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Abstract Searchable Symmetric Encryption (SSE) allows a user to store encrypted docu-
ments on server(s) and later efficiently searches these documents in a private manner. So far
most existing works have focused on a single storage server. Therefore in this paper we con-
sider the natural extension of SSE to multiple servers. We believe it is of practical interest,
given that a user may choose to distribute documents to various cloud storage that are now
readily available. The main benefit compared to a single server scheme is that a server can
be set to hold only subset of encrypted documents/blocks. A server learns only content of
documents/blocks that it stores in the event of successful leakage attack or ciphertext crypt-
analysis, provided servers do not collude. We define formally an extension of single server
SSE to multiserver and instantiate provably secure schemes that provide the above feature.
Our main scheme hides total number of documents and document size even after retrieval,
achieving less leakages compared to prior work, while maintaining sublinear search time for each
server. We further study leakages under the new setting of non-colluding and colluding servers.

Keywords Searchable encryption · Cloud privacy · Secure storage
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1 Introduction

Outsourcing documents to third-party storage providers allows the providers to learn the
content of the documents. In order to protect data privacy, a user may encrypt the documents
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before submission, but straightforward encryption eliminates the capability of searching
them. Searchable symmetric encryption (SSE) was proposed as a practical mechanism to
address this issue. An SSE scheme encrypts documents in such a way that the output con-
tains encrypted data and their associated metadata. Through querying the metadata the
scheme returns references to the matching encrypted data, which can then be retrieved
and decrypted locally. Existing (dynamic) SSE schemes mainly concentrate on settings
for single-user single server [4, 6, 7, 13, 15, 19, 20, 22, 25, 28, 30, 32], multi-user sin-
gle server [5, 10, 11, 18, 24], and two servers [3, 16, 29] where one of the servers serves
as a query proxy. As far as we know, to date there is no proposal involving multiple (≥
2) providers where every provider stores only a portion of the documents and the associ-
ated metadata. Such a construction is of interest since many storage providers are readily
available, i.e. Dropbox, Google Drive, Amazon S3 and Microsoft OneDrive. Given these
choices, a user can choose to distribute searchable encrypted documents/blocks to many of
them instead of one, so that no single provider will have the full set of encrypted docu-
ments. Each provider only holds a subset of blocks of an encrypted document. This cannot
be achieved in a single provider setup. It also allows new constructions with potentially bet-
ter hiding properties. For ease of description, we refer to storage providers as servers in the
subsequent sections.

Our contributions We extend the notion of SSE to SSE over multiple servers, and
instantiate multiserver schemes with first a generic construction, then subsequently another
construction using similar structures of recent schemes [5, 7]. We also describe how exist-
ing schemes can be extended to multiserver scheme straightforwardly under the generic
construction, using [5]’s scheme as an example, demonstrating the flexibility of our defi-
nition. In fact, this also shows the scalability of most of the existing schemes. Our second
construction divides documents into blocks, with the blocks SSE-encrypted and randomly
assigned to different servers in such a way that, with high probability, no single server alone
holds all encrypted blocks of a document. Hence, only partial information of a document
stored in a server is revealed if the server successfully cryptanalysed the encrypted blocks,
provided servers do not collude. It provides better leakage profile than existing schemes, in
that document sizes and total number of documents are hidden even after retrieval, while
maintaining sublinear search time for each server. Instead of creating an index that links key-
words directly to document identifiers as in most existing schemes, we create index tables
that link keywords to block-server identifier pairs where a block referenced by an identifier
in server i may be stored in a different server j . Because of the decoupling between the
block identifiers and the exact locations of stored blocks, a server cannot categorise with cer-
tainty a group of encrypted identifiers that map to a set of actual blocks during retrieval. In
fact, most schemes directly reveal the matching identifier-document pairs during retrieval,
which allow for straightforward categorisation of tokens that match the queried documents.
We prove security in the setting of colluding and non-colluding servers under the real-ideal
simulation paradigm proposed in [10] and its generalisation in [4, 7].

2 Related works

Song et al. [30] introduced SSE schemes. Their schemes encrypt words, in which during
retrieval the words are first unmasked based on a query stream before decryption. Search
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time is linear since all words must be scanned. Indexing techniques were also described
without concrete constructions. Goh [13] then proposed secure index suitable for SSE,
but query privacy is not necessarily required. Using the simulation model, Chang and
Mitzenmacher [6] proposed a linear SSE scheme secure for index and queries. Curtmola
et al. [10] however showed that Chang and Mitzenmacher’s definition is non-adaptive and
can be satisfied with an insecure SSE. An improved definition encompassing non-adaptive
and adaptive keyword attack was thus proposed, together with a scheme achieving sublin-
ear search time using inverted index. Many subsequent proposals adopted Curtmola et al.’s
definition and index structure. These include Chase and Kamara [7]’s schemes that sup-
port SSE over arbitrary data structures, and dynamic and parallel schemes proposed in [19]
and [20]. We also adopt their security definitions and use similar data structures.

Following these schemes, which focus on single-keyword search, Cash et al. [4] intro-
duced sublinear SSE schemes that support multi-keyword search for large datasets. This
was extended to multi-user in [18] and parallelizable dynamic schemes in [5]. Naveed et al.
[28] then proposed a blind storage scheme based on hash tables with linear probing that can
be used for SSE. It does not leak the size of a document until it is queried. In their scheme,
the server does not perform index operations. This is done by the user instead so that read-
ily available commodity storage server can be used without any modification. Stefanov
et al. [32] proposed a dynamic scheme with less leakage by combining the practicality of
SSE with the hiding properties of ORAM.

More recently, two-server schemes termed as distributed SSE were proposed [3, 16, 29].
A proxy server is introduced in addition to the storage server. The idea is for the proxy to
assist in queries so that the schemes do not leak search patterns, with the assumption of
non-colluding servers. In contrast, our constructions use two or more servers with a some-
what different focus. Our aim is to distribute documents/blocks to many servers, in order to
prevent any one server from possessing a complete set of documents or blocks of a docu-
ment. Due to such distributions our schemes minimise leakages on search patterns though
not fully-hiding as with the two-server schemes. Furthermore we consider colluding servers.
Another related scheme is the scheme proposed in [24], in which distributed indexes are
constructed so that they can be easily distributed to many devices under a cloud storage
system for efficient search and retrieval.

Moataz and Shikfa [25] proposed a boolean scheme with probabilistic tokens to address
the issue of leakage due to deterministic tokens of existing schemes. However the scheme
search time is linear. Verifiable SSE schemes that protect against unauthorised modification
were also proposed [8, 22, 23, 26]. Islam et al. [17] provided empirical analysis on access
pattern leakages and proposed possible mitigation techniques. A related notion is Private
Information Retrieval (PIR) [9]. It proposes private retrieval over servers with each server
having an exact copy of the database. PIR schemes are mostly related to public databases
instead of encrypted databases. We also examine multiple servers but focus on practicality
where each server stores only partial information of the encrypted database. A simple, static
construct in this setting was proposed in [27]. However it does not provide general frame-
work that caters for existing single server schemes, and it leaks the number of documents
matching a keyword after a query.

Fully hidden schemes can be achieved using primitives such as fully homomorphic
encryption [12] and ORAM [14, 31], but both have yet to achieve the efficiency of SSE [32].
There are also public-key based schemes, which were introduced by Boneh et al. [1]. For a
comprehensive survey, we refer interested readers to [2].
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3 Definitions

We adopt the notation and security model from [4, 7, 10]. Our proposals involve a user and
a set of distinct servers S = {S1, . . . , Ss}, s ∈ N. Let λ ∈ N be the security parameter
and || as concatenation. The user owns a set of documents, D = {D1, D2, . . . , Dn}, and
each document Df is either a complete document or a document divided into h equal-
length blocks, Df = (df,1||1, df,2||2, . . . , df,h||h) for 1 ≤ f ≤ n, max(h) = l and df,i ∈
{0, 1}φ(λ) where φ is a polynomial function in λ. Also, we use idx ∈ {0, 1}λ to denote an
identifier that uniquely identifies x. D is stored in a database with index DB(idDf

,Wf )nf =1,
where Wf = {wf,1, wf,2, . . . , wf,tf } denotes the set of keywords matching document Df

and wf,j ∈ {0, 1}∗. The list of documents matching a keyword w is denoted as DB(w)
while the total number of identifiers matching all keywords is N = �w∈W|DB(w)|, where
W= ⋃n

f =1 Wf . We further denote {1, 2, . . . , n} as [n], x ← A to mean x is an output
of an algorithm A and x

R←− X to mean random selection of a value x from a set X. We
use negl(x) to denote a negligible function. We assume a semi-honest adversary A. For
colluding servers, in the worst case we assume A takes full control of all servers, where
servers communicate among themselves to learn information from the scheme.

E and F . A randomised symmetric encryption scheme E = (Gen, Enc, Dec) consists of
three PPT algorithms. Gen takes λ and outputs a secret key K; Enc takes K and a message
d ∈ {0, 1}∗ and outputs a ciphertext c; For all K from Gen and d ∈ {0, 1}∗ we have
Dec(K,Enc(K, d)) = d with probability 1. We say E is IND-CPA if for all PPT adversary
A,

Advind−cpa
E,A (λ) = |Pr[AK←Gen(1λ),c←Enc(K,d) = 1] − Pr[Ac

R←−{0,1}∗ = 1]|
is negligible. A function F : {0, 1}λ × {0, 1}∗ → {0, 1}λ from F the set of all functions
{0, 1}∗ → {0, 1}λ is pseudo-random if for all PPT adversary A,

Advprf
F,A(λ) = |Pr[AF(K,.),K

R←−{0,1}λ = 1] − Pr[Ag(.),g
R←−F = 1]|

is negligible. Detailed treatments of these primitives can be found in [21]. Index tables (or
dictionaries) in our discussion denote data structure of the form I [key] = value. Given a
key, the value matching the key is returned.

Definition 1 We define a single-server SSE scheme SSE as consisting of the following
algorithm and protocols:

– (K, γ, c) ← Setup(DB, aux). It outputs a secret key K
R←− {0, 1}λ, takes DB and aux,

and outputs an encrypted index γ using K , where aux can be an empty set, a document
set D and/or a lists of auxiliary information. If aux includes D then Setup encrypts
documents in D using E and also outputs a set of ciphertexts c. Else c is an empty set.

– J ← Search(K, w, γ ). A protocol executed between a user and a server. At the user,
the protocol takes as inputs K , a keyword w ∈ {0, 1}∗ and returns a search token. At
the server, the protocol takes as inputs the search token and γ , and returns a set of
encrypted identifiers, J.

– ς ← Update(K, γ,op,in). A protocol (for dynamic scheme) executed between a
user and a server. At the user, the protocol takes as inputs K , an operation op (e.g.
add or delete a document), an input in and outputs results to the server (e.g. encrypted
index entry for a newly added document and its ciphertext). At the server, the protocol
takes as inputs the results from the user and γ , and outputs a result ς , which contains
an updated index γ ′ and optionally other information such as a revocation list.
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The scheme is said to be correct if Search returns the correct encrypted identifiers
that match the documents containing the query keyword w. Under the real-ideal paradigm
and a leakage profile LSSE = (Lsetup

SSE ,Lquery
SSE ) (and Lupdate

SSE for dynamic scheme), a SSE
scheme is LSSE-secure against adaptive chosen keyword attacks if for all PPT adversary
A, there exists a PPT simulator S such that AdvSSE,A,S(λ) = |Pr[RealSSE,A(λ) = 1] −
Pr[IdealSSE,A,S(λ) = 1| ≤ negl(λ) where the game is as follows:

RealSSE,A(λ). A gives the challenger DB and aux (e.g. D). The challenger executes
Setup, where the resulting γ (and c) are given to A. A then makes a polynomial num-
ber of adaptive queries to the Search protocol, and for dynamic scheme, the Update
protocol. For each query the challenger returns the query (and update) result to A. Finally
A returns a bit b as the output of the experiment.

IdealSSE,A,S(λ). A outputs DB and aux (e.g. D). The simulator S simulates γ (and c)
based on the leakage information from Lsetup

SSE on index, and gives γ (and c) to A, who
then makes a polynomial number of adaptive queries. The simulator S returns the query
result for every query (and update result) based on Lquery

SSE (and Lupdate
SSE ) to A. Finally A

returns a bit b as the output of the experiment.

We note that security against non-adaptive chosen keyword attacks can be defined
in a similar way, except that A must prepare all queries beforehand. In summary, the
security intuition of a SSE scheme is such that nothing is leaked except for the out-
puts and the patterns of a sequence of queries [7, 10]. For the outputs, Lsetup

SSE measures
leakage of information stored on the server, which includes the list of encrypted items
c = (E(δ1), . . . , E(δm)), list of identifiers of the items (idδ1 , . . . , idδm), items’ sizes
(|δ1|, . . . , |δm|), m ∈ N, and the index γ . As for leakage on search, after q queries, Lquery

SSE
returns the search results (DB(w1), . . . ,DB(wq)), the search pattern SP(wq) measuring
whether a query is repeated, and the intersection pattern IP(wq) measuring whether a same

item is accessed. Lupdate
SSE measures leakage during updates where it gives E(δu), the item

size |δu|, and an updated index table γ ′, where δu is the item added/deleted. Here δi may
represent a document Df or a block of a document di,f .

4 ms-SSE

We now extend SSE to one that works over multiple servers, ms-SSE. A straightforward
approach is to deploy an existing SSE scheme directly to cater for s servers by first grouping
the set of documents into s (disjoint) subsets. Each of the encrypted subsets and metadata
are sent to the respective servers. In other words, we independently run s rounds of a SSE
scheme to outsource the subsets of documents to their selected servers. To search, we create
a query and broadcast it to all the servers to retrieve the matching documents. The benefit
is that a non-colluding server does not have information on other encrypted documents not
stored in it and obviously does not know the total number of documents. In case of statistical
analysis or ciphertext cryptanalysis, the server only learns the content of the documents it
holds. However this information is revealed if the servers collude. Regardless of whether
the servers collude or not, the subset of the encrypted documents is in the possession of the
server. Also, for each document, the document size is known.

Alternatively, we can do this in a way that a server does not hold a complete document
even in the encrypted form, so that only partial information of a document is revealed,
potentially through statistical analysis on the leakages or successful cryptanalysis on the
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encrypted documents, provided servers do not collude. This approach can be utilised to
also hide the document sizes, total number of documents and probabilistically hide pairs of
matching tokens and documents. The idea is to work on blocks of a document instead, and
randomly distributing the blocks to different servers.

We shall construct schemes based on these two approaches. The scheme using the
straightforward approach demonstrates the scalability of existing single server schemes,
whereas the scheme using the second approach offers smaller leakage.

Definition 2 A multi-server SSE scheme (ms-SSE) consists of:

– (K, I, c) ← mSetup(DB,D,S): A probabilistic algorithm that takes DB, a set of doc-
uments D and a list of servers S, to output a list of secret keys K, where each key
is randomly chosen from {0, 1}λ, a set of encrypted index tables I and a sequence of
encrypted data c.

– Jw := mSearch(K, w, I, S): A protocol executed between a user and a set of servers.
At the user, where on input K, a query word w and S, the protocol outputs a set of
tokens (or keys). At the servers, using these tokens (or keys) and I as inputs, the protocol
outputs a set of identifiers Jw .

– ς := mUpdate(K,op,in, I, S): A protocol (for dynamic scheme) executed between
a user and a set of servers. At the user, where on input K, a tuple (op,in), and S, the
protocol outputs results to the servers (e.g. encrypted index entry for a newly added doc-
ument and its ciphertext), where op ∈ {Doc+,Doc-}. At the servers, given the inputs
from the user and I, the protocol outputs ς . For Doc+, ς = (I′, cu) and optionally other
information, where I′ is a set of updated indexes and cu denotes the set of ciphertexts
of the added documents. For Doc-, ς = I′, and also possibly other information.

We say that ms-SSE is correct if for all λ, for all DB, for all D, for all S, for all (K, I, c) ←
mSetup(DB,D,S), for all ς ← mUpdate(K, op, in, I, S), mSearch(K, w, I, S) returns
the set of identifiers Jw such that the set of decrypted documents have their identifiers in
DB(w).

Note that unlike the case of SSE, a list of servers S is required as input to mSetup in
addition to DB. We also set D in place of aux, where mSetup processes D into structures
that allow for distributions to many servers. mUpdate may further include adding a new
server Svr+ and removing an existing server Svr-, which require new processes and
cannot rely on existing update protocol of SSE. We shall briefly discuss how Svr+ and
Svr- can be performed in the later section.

In the ms-SSE, the leakage function is defined per server and written as Lms-SSE =(
Lsetup
ms-SSE,Sj

,Lquery
ms-SSE,Sj

,Lupdate
ms-SSE,Sj

)

Sj ∈S. Accordingly, the adversary’s power is differ-

entiated by whether the adversary controls one server or controls multiple servers. We call
the adversary who controls exactly one server as non-colluding server, and an adversary
who controls more than one server as colluding server. This is reflected in the L-security
Realms-SSE and Idealms-SSE in which the adversary receives query responses for only the
servers under its control. Hence the security model for ms-SSE as follows.

Definition 3 For ms-SSE parameterised by security parameter λ and leakage functions

L ms-SSE =
(
Lsetup
ms-SSE,Sj

,Lquery
ms-SSE,Sj

)

Sj ∈S (and Lupdate
ms-SSE,Sj

for dynamic scheme), and S
a simulator, an adversary A who controls a set of servers S′ ⊆ S play the following game
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with the challenger. The challenger randomly choose to play the Realms-SSE or Idealms-SSE
game, and sends the list of servers S to A.

Realms-SSE,A(λ). In receiving S from the challenger, A generates a set of documents D
and a database index DB. A gives the challenger (DB,D, S′). The challenger executes
mSetup resulting in (K, I, c) where K is a set of secret keys, I = {γSj

}, c = {cSj
} for

all Sj ∈ S. The challenger returns to A (I′, c′) where I′ = {γSj
} and c′ = {cSj

} for all
Sj ∈ S′. Then A makes a polynomial number of adaptive queries. For search queries of
keyword w, the output of mSearch(K, w, I, S) for every Sj ∈ S′, Jw

Sj
, is returned to A.

For dynamic ms-SSE, the update queries for document addition or removal is replied
with output of mUpdate(K, op, in, I, S) for every Sj ∈ S′,the updated (γSj

,cSj
).

Finally A returns a bit b as the output of the experiment.
Idealms-SSE,A,S(λ). In receiving S from the challenger, A generates a set of documents

D and a database index DB and submits (DB,D,S′) to the challenger. The challenger
then sends Lsetup

ms-SSE,Sj
(DB,D,S′) for Sj ∈ S′ to the simulator S . Then S produces

(I′, c′) where I′ = {γSj
} and c′ = {cSj

} for all Sj ∈ S′ and this is returned to A.
After that, A makes polynomial number of adaptive queries for each of which S is given
Lquery
ms-SSE,Sj

(qi) or Lupdate
ms-SSE,Sj

(qi) for all Sj ∈ S′. Outputs of S is given to A after each
query. Finally A returns a bit b as the output of the experiment.

We define the advantage of the adversary as

Advms-SSE,A,S(λ) = |Pr[Real ms-SSE,A(λ) = 1] − Pr[Idealms-SSE,A,S(λ) = 1|.
We say that ms-SSE is Lms-SSE-secure against adaptive chosen keyword attacks by

colluding servers if for all PPT adversaries A, there exists a PPT simulator S such that

Advms-SSE,A,S(λ) ≤ negl(λ).

The above definitions can also be seen as a generalisation of SSE to multiple servers, in
which we define ms-SSE for single server by setting S to one server, D to an empty set, or
the set of documents and/or any other auxiliary information.

Security-wise we argue that an ms-SSE scheme is at least as secure as an SSE
scheme. Consider A who controls all servers Sj ∈ S. Then A has access to the whole of
(ISj

, cSj
)Sj ∈S. Suppose that the token keys and encryption keys for all servers are equal.

This allows A to consolidate (ISj
)Sj ∈S to form one index table I . Similarly, A can consoli-

date all responses to the queries. Consequently, A has the same information as an adversary
of the corresponding SSE scheme, and hence gain equal advantage. However, if A controls
only S′ ⊂ S, the consolidated index table and query results are not complete. Additionally,
the ms-SSE scheme uses different keys for each server which implies A has insignificant
probability to correctly consolidate the index table or query results. Therefore, A has less
information and hence less advantage than a single server SSE adversary.

5 ms-SSEG: a generic construction

In this construction, ms-SSEG, our intuition is to design steps in the Setup algorithm that
prepare documents so that one may deploy existing SSE for multiple servers with minimal
modification. The general idea is to divide the set of documents into subsets of documents in
such a way that an existing single keyword scheme can be used directly for index creations,
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Fig. 1 ms-SSEG– A generic construction

queries, and updates for each subset of documents. It mirrors the straightforward approach
discussed in Section 4. Figure 1 describes the construction.

We define mSetup as an algorithm that divides D into s subsets DSj
, and build the

keyword index DBSj
. Based on the number of servers s, and given the tuple (DSj

, DBSj
), it

runs SSE.Setup as if creating an index for each single server Sj . Similar concept applies to
mSearch and mUpdate. In mSearch, the search token is broadcast to all servers in order
to retrieve document identifiers that match the search token. As for mUpdate, a server is
randomly selected to update a document, or a document identifier is broadcast to remove
the document. ms-SSEG can be setup based on existing schemes, such as using [5, 7, 28].
In brief, we replace the generic functions (e.g. SSE.Setup) with similar functions in the
existing schemes. For example, using Cash et al.’s �

dyn
bas [5, Section 4], we can construct a

multiserver scheme by mapping SSE.Setup to �
dyn
bas ’s setup function and the underlying

document encryption process, SSE.Search to the search function and SSE.Update to
the update function, also coupled with the encryption process if the operation is to add a
document.

Leakage, Lms-SSE. Leakage is straightforward when servers do not collude.1 It consists
of the leakage of the underlying SSE scheme since a server only sees what is stored and
the outputs generated from the SSE scheme. Nevertheless stored items and outputs are
restricted to the subset of documents. In contrast, colluding servers learn the total number of
documents by summing the number of encrypted documents stored in each server, since we
divide D into s subsets DSj

. They also learn the total index size, in addition to the leakage
of each of the server. During search and update query, these servers collectively learn the
search and update results of one another and no other information is leaked except which
server is holding which documents. If we consider these servers as partitions of the storage
of a single server then the leakage is equivalent to that of a SSE scheme. So for colluding
servers, Lms-SSE = (n, {|γSj

|,LSSE for Sj |j = 1, . . . , s}).

1We believe this is the case in most of the practical scenario, as a provider would not simply share customers’
data with other providers.
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Theorem 1 Let ms-SSEG and Lms-SSE be as defined above. Suppose SSE is LSSE-
secure against adaptive chosen keyword attack. Then, ms-SSEG is Lms-SSE-secure against
adaptive attack by colluding servers.

Proof This proof uses the game hopping strategy beginning with the single server LSSE-
security game, followed by Lms-SSE security game for non-colluding server and finally
the game for colluding server. Here, Pr [Gamei] denotes the probability of the adversary
winning Gamei.

Game0: This game is exactly the LSSE-security game on SSE. Since we assume SSE
is LSSE-secure, for any PPT adversary A there exists a simulator Ssingle such that
Adv SSE,A,Ssingle(λ) ≤ negl(λ). So,

Pr [Game0] = AdvSSE,A,Ssingle(λ).

Game1: This is the Lms-SSE security game where the adversary B1 controls one of the s

servers, Sb ∈ S. At the beginning of the game, B1 submits a set of n documents, D. Let
server Sb be assigned with subset DSb

containing nb < n documents. Then the challenger
sends to the simulator leakages of Sb, which is related to index, ciphertext and search
results for DSb

only.
Although the leakage is less than in the single server game, from the simulator’s per-

spective the leakage is from a set of document, which is the same view as in the single
server game. The difference in a multiserver setting is the fact that the keywords set is not
disjoint and may be equal for all servers. This affects the index keys and the search token.
However, in this scheme, every server executes an independent instance of SSE includ-
ing generating and using different keys. As a result, the index keys or search tokens of a
keyword are different for different servers, and hence the index tables for the servers are
disjoint. Outputs for search queries from different servers are independent because they
search disjoint set of documents. It follows that, the simulated index table and search
results for Sb can be constructed fully based on the leakages and does not need any
information about outputs of other servers. Hence, the simulator Ssingle can be used in
this game to simulate outputs for Sb with indistinguishable distribution from outputs of
ms-SSEG.

Since B1 obtain outputs related to DSb
⊂ D only, he has less information than A in

LSSE-security game. Hence,

Pr [Game1] < Pr [Game0] .

Game2: This is the Lms-SSE security game where the adversary B2 controls a set of
servers S′ ⊆ S of its choice. Let S′ = {S1, . . . , St } where t ≤ s. Since the instances of
SSE for the servers are independent, the simulator Smulti is a collection of SSE simula-
tors

{
Ssingle

1 , . . . ,Ssingle
t

}
taking as inputs the leakages for the respective servers. Here

B2 obtains outputs related to t subsets of documents, which is more than that obtained
by B1 in Game1. The adversary B2 would gain the same amount of information from the
challenger as A in Game0 if it controls all servers, S′ = S. By the independence of SSE
instances on every server, we have that

Pr [Game2] =
t∑

i=1

Pr [Game1] ≤ Pr [Game0] .
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Hence,

Adv ms-SSE,B2,Smulti(λ) = Pr [Game2] ≤ AdvSSE,A,Ssingle(λ) ≤ negl(λ).

Therefore, ms-SSEG is Lms-SSE-secure against adaptive attack by colluding servers.

6 ms-SSEM : a construction with smaller leakage

The previous scheme, ms-SSEG, leaks the size and the total number of documents when
servers collude. Even if the servers do not collude, the server learns content of the stored
documents in the event of successful statistical analysis or key leaks. In order to address
these limitations, we propose a scheme based on similar index structures proposed in [5,
7]. We first give a static scheme and then extend it to a dynamic one. The general idea is
to divide documents into blocks, encrypt these blocks, distribute the blocks randomly to
the servers. A masked index table γSj

is also created for every server Sj , which stores the
linkage between the blocks and the servers. Then through the masked index tables a user
queries for documents. Figure 2 provides details of the construction.

In brief, there is a two part process in the setup phase (mSetup). The first is to randomly
assign blocks of documents to the list of servers. Given a set of documents, the scheme
generates a master key, k. This master key is then used to generate a set of server keys KSj

for all servers listed in the servers’ list S. Next, each document Df in D is divided into a set
of blocks, in which the number of blocks of Df is denoted as hf . Once this is done, each
block of Df is randomly assigned to a server Sj . The assignment is held by a temporary
index T , in the form of a tuple of the document identifier idDf

, the block identifier iddf,i
,

Fig. 2 ms-SSEM – A construction with smaller leakage
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and the server identifier, idSj
. Such a tuple effectively creates a “pointer” linking a block to

the server that will eventually store the ciphertext of this block.
The second process is to encrypt blocks of documents, and to create masked indexes that

link the keywords of the documents to the tuple in T in encrypted form, thus producing
searchable encrypted indexes. This is realised by first creating a set of empty index tables
I and list c that will be used to hold the indexes and ciphertexts. The index γSj

∈ I for
server Sj has a γSj

[key] = value structure. The steps to generate γSj
are as follows. For

a keyword wq , a search token key, Ktok , and an identifier encryption key, Keid , are created
using F with the master key k and wq as input. A list of empty vectors {tS1 , . . . , tSs } are
also created. tSj

is used to temporarily hold encrypted index entries of T for server Sj until
all entries in T have been processed. Entries in tSj

serve as the value in γSj
. Next, search

tokens, lq,j , for wq are generated for every server Sj through F with Ktok and the identifier
of Sj as input. The search token serves as the key in γSj

. After that, for every document that
contain wq , which is identified based on the keyword index DB, each block of the document
is encrypted using the server key KSj

of server Sj that will eventually store the encrypted
block. The selection of server key is done by referring to the entry T [idDf

, i], where i refers
to block i. After this the entry T [idDf

, i] is encrypted using Keid . The encrypted entry pdf,i

is randomly assigned to a server Sj , and appended to the vector tSj
. Once all documents

containing wq has been processed, the scheme sets γSj
[lq,j ] = tSj

. The above process is
repeated for all keywords in W.

Given γSj
[lq,j ] = tSj

, to search (mSearch), a user supplies lq,j , generated using the
master key k, wq and the server identifier idSj

. Each server Sj returns the respective list of
encrypted indexes pw,j (tSj

) if there is a match.
We note that random selections of servers (j

R←− [s]) during block assignments in index
table T determine where each of the encrypted blocks is to be stored, while random selec-
tions during index creation chooses which index table γSj

the linkages are kept. It means
a server i might, in its index, store an entry of a (b‖Df ‖j) linkage, in which block b is in
fact at server j instead of server i. This allows us to decouple the mapping between some of
the entries in the index and the actual stored blocks. It prevents a server from learning the
group of encrypted identifiers that matches the group of stored blocks during search, where
the number of returned identifiers can be more/less than the actual blocks to be retrieved.
However, this does allow a server to learn, if any, the number of blocks not stored in it,
or the excess of stored blocks based on the differences between the number of encrypted
identifiers in γSj

and the number of actual stored blocks. Nevertheless, we may pad the
identifiers/blocks to hide this information if necessary.

Leakage, Lms-SSE If servers do not collude, a server Sj possesses only the stored
blocks, while γSj

reveals the number of keywords, |W|, the number of block identifiers
per keyword, |pq,j |, and the total number of block identifiers Pj = �|W|

q=1|pq,j | in the
server. In addition the server learns the differences (if any) between the number of iden-
tifiers and the number of stored blocks, which we denote as Δ. This means Lsetup

ms-SSE =
(|W|, Pj , |pq,j |,Δ). When a query is submitted, a server Sj learns |pq,j | for a query wq ,
and also the search pattern SPSj

(wq) by recording the number of times an identical key-
word is queried. The server Sj also learns the intersection patterns IPSj

(wq) where the
same block identifiers are submitted during retrieval of blocks when different keywords are
queried. This means Lquery

ms-SSE = (|pq,j |, SPSj
(wq), IPSj

(wq)).
In the case where servers collude, the servers learn leakages of one another in addition to

the single server leakage of γSj
. This means leakages of the total number of block identifiers
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�s
j=1Pj based on γSj

for all j . However since keywords are differentiated as F(Ktok, idSj
)

for different server Sj , the servers will not be able to combine the encrypted block iden-
tifiers to link to the same keyword, until a keyword is queried. In summary, leakge for
non-colluding server is Lsetup

ms-SSE = (|W|, {(Pj , |pq,j |,Δ)|j = 1, . . . , s}) and the leakage
for colluding servers is Lquery

ms-SSE = ({(|pq,j |, SPSj
(wq), IPSj

(wq))|j = 1, . . . , s}).

Theorem 2 Let ms-SSEM and Lms-SSE = (Lsetup
ms-SSE,L

query
ms-SSE)Sj ∈S be as defined above.

Suppose F is a secure pseudorandom function and E is an IND-CPA symmetric encryption
scheme. Then ms-SSEM is Lms-SSE-secure against adaptive attack by colluding server.

Proof In ms-SSEM independent key sets are used for different servers which means related
information has been rendered independent as it is distributed to different servers. This
allows for independent simulators for each server to produce the required outputs in the
colluding servers attack. Thus, this proof begins by defining a simulator for one of the
servers (under non-colluding server attack) and shows that its output is indistinguishable
from the output of ms-SSE. Finally, multiple instances of this simulator form the simulator
for the colluding server attack.

First, we define a simulator Ssingle for non-colluding server, B, attack with server
controlled by B being Sb.

For input Lsetup
ms-SSE = (|W|, Pb, |pq,b|, Δ) Ssingle produces (γ ′

b, c
′
b):

– Generate index γ ′
b by first generating an encryption key k′

b ← E .Gen(1λ). Then
for each q ∈ [|W|], generate random strings rq,0

R←− {0, 1}λ, and Rq = {rq,i
R←−

{0, 1}3(λ)|i ∈ [|pq,b|]}. Then set γ ′
j [rq,0] = {

E .Enc(k′, ri) | ri ∈ Rq

}
.

– Generate ciphertexts by generating an encryption key k′
eid ← E .Gen(1λ) and generat-

ing |pq,b| + Δ random binary strings, ri
R←− {0, 1}φ(λ)+log2 l .

– Then compute c′
b = {

E .Enc
(
k′
eid , ri

) | i ∈ [|pq,b| + Δ]}.

For input Lquery
ms-SSE = (|pq,b|, SPSb

(wq), IPSb
(wq)) Ssingle produces query results which

consists of set of block identifier ciphertexts, J′
b, and a set of block ciphertexts, C′

b which
the user retrieves:

– Prepare J′
b by first referring to SPSb

(wq) to determine whether the query has been made
previously. If so, set J′

b with the same list as before. Otherwise, choose an unused entry
in γ ′

b containing a list of |pq,b| items, and set J′
b as the list.

– Prepare C′
b by again referring to SPSb

(wq) to determine whether the query has been
made previously. If so, set C′

b with the same set as before. Otherwise, prepare a new set.
Refer IPSb

(wq) to determine ciphertexts in this query which has been returned as results
in previous queries. If there is any, include the same ciphertexts in C′

b. Lastly, include
in C′

b unused ciphertexts from c′
b until |C′

b| equals the number of block identifiers
submitted for retrieval.

Game0: This is the Realms-SSE,B(λ) game with the adversary B controlling one server,
Sb. So, Pr [Game0] = Pr

[
Realms-SSE,B(λ) = 1

]
.

Game1: This game is Game0 with F(k, ·) and F(Ktok, ·) in the mSetup replaced by
independent random functions. Let where B1 be the adversary of the pseudorandom
function.Then, we have that

Pr [Game1] − Pr [Game0] ≤ 2Advprf
F,B1

(λ).
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Game2: This game is Game1 with the encryption algorithm E .Enc(KSb
, r1) and

E .Enc(Keid , r2) in Step 7 where r1 and r2 are random strings instead of the document
block df,i‖i and the identifiers idDf

‖iddf ,i‖idSb
. Let B2 be the IND-CPA adversary of

E . We have that

Pr [Game2] − Pr [Game1] ≤ 2Advind−cpa
E,B2

(λ).

Game3: This is the Ideal ms-SSE,B,Ssingle(λ) with the simulator Ssingle as defined earlier.
Clearly, this game is equivalent to Game2. Hence,

Pr
[
Ideal ms-SSE,B,Ssingle(λ)

] = Pr [Game3] = Pr [Game2] .

From Game0 to Game3 we have that

Pr
[
Idealms-SSE,B,Ssingle(λ) = 1

]

= Pr [Game2]

≤ Advind−cpa
E,B2

(λ) + Pr [Game1]

≤ Advind−cpa
E,B2

(λ) + Advprf
F,B1

(λ) + Pr [Game0]

≤ Advind−cpa
E,B2

(λ) + Advprf
F,B1

(λ) + Pr
[
Realms-SSE,B(λ) = 1

]
.

It follows that,

Advms-SSE,B,Ssingle(λ) ≤ Advprf
F,B1

(λ) + Advind−cpa
E,B2

(λ).

By our assumptions, the right hand side of the inequality is negl(λ). Therefore, we
conclude that ms-SSE is Lms-SSEM

-secure against adaptive attack by non-colluding
server.

Finally, consider an adversary A which controls a set of servers, S′ ⊆ S. Let
S′ = {S1, . . . , St } where t ≤ s. For adversary A consider a simulator Smulti for the
Idealms-SSE game which is a collection of t instances of the single server simulator,{
Ssingle

1 , . . . ,Ssingle
t

}
. Each simulator acts on the given leakages independently. During the

game, inputs Lsetup
ms-SSE = (|W|, {(Pj , |pq,j |,Δ)|j = 1, . . . , s}) and Lquery

ms-SSE = ({(|pq,j |,
SPSj

(wq), IPSj
(wq))|j = 1, . . . , s}) to Smulti are distributed accordingly. In particular,

for j = 1, . . . , t , the leakage (|W|, {(Pj , |pq,j |,Δ) and ({(|pq,j |, SPSj
(wq), IPSj

(wq)) is

passed to Ssingle
j .

Due to the independent server keys in ms-SSEM and, the secure primitives E and F ,
outputs of each storage servers is disjoint. Hence, the collection of independent outputs by
Smulti matches the distribution of ms-SSEM outputs. Since we define Smulti to consists of
simulators which work independently on their respective inputs, we have that

AdvSSE,A,Smulti(λ) ≤ s
(
Advprf

F,B1
(λ) + Advind−cpa

E,B2
(λ)

)

with equality achieved when A controls all s servers. Since the right hand side of the
inequality is negligible by our assumptions, we conclude that ms-SSEM is Lms-SSEM

-
secure against adaptive attack by colluding servers.

If only a static scheme is required, then instead of encrypting every entry in T separately
(required for efficient index updates), we could encrypt the whole list T [idf ] for Df . This
prevents leakage on the number of blocks per keyword and the total number of blocks.
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Fig. 3 ms-SSEdyn
M – Modification to mSetup in ms-SSEM

6.1 Extension to a dynamic construction

We propose a dynamic construction ms-SSEdyn
M that supports addition and deletion of doc-

uments. We first discuss the modification of mSetup as shown in Fig. 3 to accommodate
document removals since the existing index structure does not provide for efficient extrac-
tion of blocks. Our approach is to treat document identifiers idDf

as keywords and create
entries for them in γSj

through identifier-based keys F(k, 1||idDf
) and F(k, 2||idDf

).
Using the keys, we add an entry to a randomly selected γSj

, encrypt the complete list of ele-
ments in T for idDf

and then divide the list into blocks of length equal to |pdf,i
|. Encryption

of the whole list prevents leakage on the number of blocks in a document. By treating the
identifiers as keywords, dividing the encrypted list into blocks and permuting the entries in
γSj

, we ensure a server cannot differentiate between entries of keywords and document iden-
tifiers. If the entry has a much smaller number of blocks compared to the average number
of blocks for other entries then dummy blocks can be included.

For adding a document, Doc+ (Fig. 4), the approach proposed in [5] is adapted. We
initialise a list of frequency counters on every keyword of the document cntwq , which forms

Fig. 4 ms-SSEdyn
M – Adding a new document
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Fig. 5 ms-SSEdyn
M – Removing a document

part of the input to the token entry in γSj
. So instead of producing a token entry lq,j ←

F(Ktok, idSj
) for γSj

(Step 7 of mSetup, Fig. 2), we produce lq,j ← F(Ktok, idSj
||cntwq ),

where cntwq is incremented each time wq is processed for a new document. This is so
that addition does not cause leakage before queries as some documents may share identical
keywords.

For removing a document, Doc− (Fig. 5), the idea is to query the servers through doc-
ument identifier tokens that have been indexed during mSetup and Doc+ as described
earlier. Our scheme removes the actual encrypted blocks and the identifier entries in the
index. We do not update the keyword/block pair indexes in γSj

but a deletion strategy sim-
ilar to that of [28] can be adopted, in which when the searched encrypted blocks cannot be
found, their entries in γSj

can be deleted. Also, communication bandwidth can be saved if
it is possible for the user to store an index table on document identifier and server location
so that the user only sends Ktok to the particular server that holds the index for idDx .

For query, mSearch requires minimal modification from the static scheme due to how
Doc+ and Doc− protocols are constructed. Figure 6 describes the protocol. The only
additional step is for each server to generate tokens based on a sequence of counter val-
ues F(Ktok, idSj

||cntw) until there are no more matching token. This is required since for
Doc+, we use a cntwq to differentiate similar keyword entries for different documents to
prevent leakage before queries.

We further discuss how a server can be introduced or removed. Adding a new server
Svr+ can be straightforward. The idea is to generate a new server key, and then update the
key list KS and the server list S. Instead of modifying existing indexes and redistributing
the encrypted blocks that have been stored, the new server will only be considered when
adding new documents.

Removing an existing server Sj is more computationally intensive, as all blocks from
Sj must be re-assigned. This can be done using existing protocol Doc+. The index γSj

must also be processed as it contains block linkages pointing to locations in other servers.

Fig. 6 ms-SSEdyn
M – Modification to mSearch in ms-SSEM
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Such linkages can be decrypted, re-encrypted and redistributed randomly to the remain-
ing servers. The mechanism is to append the re-generated linkages to the matching token
entries of other servers Sk . Also, the index γSj

contains entries referencing documents and
its blocks’ locations. These can also be redistributed to another server. This completes the
process but other servers Sk may still contain linkages that point to the blocks stored in Sj .
In this case, the user archives the identifier of the removed server. During search if there is
a linkage pointing to Sj , the user discards this linkage.

Leakage The leakage for mSetup is changed by the inclusion of list of document blocks
as an entry in an index γSj

. It follows that the number of entries in γSj
no longer indicates

the number of keywords, but it is the sum of number of keywords |Wj | and the number of
documents |Dj | whose encrypted blocks reside on the server. Besides, the total number of
block identifiers, Pj , and the difference between the number of block identifiers and the
number of encrypted blocks, Δ, are no longer revealed. For server Sj ,

Lsetup
ms-SSE = (|Wj |+|Dj |, {|pi,j | | i = 1, . . . , |Wj |+|Dj |}).

The length of entry from the original index |pq,b| remains in the search query leakage.
Due to document addition, the number of index entries retrieved for a search query may be
more than one. Since the server computes the additional keyword tokens by incrementing
counters, the leakage is a list of index entries and their lengths corresponding to the counters,

(c, lc,j , |pc,b|)
cntwq

c=1 .
Another piece of leaked information in search query leakage is due to the delayed index

update for document removal. When a document is deleted, the encrypted blocks of the doc-
ument is identified and deleted immediately. The corresponding encrypted block identifiers
in γSj

are deleted only when a keyword of the document is searched. Hence, the keyword
belonging to the deleted document is hidden until it is searched. Nevertheless, if multiple
documents have been removed before a search of the keyword, updating γSj

reveals that a
deleted document that contained the keyword but does not reveal which document. Since the
server finds and omits the encrypted block identifiers as sent by the user, the server would
know the token of the entry from which they are omitted. As a result, the query leakage now
contains the set of pairs {(τi , |ri |) | 0 � i � cntwq } where ri is the list of encrypted block
identifiers omitted from γSj

[τi]. The set may be empty and may have at most cntwq pairs.
Search query leakage for server, Sj is Lquery

ms-SSE =
(
|pq,b|, (c, lc,j , |pc,b|)

cntwq

c=1 , SPSj
(wq), IPSj

(wq), {(τi , |ri |) | 0 � i � cntwq }
)

.

For document addition, a server Sj possesses partial number of blocks of the added
document, cu

Sj
, and learns the number of newly stored blocks |cu

Sj
|. Sj also learns new

keyword/blocks pairs added to γSj
and that these blocks belong to a document. We denote

these pairs as Lj = (lq,j , |tSj
|)|Wu|

q=1 . If a newly added document contains a keyword that was
searched before, then Sj learns this fact, since Sj can use the list of previously submitted
query tokens Ktok ← F(K, 1||wq) together with cntwq to try to match the entry in γSj

.
We denote this pattern due to addition as Aj = {(F (K, 1||wq), cntwq ) | wq ∈ Wu}. We
remark that the addition protocol can be readily extended to allow for addition of a batch of
documents, in which then the information with regard to relation of blocks and document

can be hidden in the case when many documents are added in a session. Lupdate,Doc+
ms-SSE =(

|cu
Sj

|, Lj ,Aj

)
.
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Similarly for document removal, Sj learns the blocks and the number of blocks removed,
and that the blocks belong to a document. In addition, when there is a match during deletion,
Sj learns that the entry in γSj

is not a keyword entry. A list Rj = (v, l) where v ∈ {0, 1}
and l := F(Ktok, idSj

) can be maintained, where if there is a match then we set v = 1. In

summary Lupdate,Doc−
ms-SSE =

(
|cx

Sj
|,Rj

)
.

The colluding servers collectively learn all leakages of all servers. Notice that since the
query token that is sent to all servers is the same, colluding servers knows when they are
searching for the same keyword, and hence would learn the total number of block identifiers
returned to the user. Similarly, for document addition, the adversary learns would know all
of the documents block ciphertexts and encrypted identifiers. In short, the leakage gained
by adversary who controls all of the servers is equal to the leakage obtained by adversary in
a single server SSE.

Theorem 3 Let ms-SSEdyn
M and Lms-SSE =

(
Lsetup

ms-SSE,L
query
ms-SSE,L

update
ms-SSE

)
be as

defined above. Then, ms-SSEdyn
M is Lms-SSE-secure against non-adaptive chosen keyword

attacks by colluding servers, assuming F is a secure pseudorandom function and E is an
IND-CPA symmetric encryption scheme.

Proof Sketch As before we build a simulator for non-colluding server Ssingle and extend it
to the case of colluding servers Smulti .

Let Q0,Q1, . . . , Qκ be the queries submitted by the non-colluding adversary with Q0
being the setup query, and for q > 0, Qq being search query, document addition query or
document removal query.

For Q0, the simulator Ssingle generate an index γ ′ with random strings according to
{|pi,j | | i = 1, . . . , |Wj |+|Dj |} in Lsetup

ms-SSE, similar to the simulator for Theorem 2.
For document addition query Qq , γ ′ is modified to match new entries if Aj �= ∅. First,

search for the known index keys lq,j from Lj in search queries preceding Qq . Let Qi i < q

denote the identified query whose leakage includes (c, lq,j , |pc,b|) for some c and |pi,b|.
Find element of Aj with matching counter, cntwq = c and extract its corresponding search
token, ywq . Choose an entry in γ ′ with length |pi,b| and move the entry to γ ′[F(ywq , idSj

)].
The new index entries are added to γ ′ and c′

j in a similar steps for setup queries.

Document removal query requires Ssingle to delete the entry with the revealed index key
l in Rj from γ ′ and |cx

j | ciphertexts. If the document being deleted, Dx is added after the

initial setup, then the index key is known and hence omit entry at γ ′[l]. Otherwise, Ssingle

chooses an entry with length |cx
j | to omit from γ ′ and ensure γ ′[l] is empty.

For search query Qq whose leakage shows SP(wq)=v for some v < q. If there are update
queries among Qi for v < i < q, then J′

q �= J′
v . Hence, in such cases, Ssingle use the other

leakage elements to form J′
q correctly. Moreover, the index γ ′ must be updated according

to preceding document addition and removal queries.
The simulator for colluding servers Smulti consists of t Ssingle where t is the number of

servers controlled by the adversary. The shared information among (γ ′
j )

t
j=1 which includes

the same search token for every queried keyword is maintained because of the revealed
index keys for document addition and removal, and for search queries.

The simulators described above are able to produce outputs fulfilling the leakages cor-
rectly. This implies that the adversary has insignificant probability in distinguishing the
Real game from the Ideal game.
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Doc+ variants with forward privacy The Doc+ protocol can be modified to achieve
forward privacy introduced by [32], in that even if a keyword is searched before, the server
will not be able to learn whether a newly added document also contains this keyword. We
can use a unique key Kq or maintain a counter cntq to generate K

q
tok ← F(Kq, 1||wq) or

Kc
tok ← F(K, 1||wq ||cntq) for every occurrence of wq when adding documents. Neverthe-

less, both approaches are bandwidth intensive as during search the list of K
q
tok or Kc

tok must
be submitted to all servers, in which the list grows linearly for every document update.

7 Performance

We summarise the performance of ms-SSEM in Table 1 with comparisons to some recent
schemes. In the table, Leak measures leakage based on indexes, documents and keywords.
Index size and Search time is measured per server. Comm. measures bandwidth for index,
query and update submission while Inter. measures the number of rounds required to retrieve
the documents/blocks.

Our schemes leak total number of blocks Nl and the number of blocks per keyword |pw|,
as compared to [28], which only reveals the total number of blocks and indexes b. We note
though, Naveed et al. reveals document size |Df | after queries and requires more rounds of
interaction.

Index size in ms-SSEG is equivalent to the underlying SSE scheme since the index is
created by the SSE scheme it deploys. In the case of ms-SSEM , the total index size is
O(Nl), which for a single server is O(Nl/s). For ms-SSEdyn

M , the index size is O((N +
n)l)/s), which is higher due to the addition of document identifier entries in the index.

Search and update cost for ms-SSEG is as before equivalent to the underlying SSE
scheme, but for communication, all our schemes are with higher overhead O(s) as it has
to send the query token to s servers instead of one server. We note that, however, this is
optimal when there is more than one server, unless we require the user to store information

Table 1 Comparisons with a few recent SSE schemes

Schemes Leak Index size Search time Comm. Inter.

ms-SSEG =SSE [c] =SSE =SSE O(s) 2r

( SSE)/s [nc]

ms-SSEM |W|, Nl, |pw| [c] O(Nl/s) avg(z/s) O(s) 2r

|W|, Nl/s, |pw|/s [nc]

|W| + n, (N + n)l, |pw| [c] O((N + n)l/s) avg(z/s) O(s) 2r

ms-SSEdyn
M |W| + n, ((N + n)l)/s,

|pw|/s [nc]

[7] |W|, n,M, |Df | O(Mn) O(z) O(1) 2r

[5] N, n, |Df | O(N) O(z/x) O(1) 2r

[28] b, |Df |@ O(b) O(z) O(1) 4r

n = number of documents, s = number of servers, b = number of blocks of documents and indexes, l =
max(h), |pw| = number of block identifiers per keyword for all servers, z = |DB(w)|, N = �w∈W|DB(w)|,
x = number of processors, M = max(|DB(w)|), avg denotes on average, [c] = colluding servers, [nc] =
non-colluding servers, r = rounds of interaction between user and a server. @: For [28], |Df | is leaked only
after query
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for servers to pull the blocks from, but this then increases storage and computational cost
on the user. Search time for each server in ms-SSEM and ms-SSEdyn

M is averagely z/s. All
in all, our proposals provide better hiding properties in terms of document size and number
of documents, with trade-offs on storage and communication.

8 Implementation of ms-SSEM

We implemented the ms-SSEM scheme, simulating multiple servers on a single local
machine. The application was written as a single thread application. The workstation is run-
ning on an Intel Core i7-4510U (2 GHz) processor with 8 GB of memory and 256 GB of
SSD.

The implementation was run using a test file with file size: 1,252,862,080 bytes (i.e.,
about 1.25 GB). Each chunk of block was the size of 50,000 bytes (50 kB). A total of
number of 25,058 blocks was generated.

We measured the time taken for each algorithm. To generate the master key, the time
taken was less than 1 millisecond (ms). 5 servers were simulated and the time taken to
generate all five server keys was 234 ms. Building the index blocks, which includes block
segmentation and encryption, took a total of 121.44 seconds. Searching took 81 ms whereas
retrieval of the file, which includes block decryption and merging, took 39.19 seconds.

9 Conclusions

We proposed extensions of SSE to SSE over multiple servers. Given the availability of
many providers, our rationale is that a user may choose to outsource encrypted documents
to a few of them instead of just one. We defined multi-server SSE and proposed a generic
construction that can be used to readily extend existing SSE schemes to work on multiple
servers with minimal modification. We further proposed a construction that provides better
hiding properties. It divides documents into sets of encrypted blocks and randomly assigns
these blocks to different servers. This is done in a way that protects against any server
from obtaining the complete set of blocks of a document with high probability, even in the
encrypted form assuming servers do not collude, while achieving sublinear search time for
each server. On security, we explore leakages under a new setting of non-colluding and
colluding servers.
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