu, A., Lok Lai, W., Payor, J.: Efficient integer vector homomorphic encryption. https://courses.csail.
mit.edu/6.857/2015/files/yu-lai-payor.pdf (2015)

20. Zhou, H., Wornell, G.W.: Efficient homomorphic encryption on integer vectors and its applications. In:
2014 Information Theory and Applications Workshop, ITA 2014, San Diego, CA, USA, February 9–14,
2014, pp. 1–9. IEEE (2014)

https://courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf
https://courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf

	Cryptanalysis of a homomorphic encryption scheme
	Abstract
	Introduction
	Our contribution
	Structure of the paper
	Notations

	Encryption scheme on integer vectors
	Key generation
	Encryption
	Decryption
	Correctness

	Key-switching technique
	Operations on encrypted data
	Addition
	Linear transformation
	Weighted inner products

	Attacking the scheme
	Attack on broadcast encryption
	Chosen ciphertext key recovery attack
	Chosen related plaintext attack
	Implementation

	Conclusion
	References

