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Abstract We study the problem how to efficiently generate circulant binary matrices with a
prescribed number of ones which are invertible over Z2. A natural method to generate such
matrices consists of two steps. Firstly, a circulant binary matrix with the prescribed number
of ones is generated. Afterwards, it is tested for invertibility and if needed the process is
repeated. To increase the efficiency of the process, we are interested in generating the matri-
ces directly, without the need for the additional invertibility testing. We propose algorithms
which fulfill this task for a wide range of parameters. Furthermore, we propose algorithms
to construct matrices S and Q in the QC-LDPC McEliece cryptosystem. Matrices S and Q

have to be composed of blocks of circulant matrices and they have to be invertible. In addi-
tion, S has to be dense and Q has to have a prescribed number of ones in a row. To avoid
known attacks on the QC-LDPC McEliece cryptosystem, our algorithms generate S and Q

with blocks of an odd size.
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1 Introduction

In [1], Baldi and Chiaraluce proposed a version of the McEliece cryptosystem which uses
quasi-cyclic low-density parity-check codes (QC-LDPC codes). Compared to the original
version of the McEliece cryptosystem, their proposal’s advantage was in the reduced size of
public and private keys. However, in [7], Otmani et al. showed that the proposal had serious
vulnerabilities. In [2], Baldi et al. proposed an amended version of the cryptosystem which
was immunized against the attacks of Otmani, Tillich and Dallot. A related cryptosystem
was proposed in [6] by Misoczki et al..

Generation of public and private keys for the QC-LDPC McEliece cryptosystem requires
generating circulant binary matrices with a prescribed number of ones which are invertible
over Z2. In [10] the problem of generating such matrices was solved as follows. Firstly a cir-
culant binary matrix with a prescribed number of ones was generated. Afterwards the matrix
was tested for invertibility and if it turned out to be singular, the process was repeated. The
number of all invertible circulant matrices of a given size over Z2 can be computed by a
formula (see Section 2 for details). Therefore, if a circulant binary matrix with a random
number of ones was generated, the probability of the matrix being invertible could be com-
puted. However, to the best of authors knowledge, no formula for computing the number
of invertible circulant binary matrices of a given size and with a prescribed number of ones
exists. Therefore the expected number of repeated generations cannot be directly computed
and can be only estimated by simulations. These extra generations and the associated extra
invertibility tests can be costly in terms of time and in terms of entropy needed to generate
extra random bits.

In the present paper, we study the problem of constructing invertible circulant binary
matrices with a prescribed number of ones directly, that means without the need for subse-
quent invertibility testing. We propose algorithms that achieve this task and thus avoid the
additional costs mentioned above. On the other hand, the disadvantage of our algorithms is
that they generate matrices from a smaller pool. For each of our algorithms a formula for
the size of the pool is derived.

Subsequently, we investigate the application of our algorithms in the QC-LDPC
McEliece cryptosystem. We focus on the problem how to construct matrices S and Q which
form a part of the private key in the cryptosystem. Both S and Q have to be composed of
blocks of circulant matrices and they both have to be invertible. In addition, S has to be dense
and Q has to have a prescribed number of ones in a row. In [2] it was shown how matrices
satisfying these requirements can be constructed in the case when the size of blocks is a
power of 2. However, in [8] it was demonstrated that an even value of the block size allows
an attacker to build a more efficient information-set decoding attack on the cryptosystem.
In the present paper, we therefore propose methods how to construct S and Q when the size
of the block is odd.

The paper is structured as follows. In Section 2, we review preliminary facts on circu-
lant matrices. In Section 3, we study how to construct invertible circulant binary matrices
with a prescribed number of ones. In Section 4, we investigate how our constructions from
Section 3 can be used in the QC-LDPC McEliece cryptosystem. Finally, we conclude the
paper in Section 5.
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2 Circulant matrices

All questions on circulant matrices can be formulated in terms of polynomials, as the
following well known fact explains.

Fact 1 [Proposition 1.7.1 in [4]] Consider the mapping τ which sends the circulant binary
(n × n)-matrix with the first row (c0, c1, c2, . . . , cn−1) onto the polynomial c(x) = c0 +
c1x + c2x

2 + · · · + cn−1x
n−1. Then the mapping τ is an isomorphism between the ring of

circulant binary (n × n)-matrices and the ring Z2[x]/(xn + 1).

In order to construct an invertible circulant matrix, the following result is useful.

Fact 2 [Lemma 1.7.2 and Observation 1.7.3 in [4]] A circulant binary (n × n)-matrix C is
invertible over Z2 if and only if τ(C) is relatively prime to xn + 1 in Z2[x].

Thus in order to study invertible circulant matrices, it is useful to know the factorisation
of the polynomial xn + 1 in Z2[x]. This leads us to the notion of cyclotomic polynomials.

Definition 3 Let k be odd and let ζ be a primitive k-th root of unity over GF(2). Then the
polynomial

Qk(x) =
∏

s: gcd(s,k)=1 ∧ s≤k

(x − ζ s)

is called the k-th cyclotomic polynomial over GF(2).

Next, we review some fundamental facts about cyclotomic polynomials over GF(2) and
the factorisation of xn + 1. Here and in the rest of the paper, ok(2) denotes the order of 2 in
the group Z

∗
k and φ(d) denotes the Euler function.

Fact 4 [Theorem 2.45 in [5]] For odd n we have:

1. xn + 1 = ∏
k|n

Qk in Z2[x],
2. the coefficients of Qk belong to GF(2).

Fact 5 [Theorem 2.47 in [5]] Let d = ok(2). Then Qk factors into φ(k)/d distinct monic
irreducible polynomials of degree d in Z2[x].

Let f be a polynomial in Z2[x], and denote by ψ(f ) the number of polynomials
of smaller degree which are relatively prime to f in Z2[x]. In [4] it is shown that if
gcd(f (x), g(x)) = 1, then ψ(fg) = ψ(f )ψ(g). By Fact 2, the number of all invertible
circulant binary (n × n)-matrices is equal to ψ(xn + 1). Using Facts 4 and 5, a formula for
ψ(xn + 1) can be derived, as demonstrated in [4].

Fact 6 Let n = 2αm, where m is odd.
Then we have

ψ(xn + 1) = 2n
∏

k|m

(
1 − 2−ok(2)

)φ(k)/ok(2)

. (1)
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We finish the section with two well known observations concerning circulant matrices
with an even number of ones in a row. Here and in the rest of the paper, the weight of a
polynomial stands for the number of its nonzero coefficients.

Fact 7 Let f ∈ Z2[x]/(xn + 1). Then f has an even weight iff f is a multiple of x + 1.

Proof A polynomial f has an even weight iff f (1) = 0. f (1) = 0 iff f is a multiple of
x + 1.

Fact 8 Every circulant (n × n)-matrix over Z2 with an even number of ones in a row is
singular.

Proof If a circulant matrix C has an even number of ones in a row, then its corresponding
polynomial τ(C) has an even weight. Thus by Fact 7, τ(C) is a multiple of x +1. The result
follows by Fact 2.

3 Constructing invertible circulant matrices with a prescribed number
of ones

3.1 Special cases

In this section, we show that constructing invertible circulant binary (n × n)-matrices with
a prescribed number of ones is easy for some choices of n.

3.1.1 Case when n is prime and on(2) = n − 1

Let us suppose that n is prime such that on(2) = n − 1. Then the facts above imply that
the polynomial xn + 1 has only two irreducible factors: Q1 and Qn. Thus by Fact 7 all
polynomials with odd weight except of Qn correspond to invertible circulant matrices, as
is observed in [3]. Thus we have the following simple algorithm to generate an invertible

circulant binary (n × n)-matrix with w ones in a row uniformly from a set of

(
n

w

)
such

matrices.

Algorithm 1

INPUT: prime such that 2 1, odd and
OUTPUT: a polynomial corresponding to an invertible circulant binary -matrix
with ones in a row under the isomorphism from Fact 1

1. Choose values 0 1 from 0 1 uniformly at random without replace-
ment.

2. Return the polynomial 1
0 .

We note that according to Artin’s conjecture for primitive roots, approximately 37% of
primes p satisfy op(2) = p − 1.

3.1.2 Case when n is a power of 2

Let us suppose that n is a power of 2. Then we have xn + 1 = (x + 1)n and the only
irreducible factor of xn + 1 is Q1 = x + 1. Thus by Fact 7 all polynomials with odd weight
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correspond to invertible circulant matrices [2]. Thus for odd w we again have a simple
algorithm to generate an invertible circulant binary (n × n)-matrix with w ones in a row

uniformly from a set of

(
n

w

)
such matrices.

Algorithm 2

INPUT: a power of 2, odd and
OUTPUT: a polynomial corresponding to an invertible circulant binary -matrix
with ones in a row under the isomorphism from Fact 1

1. Choose values 0 1 from 0 1 uniformly at random without replace-
ment.

2. Return the polynomial 1
0 .

3.2 First method for general n

Let us consider the irreducible factorisation of xn + 1 in Z2[x]. Consider the set of poly-
nomials other than x + 1 appearing in this factorisation. Let p(x) be a polynomial with the
smallest degree in this set. Let d = deg(p(x)).

Let n = 2im, where m is odd. Using Fact 4, Fact 5 and the well known fact that for
f ∈ Z2[x] we have f (x2) = (f (x))2, we can determine the value of d as

d = min
k: k|m ∧ k>1

{ok(2)} . (2)

Since a|b implies that oa(2)|ob(2), we can simplify the (2) as

d = min
p:p is prime ∧ p|m

{
op(2)

}
. (3)

In the QC-LDPC McEliece cryptosystem, the size of circulant blocks is typically below
105. For such values of n, the value of d can be computed instantly on a standard PC.

It is immediate that if a polynomial has odd weight and degree less than d, than it is
relatively prime to xn+1. We have seen in the previous section that if n is prime and on(2) =
n−1, then constructing invertible circulant binary (n×n)-matrices with a prescribed number
of ones is easy. In all other cases we have that d ≤ n−1

2 . Thus in this section we will assume
that d ≤ n−1

2 .
We can use the following simple algorithm to generate an invertible circulant binary

(n × n)-matrix with w ones in a row.

Algorithm 3

INPUT: , as above and 1
2 , odd and

OUTPUT: a polynomial corresponding to an invertible circulant binary -matrix
with ones in a row under the isomorphism from Fact 1

1. Choose values 1 1 from 1 1 uniformly at random without replace-
ment.

2. Choose 0 1 uniformly at random.
3. Return the polynomial 1

1 mod 1 .
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Proposition 9 Algorithm 3 generates an invertible circulant binary (n × n)-matrix with w

ones in a row uniformly from a set of n

(
d − 1
w − 1

)
such matrices.

Proof Let us consider a polynomial h(x) = xk + ∑w−1
i=1 xk+ti for some choice of

t1, . . . , tw−1 ∈ {1, . . . , d − 1} and k ∈ {0, . . . , n − 1}. There are n

(
d − 1
w − 1

)
different

ways how to choose t1, . . . , tw−1 and k, each of them equally probable.
Let h̃(x) = xk̃ + ∑w−1

i=1 xk̃+t̃i for some other choice of t̃1, . . . , t̃w−1 from {1, . . . , d − 1}
and k̃ ∈ {0, . . . , n − 1}. In order to prove the proposition, we need to show that h(x) and
h̃(x) remain different after modulation mod (xn + 1).

Without loss of generality, suppose k ≥ k̃. Suppose h(x) = h̃(x) mod (xn + 1). Then

we have xk−k̃
(

1 + ∑w−1
i=1 xti

)
= 1 + ∑w−1

i=1 xt̃i mod (xn + 1). If k − k̃ = 0, this is

only possible if {t1, . . . , tw−1} = {
t̃1, . . . , t̃w−1

}
, in which case h(x) = h̃(x). If k − k̃ >

0, then xk−k̃
(

1 + ∑w−1
i=1 xti

)
mod (xn + 1) has to contain the absolute term 1. Since

every ti is less than n−1
2 , this implies that k − k̃ > n+1

2 . Let j , j < n, be such that 1 =
xk−k̃xj mod (xn +1), i.e. j = n−k+ k̃. If j ∈ {t1, . . . , tw−1}, then xk−k̃

(
1 + ∑w−1

i=1 xti

)

mod (xn + 1) contains a term xk−k̃ , which has degree k − k̃, n+1
2 < k − k̃ < n. But this

is not possible since 1 + ∑w−1
i=1 xt̃i contains no term of such degree. Therefore j = 0. Thus

k − k̃ would have to be equal to n, which is not allowed, since k, k̃ ∈ {0, . . . , n − 1}.

3.3 Second method for general n

The method from the previous section allows us to construct matrices with at most d ones
in a row. The following observation can be used to construct matrices with a higher number
of ones.

Proposition 10 Let t be odd. Let rt (x) = ∑t−1
i=0 xi . If t and n are coprime, then also rt (x)

and xn + 1 are coprime.

Proof We have that rt (x) = xt+1
x+1 . Thus by Fact 4 we have rt = ∏

k|r∧k>1 Qk . By the
same fact xn + 1 is a product of cyclotomic polynomials, none of which appear in the
cyclotomic factorisation of rt (x). Since distinct cyclotomic polynomials are coprime, the
result follows.

The above proposition gives us a recipe to construct invertible circulant (n×n)-matrices
with t ones in a row, when t is odd and coprime to n. The next observation will allow us to
construct more such matrices.

Proposition 11 Let f be a polynomial of odd weight and such that deg(f ) < t . Then the
polynomial g(x) = f (x)rt (x) has t terms.

Proof Let f (x) = xk0 + xk1 + xk2 + · · · + xkm , km < t , and let the weight of f , w(f ),
be odd. Without loss of generality we can assume that k0 = 0. We can think of the product
f (x)rt (x) as of the summation of polynomials xki rt (x). We illustrate this summation in
Table 1 for polynomials r7(x) and f̃ (x) = 1+x2 +x3 +x5 +x6. We will focus on the grey
area in the table. Imagine the corresponding table for the polynomials rt and f . Symbols
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Table 1 Multiplication of r7(x) with f̃ (x) = 1 + x2 + x3 + x5 + x6

1 2 3 4 5 6 7 8 9 10 11 12

1 7 1 1 1 1 1 1 1
2

7 1 1 1 1 1 1 1
3

7 1 1 1 1 1 1 1
5

7 1 1 1 1 1 1 1
6

7 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1

Coefficients of the product are obtained by summing the terms “1” in the grey area along the columns

“1” in the grey area form columns of length at most w(f ). Coefficients of the resulting
product f (x)rt (x) are obtained by summing the ones in the grey area along these columns.
Thus, only columns of an odd length will give rise to nonzero coefficients in f (x)rt (x).

The number of columns of the length w(f ) is t − deg(f ). Since the second term of f is
xk1 , the second row of ones in the grey area is shifted by k1 positions to the right with respect
to the first row. As a result, k1 columns with length 1 (the columns 1, x, . . . , xk1−1) and k1
columns with length w(f ) − 1 (the columns xt , . . . , xt+k1−1) are created. Similarly, the j -
th row is shifted by kj−1 − kj−2 positions with respect to the (j − 1)-th row. This creates
kj−1 −kj−2 columns of length j −1 and kj−1 −kj−2 columns of length w(f )−j +1. Since
w(f ) is odd, the lengths j −1 and w(f )−j +1 are of different parity. Thus, if we consider
the columns 1, x, . . . , xdeg(f )−1 together with the columns xt , . . . , xt+deg(f )−1, exactly half
of them will have an odd length. Apart from these columns, there are t − deg(f ) columns
of length w(f ), which is odd. Thus, the total number of columns of an odd length is t .

Proposition 11 shows that if t is odd and coprime with n, then we can construct more
polynomials of weight t coprime with xn + 1. Indeed, if one takes any polynomial f

satisfying the constraints

1. gcd(f (x), xn + 1) = 1,
2. deg(f ) < t ,
3. deg(f ) + (t − 1) < n,

then the product f (x)rt (x) will be coprime with xn +1 and will have the weight t . (We note
that the condition gcd(f (x), xn + 1) = 1 implies that the weight of f is odd, as required by
Proposition 11. This follows by Fact 7.) Thus, one can construct more invertible circulant
(n × n)-matrices with t ones in a row. We state this formally as a corollary.

Corollary 12 Let t be odd and such that t <n and gcd(t, n)=1. Let the polynomialf satisfy:

1. gcd(f (x), xn + 1) = 1,
2. deg(f ) < t ,
3. deg(f ) + (t − 1) < n.

Let k ∈ {0, . . . , n − 1}. Then τ−1
(
xkf (x)rt (x)

)
is an invertible circulant binary (n ×

n)-matrix with t ones in a row.

We further remark that the multiplication of polynomials f and rt from Corollary 12 can
be performed efficiently by the following algorithm with linear complexity.
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Algorithm 4

INPUT: , as in Corollary 12, polynomial 1
0 with 0 and

with properties as in Corollary 12
OUTPUT: a polynomial

1. Set 1 0.
2. For from 0 to 1 do: if 1 set 1 1 mod 2, else set 1.
3. For from to 2 2 do: if 1 set 1 1 mod 2, else set 1.
4. Return the polynomial 2 2

0 .

Proof of correctness of Algorithm 4 Suppose that we substitute the steps of Algorithm 4
with the following set of steps:

1. Set h(x) = 0.
2. For k from 0 to t − 1 do: if ak = 1 do h(x) = h(x) + ∑2t−2

i=k xi .
3. For k from t to 2t − 2 do: if ak−t = 1 do h(x) = h(x) + ∑2t−2

i=k xi .
4. Return the polynomial h(x).

Then it is easy to see that the changed algorithm produces the same output as the original
one. Realizing that we can merge steps 2 and 3 in the changed algorithm into a single step,
we arrive at the algorithm with the following steps:

1. Set h(x) = 0.
2. For k from 0 to t − 1 do: if ak = 1 do h(x) = h(x) + ∑2t−2

i=k xi + ∑2t−2
i=k+t xi .

3. Return the polynomial h(x).

But
∑2t−2

i=k xi + ∑2t−2
i=k+t xi = xkrt (x) and thus the algorithm above corresponds to the

standard algorithm for multiplication of f (x) and rt (x).

Corollary 12 tells us that if we want to generate invertible circulant binary (n×n)-matrix
with t ones in a row, it suffices to generate a polynomial f satisfying the three conditions
in the corollary. To increase the efficiency of generating, it might be desirable if we did not
need to check the condition gcd(f (x), xn + 1) = 1. To this end, we may use the knowledge
from Section 3.2. Let d be as in Section 3.2, i.e. d is the degree of a smallest (in terms of
degree) polynomial other than x + 1 appearing in the irreducible factorisation of xn + 1.
Again we assume d ≤ n−1

2 . Then we know that any polynomial f of odd weight and of
degree deg(f ) < d satisfies gcd(f (x), xn + 1) = 1. Using this fact, we can employ the
following efficient algorithm to generate an invertible circulant binary (n × n)-matrix with
t ones in a row.

Algorithm 5

INPUT: , as in Corollary 12 and 2 2 , as above and and 1
2

OUTPUT: a polynomial corresponding to an invertible circulant binary -matrix
with ones in a row under the isomorphism from Fact 1

1. For from 1 to 2 do: choose 0 1 uniformly at random.
2. If 2

1 is odd, set 1 1, otherwise 1 0.

3. Compute 1 1
1 by Algorithm 4.

4. Choose 0 1 uniformly at random.
5. Return mod 1 .
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Proposition 13 Algorithm 5 generates an invertible circulant binary (n × n)-matrix with t

ones in a row uniformly from a set of n2d−2 such matrices.

Proof We proceed analogously to the proof of Proposition 9.

Let g1(x) = xsrt (x)
(

1 + ∑d−1
k=1 akx

k
)

for a1, . . . , ad−1 and s selected as in Algo-

rithm 5. There are n2d−2 different ways how to choose a1, . . . , ad−1 and j , each of them
equally probable.

Let g2(x) = xs̃rt (x)
(

1 + ∑d−1
k=1 ãkx

k
)

for some other choice of ã1, . . . , ãd−1 and s̃. In

order to prove the proposition, we need to show that g1(x) and g2(x) remain different after
modulation mod (xn + 1).

Without loss of generality, suppose s ≥ s̃. Suppose g1(x) = g2(x) mod (xn +1). Then,
since rt (x) is relatively prime to xn + 1, we have

xs−s̃

(
1 +

d−1∑

k=1

akx
k

)
= 1 +

d−1∑

k=1

ãkx
k mod (xn + 1) .

If s − s̃ = 0, this is only possible if ak = ãk for every k, which would mean that g1 = g2.

If s − s̃ > 0, then xs−s̃
(

1 + ∑d−1
k=1 akx

k
)

mod (xn + 1) has to contain the absolute term

1. Since d − 1 < n−1
2 , this implies that s − s̃ > n+1

2 . Let i, i < n, be such that 1 = xs−s̃ xi

mod (xn + 1), i.e. i = n − s + s̃. If i > 0, then xs−s̃
(

1 + ∑d−1
k=1 akx

k
)

mod (xn + 1)

contains a term xs−s̃ , which has degree s − s̃, n+1
2 < s − s̃ < n. But this is not possible

since 1+∑d−1
k=1 ãkx

k mod (xn+1) contains no term of such degree. Therefore i = 0. Thus
s − s̃ would have to be equal to n, which is not allowed, since s, s̃ ∈ {0, . . . , n − 1}.

4 Application to the QC-LDPC McEliece cryptosystem

In [1], Baldi et al. proposed a variant of the McEliece cryptosystem based on LDPC codes -
QC-LDPC McEliece cryptosystem. A part of the private key in this cryptosystem is formed
by an (n − k) × n parity-check matrix H of an LDPC code. The matrix H is formed by a
row

{
H0, . . . , Hn0−1

}
of n0 = n/(n − k) binary circulant blocks with size p × p, where

p = n−k. Each block has a row weight (i.e. the number of ones in a row) equal to a number
w which is small compared to p. If Hn0−1 is invertible, a generator matrix G for the code
can be obtained as:

G =

⎡

⎢⎢⎢⎢⎣
I

∣∣∣∣∣∣∣∣∣∣

(
H−1

n0−1 · H0

)T

...(
H−1

n0−1 · Hn0−2

)T

⎤

⎥⎥⎥⎥⎦
.

The remaining part of the private key is formed by two other matrices: a k × k invertible
matrix S and a sparse n × n invertible matrix Q. S and Q are formed by blocks of p × p

circulant matrices. In addition, Q has a fixed row weight m. The public key is then computed
as follows:

G′ = S−1 · G · Q−1 .

Strongly related to the QC-LDPC McEliece cryptosystem is the QC-MDPC McEliece
cryptosystem which was proposed in [6]. The QC-MDPC McEliece cryptosystem again
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uses a secret parity-check matrix H formed by a row of circulant blocks
{
H0, . . . , Hn0−1

}
.

However, in the QC-MDPC McEliece cryptosystem the blocks contain slightly more ones
compared to the QC-LDPC variant. Another distinguishing feature is that the QC-MDPC
McEliece cryptosystem does not employ matrices S and Q.

In [1], Baldi et al. proposed the following values for the parameters of the QC-LDPC
McEliece cryptosystem: n0 = 4, w = 13, p = 4032 and m = 7. They chose S and Q to be
sparse and they proposed the following block-diagonal form for Q:

Q =

⎡

⎢⎢⎢⎣

Q0 0 0 . . . 0
0 Q1 0 . . . 0
...

. . .
...

0 0 0 . . . Qn0−1

⎤

⎥⎥⎥⎦ .

In [7], Otmani et al. demonstrated that this cryptosystem is vulnerable to attacks which
exploit the fact that Q is block-diagonal and S is sparse. In order to immunize their cryp-
tosystem against these attacks, Baldi et al. proposed a version of the QC-LDPC McEliece
cryptosystem with the matrix S dense and the matrix Q no longer block-diagonal in
[2]. In [2], they proposed two variants of their cryptosystem: the first with parameters
n0 = 4, w = 13, p = 4096 and m = 7, and the second with parameters n0 = 3,
w = 13, p = 8192 and m = 11. They further suggested to choose S, so that every
block in S has rows with weight approximately equal to p/2, with blocks along the diag-
onal having rows with an odd weight and blocks away from the diagonal having rows
with an even weight. As for the matrix Q, Baldi et al. suggest to obtain Q in the first
variant by constructing a matrix of 4 × 4 circulant blocks with the blocks on the diag-
onal having rows of weight 1 and the blocks away from the diagonal having rows of
weight 2, and by randomly permuting its block rows and columns. Similarly, in the sec-
ond variant, they suggest to obtain Q by constructing a matrix of 4 × 4 circulant blocks
with the blocks on the diagonal having rows of weight 3 and the blocks away from
the diagonal having rows of weight 4, and by randomly permuting its block rows and
columns.

Baldi et al. claim that if S and Q are constructed in the above manner, then they are
invertible. This is true only because in both variants p was selected as a power of 2. To see
why this selection implies that the matrix Q is invertible, let us replace every circulant block
in Q by its corresponding polynomial and let us think of Q as of an n0 × n0 matrix over
the ring Z2 [x] /(xp + 1). A square matrix over a commutative ring is invertible if and only
if its determinant is invertible over the ring. From the construction of Q and from Fact 7
it follows that in the Leibniz formula for the determinant of Q only one of the summands
is not divisible by x + 1. Therefore the whole determinant is not divisible by x + 1. As
explained in Section 3.1, when p is a power of 2, the non-divisibility by x + 1 guarantees
that the determinant of Q is invertible over Z2 [x] /(xp + 1). By the same argument, the
matrix is S is invertible too.

Thus the choice of a power of 2 for p allows an easy construction of matrices S and Q

which are invertible. However, in [8] it was demonstrated that an even value of p allows an
attacker to build a more efficient information-set decoding attack on the QC-LDPC cryp-
tosystem. Therefore it may be desirable to use the QC-LDPC cryptosystem with p odd.
However, when p is odd, the construction from [2] does no longer guarantee that the result-
ing matrix will be invertible. This leads to the question: How to construct matrices S and Q

when p is odd?
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4.1 Constructing matrices S and Q when the block size is a prime p

with op(2) = p − 1

Based on the analysis from Section 3.1.1, it appears that the best choice for the block size
p would be to make p equal to a prime such that op(2) = p − 1. This choice guarantees
that every p × p circulant matrix with an odd weight is invertible, with exception of the
matrix of weight p. According to Artin’s conjecture for primitive roots, approximately 37%
of primes p satisfy op(2) = p − 1.

4.1.1 Constructing the matrix S

When the block size p is a prime such that op(2) = p − 1, we propose to use the same
construction for S as in [2]. This means, that we propose to construct S by the following
algorithm.

Algorithm 6

INPUT: 0,
OUTPUT: a binary matrix consisting of 0 0 circulant blocks of size

1. Generate each block on the diagonal independently uniformly at random from the set
of all circulant matrices with an odd weight.

2. Generate each block away from the diagonal independently uniformly at random from
the set of all circulant matrices with an even weight.

3. Permute the block rows of the matrix by a permutation selected uniformly at random
from the space of all permutations of 0 elements.

Proposition 14 Let p be a prime such that op(2) = p − 1. Let S be a matrix produced by
Algorithm 6. Then

P(S is invertible) ≥
(

1 − 1

2p−1

)k0

.

Proof Let S̃ be a matrix generated by first 2 steps of Algorithm 6. We will again think of S̃

as of a matrix over Z2 [x] /(xp+1). The probability that S̃ is invertible over Z2 [x] /(xp+1)

is greater or equal to the probability that S̃ can be turned into the identity matrix by doing
Gaussian elimination over Z2 [x] /(xp + 1). Let s̃ij (x) be the polynomial in the i-th row j -
th column of S̃. The probability that the polynomial s̃11(x) can be inverted is 1− 1

2p−1 . After

inverting s̃11(x), Gaussian elimination will multiply the first row of S̃ by s̃−1
11 (x). After-

wards, it adds suitable multiples of the first row to other rows to nullify entries in the first
column. Then it will try to invert the second term on the diagonal of the matrix. This term is
now equal to s̃22(x)+ s̃21(x)s̃−1

11 (x)s̃12(x). The polynomial s̃21(x)s̃−1
11 (x)s̃12(x) has an even

weight. The polynomial s̃22(x) was generated independently from the polynomials s̃21(x),
s̃11(x) and s̃12(x). Therefore we can think of the polynomial s̃22(x)+ s̃21(x)s̃−1

11 (x)s̃12(x) as
if it was generated uniformly at random from the set of all polynomials in Z2 [x] /(xp + 1)

with an odd weight and independently of s̃11(x). Thus the probability that Gaussian elim-

ination will be able to invert the first two polynomials on the diagonal is
(

1 − 1
2p−1

)2
.

Similarly, it can be shown that the probability that Gaussian elimination will be able to

invert all polynomials on the diagonal is
(

1 − 1
2p−1

)k0
.
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In variants of QC-LDPC and QC-MDPC McEliece cryptosystem [2, 6], the value of k0
is not larger then 3 and the value of p is at least 4096. For such values, the probability(

1 − 1
2p−1

)k0
is very close to 1. Therefore Algorithm 6 produces an invertible matrix with

very high probability.

4.1.2 Constructing the matrix Q

Now, we propose an algorithm to construct the matrix Q. The matrix Q has to have a
constant row weight m, and it has to be invertible and composed of n0 ×n0 circulant blocks
of size p × p. We suppose that m is odd and that it can be written as m = u(n0 − 1) + v,
where u ≥ 2 is even. Then v must be odd. Again, we propose a similar construction to the
one in [2], with blocks on the diagonal having weight v and blocks away from the diagonal
having weight u.

Algorithm 7

INPUT: 0 2 even, odd
OUTPUT: matrix with rows with weight 0 1 and composed of 0 0
circulant blocks of size

1. For 1 to 0 do:
2. Generate numbers from 1 uniformly independently at random until you obtain

different numbers 1 2 .
3. Create a circulant )-matrix with first row having symbols 1 only at positions

1 2
4. End for.
5. For 1 to 0 0 1 do:
6. Generate numbers from 1 uniformly independently at random until you obtain

different numbers 1 2
7. Create a circulant ( )-matrix with first row having symbols 1 only at positions

1 2
8. End for.
9. Create a matrix composed of 0 0 circulant blocks of size by placing blocks

along the diagonal and blocks away from the diagonal.
10. Create a matrix from by permuting block rows of by a permutation selected

uniformly at random from the space of all permutations of 0 elements.

Proposition 15 Let p be a prime such that op(2) = p − 1. Suppose that values n0, p, u,
and v satisfy

n0! × (max {u, v})n0 < p . (4)

Then Algorithm 7 always produces an invertible matrix.

Proof Consider the Leibniz formula for the determinant of Q. The formula implies that the
weight of the determinant is at most n0! × (max {u, v})n0 . If inequality (4) holds, then the
determinant of Q must be an odd polynomial other than

∑p−1
i=0 xi . Thus the determinant is

invertible.
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We note that the inequality (4) is comfortably met by both variants of the QC-LDPC
McEliece cryptosystem presented in [2].

4.2 Constructing matrices S and Q for an arbitrary odd block size

4.2.1 Constructing the matrix S

If the block size is an arbitrary odd number, we can still use Algorithm 6 to construct the
matrix S. The lower bound on the probability that the resulting matrix will be invertible,
however, decreases.

Proposition 16 Let p be an arbitrary odd number. Let S be a matrix produced by Algorithm
6. Then

P(S is invertible) ≥
(

ψ(xp + 1)

2p−1

)k0

.

Proof Same as the proof of Proposition 14.

We remind that the value of ψ(xp + 1) can be computed by formula (1) in Section 2. By
choosing the number p so that the polynomial xp+1

x+1 factors into few irreducible polynomi-

als of high degrees in Z2[x], we can make the value of ψ(xp + 1) close to 2p−1. Since k0
is typically not larger than 3 in variants of QC-LDPC and QC-MDPC McEliece cryptosys-
tems, the probability that Algorithm 6 produces an invertible matrix can be made large by a
proper choice of p.

4.2.2 Constructing the matrix Q

If p is an arbitrary odd number, Algorithm 7 no longer guarantees the invertibility of the
resulting matrix. This is because the weight below p of the determinant of Q no longer
implies the invertibility of Q. What is more, the approach used in Proofs of Propositions
14 and 16 cannot be used to estimate the probability that Algorithm 7 produces an invert-
ible matrix. Therefore, we propose a different algorithm to generate the matrix Q when p

is an arbitrary odd number. The algorithm places blocks of an odd weight on the diagonal
and blocks of an even weight away from the diagonal as was the case in the previous algo-
rithms. However, this time the algorithm generates blocks by using a modified version of
Algorithm 3. Recall that in Algorithm 3 d represented the degree of a smallest (in terms of
degree) polynomial other than x + 1 appearing in the irreducible factorisation of xp + 1.
Firstly, we state a modified version of Algorithm 3.

Algorithm 8

INPUT: , 0, as above,
0

OUTPUT: a polynomial with weight

1. Choose values 1 from 0
0

1 uniformly at random without

replacement.
2. Return the polynomial 1
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Next, we state the algorithm to generate the matrix Q.

Algorithm 9

INPUT: , 0, as above, 2 even, odd,
OUTPUT: invertible matrix with rows with weight 0 1 and composed
of 0 0 circulant blocks of size

1. For 1 to 0 do:
2. Generate polynomial by running Algorithm 8 with inputs , 0, and .
3. End for.
4. For 1 to 0 0 1 do:
5. Generate polynomial by running Algorithm 8 with inputs , 0, and .
6. End for.
7. Choose 0 1 uniformly at random.
8. Create a 0 0 matrix over the ring 2 [ ] 1 by placing polynomials

on the diagonal and polynomials away from the diagonal.
9. Create a matrix from by permuting rows of by a permutation selected uniformly

at random from the space of all permutations of 0 elements.

Proposition 17 Let p be an arbitrary odd number. Then Algorithm 9 always produces an
invertible matrix.

Proof Again, we think of Q as of a matrix over Z2 [x] /(xp +1). From the Leibniz formula
for the determinant of Q we see that the determinant is of the form

det(Q) =
∑

σ∈Sn0

xn0×khσ (x) mod xp + 1 ,

where the polynomials hσ (x) have degrees less than d. Thus the determinant is of the form

det(Q) = xn0×kz(x) mod xp + 1 ,

where the polynomial z(x) has degree less than d. Therefore the determinant is invertible.

When designing a variant of a QC-LDPC McEliece cryptosystem it is necessary to guar-
antee that the number of potential candidates for the matrix Q is greater than the proposed
security level. For this reason, we compute the number of matrices that can be generated by
Algorithm 9.

Proposition 18 Let p be an arbitrary odd number. The number of different matrices that
can be generated by Algorithm 9 is

n0!p
⎛

⎝
( ⌊

d
n0

⌋

v

)n0
( ⌊

d
n0

⌋

u

)n0(n0−1)

−
( ⌊

d
n0

⌋
− 1

v

)n0
( ⌊

d
n0

⌋
− 1

u

)n0(n0−1)
⎞

⎠ .

Proof If k = 0, then the algorithm can produce

�0 = n0!
( ⌊

d
n0

⌋

v

)n0
( ⌊

d
n0

⌋

u

)n0(n0−1)
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different matrices. If k = 1, then the algorithm can produce

�1 = n0!
⎛

⎝
( ⌊

d
n0

⌋

v

)n0
( ⌊

d
n0

⌋

u

)n0(n0−1)

−
( ⌊

d
n0

⌋
− 1

v

)n0
( ⌊

d
n0

⌋
− 1

u

)n0(n0−1)
⎞

⎠

new matrices (i.e. matrices which could not be produced by k = 0). If k = 2, again �1 new
matrices can be generated. Consider the sum

� = �0 + (p − 1)�1 .

Then � counts every possible matrix that can be generated by the algorithm, but it double
counts matrices in which every block begins with a row which has all its ones distributed

among the first
⌊

d
n0

⌋
− 1 positions. Thus the total number of matrices which can be

generated by the algorithm is

� − n0!
( ⌊

d
n0

⌋
− 1

v

)n0
( ⌊

d
n0

⌋
− 1

u

)n0(n0−1)

= p�1 .

4.3 How to construct the matrix Hn0−1?

It is tempting to consider using Algorithm 3 to generate the last block Hn0−1 in the
secret parity-check matrix H in the QC-LDPC and QC-MDPC McEliece cryptosystems.
However, we demonstrate that this is not a good idea, as the special form of matrices
generated by Algorithm 3 allows a more efficient information set decoding attack on the
cryptosystem.

In particular, we consider using Algorithm 3 to generate the matrix Hn0−1 in the QC-
MDPC McEliece cryptosystem with parameters recommended for 80-bit security in [6]. In
the considered version the matrix H consists of 2 blocks of size 4801 × 4801 and with 45
ones in a row. 4801 is prime and o4801(2) = 1200. Thus Algorithm 3 generates a poly-
nomial f (x) = xk + ∑44

i=1 xk+ti mod (xn + 1), where t1, . . . , t44 ∈ {1, . . . , 1199} and
k ∈ {0, . . . , 4800}. Before modulation, the degrees of the terms in f (x) all lie in an inter-
val of length 1199. Therefore the circulant matrix corresponding to the polynomial f (x)

must contain a row in which all ones will be placed within the first 1200 positions. Thus the
matrix H contains a row with 90 ones which ends with at least 3601 zeros.

One of the most efficient known attacks against the QC-MDPC McEliece cryptosystem
is to use information set decoding algorithms to search for low-weight words in the dual
code to the code generated by the public generator matrix G and thus reveal the secret matrix
H . Knowing that a low-weight word ends with a large number of zeros, allows an attacker
to perform a more efficient attack to recover this word. For example, an attacker aiming to
recover a word of length 9802, weight 90 which ends with at least 3601 zeros can use a
slightly modified Stern’s algorithm [9] and is expected to find the word after approximately
254 bit operations.

A matrix generated by Algorithm 3 will always contain a row ending with a large num-
ber of zeros. Therefore we do not recommend using Algorithm 3 to generate the matrix
Hn0−1. Instead, we recommend to generate Hn0−1 by repeated generation of random circu-
lant matrices with the prescribed number of ones until an invertible matrix is obtained, as
was proposed in [10].
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5 Conclusion

We studied the problem how to generate invertible circulant binary matrices with a pre-
scribed number of ones. In [10] this problem was solved by repeatedly generating random
circulant matrices with the prescribed number of ones until an invertible matrix was
obtained. We proposed two alternative algorithms - Algorithms 3 and 5 - which fulfill this
task for a wide range of parameters. Compared with the approach from [10], our algo-
rithms have the advantage that they generate matrices satisfying all the requirements on the
first attempt. On the other hand, their disadvantage is that they generate matrices from a
smaller pool. For each of our algorithms a formula for the size of the pool was derived. Thus
a user is allowed to evaluate whether the size of the pool is sufficient for his/her applica-
tion. The size of the pool depends on the degree of a smallest polynomial other than x + 1
appearing in the irreducible factorisation of xn + 1 (n represents the size of the matrix).
In order to achieve a large pool, the value of n should be chosen so that this degree is
large.

Furthermore, we proposed algorithms to construct matrices S and Q in the QC-LDPC
McEliece cryptosystem. Our algorithms assume that the size of blocks in S and Q is odd.
Previously, constructions of S and Q were proposed for the case when the size of blocks was
a power of 2 [2]. Choosing the size of blocks to be odd has the advantage that it prevents the
recently developed attack on the QC-LDPC McEliece cryptosystem [8]. Again, the size of
the pool (and also the efficiency of the algorithm for S) depends on the irreducible factori-
sation of xp +1 (here p represents the size of blocks). With this in mind, the best choice for
the size of the block appears to be a prime p such that the multiplicative order of 2 modulo
p is equal to p − 1. According to Artin’s conjecture for primitive roots, approximately 37%
of primes satisfy this condition.

In addition, we studied the possibility of using Algorithm 3 to generate the parity-check
matrix H in the QC-LDPC McEliece cryptosystem and the QC-MDPC McEliece cryptosys-
tem. However, we concluded that this would result in a significant decrease in the security
of the cryptosystem.
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