Cryptogr. Commun. (2018) 10:5-15 @ CrossMark
DOI 10.1007/s12095-017-0217-x

Missing a trick: Karatsuba variations

Michael Scott!

Received: 2 November 2016 / Accepted: 20 February 2017 / Published online: 7 March 2017
© Springer Science+Business Media New York 2017

Abstract There are a variety of ways of applying the Karatsuba idea to multi-digit mul-
tiplication. These apply particularly well in the context where digits do not use the full
word-length of the computer, so that partial products can be safely accumulated without
fear of overflow. Here we re-visit the “arbitrary degree” version of Karatsuba and show that
the cost of this little-known variant has been over-estimated in the past. We also attempt to
definitively answer the question as to the cross-over point where Karatsuba performs better
than the classic method.

Keywords Public key cryptography - Implementation

Mathematics Subject Classification (2010) 97F90 - 97F40 - 68W40 - 11Y16

1 Introduction

As is well known the Karatsuba idea for calculating the product of two polynomials can
be used recursively to significantly reduce the number of partial products required in a
long multiplication calculation, at the cost of increasing the number of additions. A one-
level application can save 1/4 of the partial products, and a two-level application can save
7/16ths etc. However application of Karatsuba in this way is quite awkward, it attracts a
large overhead of extra additions, and the ideal recursion is only available if the number of
digits is an exact power of two.

One way to make Karatsuba more competitive is to use a number base radix that is
somewhat less than the full register size, so that additions can be accumulated without

This article is part of the Topical Collection on Recent Trends in Cryptography.

< Michael Scott
mike.scott@miracl.com

1" MIRACL Labs, Dublin, Ireland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-017-0217-x&domain=pdf
mailto:mike.scott@miracl.com

6 Cryptogr. Commun. (2018) 10:5-15

overflow, and without requiring immediate carry propagation. Here we refer to this as a
“reduced-radix” representation.

Multi-precision numbers are represented as an array of computer words, or “limbs”, each
limb representing a digit of the number. Each computer word is typically the same size as
the processor’s registers, that are manipulated by its instruction set. Using a full computer
word for each digit, or a “packed-radix” representation [7], intuitively seems to be optimal,
and was the method originally adopted by most multi-precision libraries. However to be
efficient this virtually mandates an assembly language implementation to handle the flags
that catch the overflows that can arise, for example, from the simple act of adding two digits.

The idea of using a reduced-radix representation of multi-precision numbers (inde-
pendent of its suitability for Karatsuba) has long been championed by Bernstein and his
co-workers. See for example [2] for a discussion of the relative merits of packed-radix
and reduced-radix representation. This approach is supported by the recent experience of
Hamburg in his implementation of the Goldilocks elliptic curve [7]. A reduced-radix repre-
sentation is sometimes considered to be more efficient [7] — and this is despite the fact that
in many cases it will require an increased number of limbs.

In [1] is described an elliptic curve implementation that uses this technique to demon-
strate the superiority of using the Karatsuba idea in a context where each curve coordinate
is represented in just 16 32-bit limbs. In fact there is much confusion in the literature
as to the break-even point where Karatsuba becomes superior. One confounding fac-
tor is that whereas Karatsuba trades multiplications for additions, in modern processors
multiplications may be almost as fast as additions.

Elliptic curve sizes have traditionally been chosen to be multiples of 128-bits, to provide
a nice match to standard levels of security. On the face of it, this is fortuitous, as for example
a 256-bit curve might have its x and y coordinates fit snugly inside of 4 64-bit or 8 32-bit
computer words using a packed-radix representation. Again, as these are exact powers of 2,
they might be thought of as being particularly suitable for the application of the Karatsuba
idea. However somewhat counter-intuitively this is not the case — if Karatsuba is to be
competitive the actual number base must be a few bits less than the word size in order
to facilitate addition of elements without carry processing (and to support the ability to
distinguish positive and negative numbers). So in fact a competitive implementation would
typically require 5 64-bit or 9 32-bit words, where 5 and 9 are not ideal polynomial degrees
for the application of traditional Karatsuba.

What is less well known is that there is an easy to use “arbitrary degree” variant of
Karatsuba (ADK), as it is called by Weimerskirch and Paar [12], which can save nearly 1/2
of the partial products and where the polynomial degree is of no concern to the implementor.
In fact this idea has an interesting history. An earlier draft of the Weimerskirch and Paar
paper from 2003 is referenced in [10]. But it appears to have been discovered even earlier
by Khachatrian et al. [8],! and independently by David Harvey, as reported in Exercise 1.4
in the textbook [3]. Essentially the same idea was used by Granger and Scott [4], building
on earlier work from Granger and Moss [5] and Nogami et al. [11], in the context of a
particular form of modular arithmetic.

Here we consider the application of this variant to the problem of long integer multipli-
cation. Since the number of partial products required is the same as the well known squaring
algorithm, squaring is not improved, and so is not considered further here. We restrict our
attention to the multiplication of two equal sized numbers, as arises when implementing
modular arithmetic as required by common cryptographic implementations.

I This reference was brought to our attention by an anonymous reviewer of [4].

@ Springer

Cryptogr. Commun. (2018) 10:5-15 7

2 The ADK algorithm

This algorithm is described in mathematical terms in [3, 8] and [12]. However here we have
used the subtractive variant of Karatsuba to some advantage to get a simpler formula, as
pointed out to us by [13].

n—1i—1

n—1 n-—1
Xy =D) @ =) =y Y by b (1)
i=0 j=0

i=1j=0
Observe that in additive form the formula is more complex:-

n—1i-1

n—1 n—1 n—1
Xy =Y > i+x)@i+ypb T 2 xiyib® =Y b Y xybt ()

i=1 j=0 i=0 j=0 =0

This clearly involves more additions and subtractions than (1). In fact we find the math-
ematical description unhelpful in that it makes the method look more complex than it is.
It also makes it difficult to determine its exact complexity. To that end an algorithmic
description is more helpful. See Algorithm 1.

Algorithm 1 The ADK algorithm for long multiplication

INPUT: Degree n, and radix b = 2/

INPUT: x = [x0,...,Xp—1], ¥ = [Y0, - - -, Yn—1] where x;, y; € [0,b — 1]
OUTPUT: z = 20, ..., Zon—2, 0], where z; € [0, b> — 1] and z = xy
1: function ADKMUL(x, y)
2: fori < Oton —1do
3 di < Xx;yi
4: end for
5: s < dy
6 70 < S
7 fork < 1ton —1do
8 s < s+ di
9: t<s
10: fori < 1+ |k/2] tok do
11: t<t+ (x;i — xk—i) (YVk—i — Vi)
12: end for
13: Zk <t

14: end for
15: for k < nto2n —2do

16: s <85 —dr_p

17: t<s

18: fori < 1+ |k/2]ton —1do

19: t<—t+ (x; — xp—i) Vk—i — Yi)
20: end for

21: Zk <t

22: end for

23: return z

24: end function

@ Springer

8 Cryptogr. Commun. (2018) 10:5-15

The number of multiplications and additions required can now be confirmed by a simple
counting exercise. Observe how the number of additions is kept to a minimum by precal-
culating the x; y; terms. For clarity we have not included the final carry propagation, which
reduces the product z to a radix b representation.

A fully unrolled example of the algorithm in action for the case n = 4 is given in the
next section.

3 Comparing Karatsuba variants

As an easy introduction consider the product of two 4 digit numbers, z = xy. The School-
boy method (SB) requires 16 multiplications (muls) and 9 double precision adds, which
is equivalent to 18 single precision adds. In the sequel when comparing calculation costs
a “mul” M is a register-sized signed multiplication resulting in a double register product.
An “add” A is the addition (or subtraction) of two registers. We also make the reasonable
assumption that while add, shift or masking instructions cost the same on the target pro-
cessor, an integer multiply instruction may cost more. So the cost of the SB method here is
16M+18A.

20 = X0)0

21 = X1Y0 + Xo)1

22 = X2Y0 + X1y1 + x0y2

23 = X3y0 + X2¥1 + X1y2 + X0y3 3
24 = X3y1 +X2y2 +X1)3

25 = X3y2 + X233

26 = X3)3

A final “propagation” of carries is also required. Assuming that the number base is a
simple power of 2, this involves a single precision masking followed by a double precision
shift applied to each digit of the result. The carry must then be added to the next digit. If
multiplying two n digit numbers the extra cost is equivalent to (10n — 7) A adds. Here we
will neglect this extra contribution, as it applies independent of the method used for long
multiplication.

Using arbitrary-degree Karatsuba (or ADK), the same calculation takes 10 muls and 11
double precision adds and 12 single precision subs. The total cost is 10M+34A. So overall
6 muls are saved at the cost of 16 adds

20 = X0)0

z1 = (x1 — x0)(yo — y1) + (xoyo + x1y1)

22 = (x2 — x0) (Yo — ¥2) + [x0y0 + x1y1] + x2)2

73 = (x3 —x0) (Yo — y3) + (x2 — x1)(y1 — y2) + [xoyo + x1y1] + [x2y2 + x3y3] (4)
74 = (x3 — x1)(y1 — y3) +x1y1 + [x2y2 + x3y3]

zs = (x3 — x2)(y2 — y3) + (x2)2 + x3y3)

26 = X3)3

Here square brackets indicate values already available from the calculation. Hopefully
the reader can see the pattern in this example in order to easily extrapolate to higher degree
multiplications.

It is an interesting exercise to repeat this calculation using one level of “regular” Karat-
suba, and simplifying the result. As can be seen in (5) the same calculation requires 12 muls,

@ Springer

Cryptogr. Commun. (2018) 10:5-15 9

10 double precision adds and 4 single precision subs, or equivalently 12M+24A, so 4 muls
are saved at the cost of 6 adds.

20 = X0Y0
z1 = (x1y0 + Xo0y1)
72 = (x2 — x0) (Yo — ¥2) + x0yo + (x1y1 + x2)2)
z3 = [(x2 — x0)1(y1 — y3) + (x3 — x)[(Yo — y2)] + [x1y0 + x0y1] + [x3y2 + x2¥3]
z4 = [(x3 — xDI[(y1 — y3)] + [x1y1 + x2y2] + x3y3
75 = (x3y2 + x2y3)
26 = X3¥3
)
Observe that only z1, z3 and z5 are calculated differently. Using two levels of Karatsuba
(6), requires IM+38A, so 7 muls are saved at the cost of 20 adds.

20 = X0Y0

z1 = (x1 — x0)(yo — y1) + (xoyo + x1y1)

22 = (x2 — x0)(yo — ¥2) + [xoyo + x1y1] + x2y2

z3 = ([xz3—x1]—[x2—x0D([yo— y21—[y1 —y3D +[(x2 —x0) (yo— y2) I+ [(x3 —x1) (y1 — y3)]
+x1 — x0)(yo — y)I + [(x3 — x2)(y2 — y3)] + [xoyo + x1y1] + [x2y2 + x3y3]

24 = (x3 —x1)(y1 — ¥3) +x1y1 + [x2y2 + x3y3]

25 = (x3 — x2)(y2 — y3) + (x2y2 + x3y3)

26 = X3)3

(6)

Now only z3 is calculated differently from the ADK approach. It is noteworthy that in [1]
the authors deployed two levels of standard Karatsuba, and apparently did not consider the
ADK method. However since the ADK approach works on a digit-by-digit basis, and thus
applies seemlessly independent of the number of digits, it would appear to offer a nice easily
applied compromise solution that extracts a big part of the Karatsuba advantage, without
causing an explosion in the number of additions.

In terms of the number of partial products required, its performance is always at least
as good as that obtained by applying one level of regular Karatsuba. This may represent an
easily achieved “sweet spot” of relevance to applications involving medium sized numbers,
as may for example apply in the context of Elliptic Curve Cryptography.

In passing we observe, as also noted in [3], that the ADK method can be used as an
amusing alternative algorithm for pencil-and-paper long multiplication. We would not be
surprised to learn of its use in the recreational mathematics literature.

4 Numerical stability

Before proceeding we need to address the problem of numerical stability. We start by assum-
ing that both numbers to be multiplied are fully normalized, that is each digit of x is in the
range 0 < x; < b. If they are not, they can be quickly normalized using a fast mask and shift
operation (which works even if some of the digits are temporarily negative). For numerical
stability of the long multiplication it is important that the sum of double-precision products
that form each row of (3), do not cause a signed integer overflow. Assume that b = 2’ where
t < w on a w-bit wordlength computer. Then the product of two such numbers could be as
big as 2% — 2/T! 4 1. The longest row consists of n such numbers, plus a carry from the
previous row. So each row could not be larger than (n + (2% — 21 1 1). Since it must be
possible to distinguish the sign of each partial product this must be strictly less than 22%~!

@ Springer

10 Cryptogr. Commun. (2018) 10:5-15

For the common wordlengths of w = 32 and w = 64-bits, and for numbers of the
sizes relevant to elliptic curve cryptography, we would expect ¢ to be 28 or 29 on a 32-bit
computer, and 61 or 62 for a 64-bit computer. Too large and the stability criteria will not be
met. Too small and too many words will be required to represent our numbers, with a loss
of efficiency.

We would assume that normally the largest radix possible would be used that is compat-
ible with this stability condition. However there may be other factors at play which might
dictate a slightly smaller choice for ¢ — for example if reduction were merged with multi-
plication [4], or if it were regarded as desirable that field elements could be added without
normalization prior to multiplication [7].

5 The true cost of ADK multiplication

In [12] the number of multiplications and additions required for the application of the ADK
method is calculated, in the context of polynomial arithmetic. There it is worked out that
its performance compared to the school-boy method, given a multiplication to addition cost
ratio of r, is such that they are equivalent for » = 3 irrespective of the degree of the poly-
nomials. The rather neat conclusion might be that unless multiplication takes more than 3
times as long as an addition, the method brings no advantage. And for many real-world
processors with hardware support for integer multiplication, this may not be the case.

However here we are interested in multi-precision arithmetic, which is a little different.
While all of the additions in the SB method are double precision, the subtractions required
by the ADK method are only single precision. Furthermore the cost function used for ADK
in [12] appears to be incorrect. The true cost in terms of single precision additions is actually
only 2n?% + 2n — 6 for the ADK method, compared to the 2n% — 4n + 2 required by SB. In
[12] the number of additions is calculated as being of the order of 2.5n2. This dramatically
changes the balance between the two contenders. Recall that for SB the number of muls is
n2, while for the ADK method itis n(n+1) /2. An immediate and striking conclusion is that
for n > 12 the total number of muls and adds for ADK becomes less than the total required
for SB (Table 1).

Interestingly Khachatrian et al. [8] appear to have got it wrong as well, over-estimating
the number of additions required to an even greater extent, as always requiring 50% more
additions than the SB method. However these previous over-estimates may be explained by
the authors considering only a packed-radix representation.

Processor designers go to great lengths to cut the cost in cycles of a mul instruction, even
getting it down to 1 clock cycle, the same as that required for an add. However a mul will
always require more processor resources, and thus a hidden extra cost will probably show
up in actual working code. For example in a multi-scalar architecture only one processor
pipeline might support hardware multiplication, whereas all available pipelines will allow
simultaneous execution of adds, so whereas one mul can execute in 1 cycle, two or more
adds might execute simultaneously. The actual break-even point between ADK and SB
can only be determined on a case-by-case basis via an actual implementation. In this next

Table 1 Complexity

muls adds
SB n? 2n% —4n +2
ADK nmn+1)/2 202 +2n—6

@ Springer

Cryptogr. Commun. (2018) 10:5-15 11

Table 2 Operation Counts
n SB muls SB adds ADK muls ADK adds r

25 32 15 54 22

81 128 45 174 1.28
12 144 242 78 306 0.97
16 256 450 136 538 0.69

table we calculate the ratio r between the costs of muls and adds that mark the expected
break-even between SB and ADK (Table 2).

This would appear to settle the matter: A variant of Karatsuba should be used for all
multi-precision multiplications that involve numbers with 12 or more limbs. A caveat might
be that the simplicity of the SB method might favour a compiler in terms of the number
of memory accesses and register move instructions (not considered here) which it might
require. However we suspect that any such advantage would be outweighed by the hidden
resource consumption of even the fastest integer multiply.

On the other hand it remains a real possibility that a packed-radix implementation of
the School-Boy method written in carefully hand-crafted assembly language might prove
superior on particular processors, even beyond the 12 limb limit (bearing in mind that a
packed-radix representation may actually require less limbs). This could only be established
experimentally. A useful resource for comparison purposes would be the well known GMP
multi-precision library [6].

6 Some results

We tested our results on an industry standard Intel i3-4025U 1.9GHz 64-bit processor run-
ning in Windows. This is a simple head-to-head comparison of the reduced-radix SB and
ADK methods. The test code was written in C, and compiled using the GCC compiler
(version 5.1.0) with maximum optimization. It includes the carry propagation code. The
multiplication code was fully unrolled, as a compiler cannot always be trusted to do this
automatically. Our experience would be that optimized compiler output like this for Intel
processors is very hard to improve upon, even using hand-crafted assembly language.

These results (Table 3) more than support the conclusion to be drawn from Table 2: In fact
on this processor the cross-over point occurs already with just 9 limbs. On examining the
generated code, it was observed that the number of mul and add-equivalent instructions were
as predicted in the analysis above. However an inspection of the generated code also con-
firmed our suspicion that the ADK code generated more register-register move instructions
and memory accesses. On some processors this could offset the ADK advantage

Table 3 Intel i3-4025U Cycle

Counts n SB cycles ADK cycles
5 75 78
9 234 185
12 397 324
16 687 577

@ Springer

12 Cryptogr. Commun. (2018) 10:5-15

7 Conclusion

In this note we have dusted off an old oft-rediscovered trick that we would suggest has
not received sufficient attention from those interested in efficient cryptographic implemen-
tations. We have demonstrated that it is much more efficient than previously thought. We
have established a concrete break-even point where Karatsuba variants should be considered
ahead of the classic school-boy method for long multiplication.

An obvious extension of the idea applies to Montgomery’s method for modular reduction
without division [9] — details are given in an Appendix.

Of course we are not claiming that the ADK method is necessarily the best choice in all
circumstances. A classic recursive Karatsuba may well be superior in particular cases. For
example Hamburg [7] uses a modulus that chimes particularly well with 1-level of classic
Karatsuba. And Bernstein et al. [1] may well be correct in applying 2-level Karatsuba in
their particular context.

The fact that a multiplication now requires the calculation of the same number of partial
products as a squaring, might encourage implementors to use this multiplication algorithm
for both squaring and multiplication, so that multiplications and squarings cannot be easily
distinguished by some simple kinds of side-channel attack, like for example a timing attack.

Acknowledgments The author would like to thank Rob Granger, Billy Bob Brumley and Paul
Zimmermann for helpful comments on an earlier draft of this paper.

Appendix
More results

We carried out further tests on a variety of platforms. In all cases we used the GCC compiler
tools. Where the well known GMP library could be installed, we provide a comparison with its
assembly language mpn_mul_basecase () packed-radix SB implementation. However it
should be noted that whereas the GMP code is only partially unrolled, ours is fully unrolled.

First up is a rather old Intel Core i5 chip running under the Ubuntu OS, and using GCC
version 5.2.1 (Table 4).

Next a more modern i5 variant, running on an Apple Mac Mini (Table 5).

Finally results for an old 32-bit Intel Atom processor, using GCC version 4.8.4 (Table 6).

Example Code

Here we present an example of the loop unrolled C code for the SB and ADK methods that
we used in our tests. In this small example the number of limbs 7 in x and y is 5. Code for

Table 4 64-bit Intel i5-M520

Cycle Counts n SB cycles ADK cycles GMP cycles
5 87 106 99
234 248 289
12 400 380 506
16 691 626 921

@ Springer

Cryptogr. Commun. (2018) 10:5-15 13
Table 5 64-bit Intel i5-4278U
Cycle Counts n SB cycles ADK cycles GMP cycles
66 60 64
195 154 172
12 368 250 286
16 658 491 495

carry propagation is included. In practise this code is automatically generated by a small

utility program for any value of n.

typedef int64_ t small;

typedef _ _intl128 large;

#define B 61 // bits in radix
#define M (((small)l<<B)—1) //Mask

void sbmul5(small *x,small *y,small xz)

large t,c;
t=(large)x[0]+y[0];

z[0]=(small) t&M; c=
t=c+(large)x[1]*y[0]+(large)x[0]*y[1]; z[l]=(small) t&M;

t>>B;

c=t>>B;

t=c+(large)x[2]*y[0]+ (large)x[1]*y[1]+ (large)x[0]*xy[2]; Z[Z]:(bl!lall)t&d\/l c=t>>B;
t=c+(large)x[3]*y[0]+ (large)x[2]*y[1l]+ (large)x[1]xy[2]+ (large)x[0]*y[3];
z[3]=(small) t&M; c=t>>B;
t=c+(large)x[4]*y[0]+ (large)x[3]*y[1]+ (large)x[2]*y[2]+ (large)x[1]*y[3]
F(large)x[0]*y[4]; z[4]=(small)t&M; c=t>>B;
t=c+(large)x[4]*y[1]+ (large)x[3]*y[2]+ (large)x[2]*y[3]+ (large)x[1]*y[4];
z[5]=(small) t&M; c=t>>B;
t=c+(large)x[4]*y[2]+ (large)x[3]*y[3]+ (large)x[2]*y[4]; z[G]:(small)t&M c=t>>B;
t=c+(large)x[4]*y[3]+ (large)x[3]*y[4]; z[7]=(small)t&M; c=t>>B;
t=c+(large)x[4]*y[4]; z[8]=(small)t&M; c=t>>B;
z[9]=(small)c;
void adkmul5(small *x,small xy,small *z)
large t,s,c,d[5];
d[0]=(large)x[0]*y[0];
d[1]=(large)x[1]xy[1];
d[2]=(large)x[2]xy[2];
d[3]=(large)x[3]xy[3];
d[4]=(large)x[4]xy[4];
s=d [0]; t=s; z[0]=(small)t&M; c=t>>B;
st=d[1]; t=cts+(large)(x[1]—x[0])*(y[0]—y[1]); z[l]=(small)t&M; c=t>>B;
st=d [2]; t=cts+(large)(x[2]—x[0])*(y[0]—y[2]); z[2]=(small)t&M; c=t>>B;
st=d[3]; t=cts+(large) (x[3]=x[0])x(y[0] =y [3])+ (large) (x[2] —x[1])*(y[1] =y [2]);
z[3]=(small) t&M; c=t>>B;
st=d[4]; t=ctst(large)(x[4]=x[0])*(y[0] =y [4])+ (large)(x[3] —x[1])*(y[1] -y [3]);
z[4]=(small) t&M; c=t>>B;
s—=d[0]; t=ctst(large)(x[4] —x[1])*(y[1] -y [4]) + (large)(x[3] —x[2])*(y[2] =¥ [3]);
z[5]=(small) t&M; c=t>>B;
s—=d [1]; t=ct+s+(large)(x[4]—x[2])*(y[2]—y[4]); z[6]=(small)t&M; c=t>>B;
s—=d [2]; t=ct+s+(large)(x[4]—x[3])*(y[3]—y[4]); z|[7]=(small)t&M; c=t>>B;
s—=d [3]; t=cts ; z[8]=(small)t&M; c=t>>B;
z[9]=(small)c;
Table 6 32-bit Intel Atom N270
Cycle Counts n SB cycles ADK cycles
373 313
1068 888
12 1824 1441
16 3193 2459

@ Springer

14 Cryptogr. Commun. (2018) 10:5-15

Application to Montgomery’s REDC function

This well known method carries out reduction modulo m where field elements are first
converted to n-residue form by multiplying them by 5~ mod m, where b" is larger than,
and co-prime to, m. Assume that a product of a pair of n-residues is to be reduced modulo m,
and that the value of w = —1/m mod b is precalculated. The following ADK-based method
carries out the reduction. This function may be tightly combined with that of algorithm
(1) to provide an integrated modular multiplication/squaring function z = xy mod m for
n-residues, where each z; is processed as soon as it is calculated.

Algorithm 2 ADK algorithm for the REDC function

INPUT: Modulus m of degree n, radix b = 2/, precalculated w = —1/m mod b
INPUT: z = [20, ..., 22n—2, 0], where z; € [0, b*> — 1]
OUTPUT: r = [rg,...,2n—1], wherer; € [0,b — 1] and r = zb™" mod m

1: function ADKREDC(z)

2: <20

3 v < tw mod b

4. t <t 4+ vomyg

5: c<2z1+c/b

6 s <0

7 fork < 1ton —1do

8 t <—c—+ s+ vomy

9: fori < 1+ |k/2]tok —1do

10: t <1+ (v — vg—i)(mp—; —m;)

11: end for

12: v < tw mod b

13: t <1+ vpmo

14: ¢ < Zk41 +c¢/b

15: dy < vpmy

16: s <« s+ di

17: end for

18: for k < nto2n —2do

19: t<c+s

20: fori < 1+ |k/2]ton —1do
21: t<—t+ (v —v—i)(mg—; —my;)
22: end for

23: Ik—pn <t mod b

24: € < zZk+1 +c¢/b

25: § <5 — dkfnJr]

26: end for

27: rn—1 < cmod b

28: return r

29: end function

This implementation includes full carry propogation. Observe that divisions and remainders
modulo b are carried out using simple shift and masking operations as b is a power of 2.

@ Springer

Cryptogr. Commun. (2018) 10:5-15 15

Table 7 REDC Complexity

muls adds
SB nn+1) 2n2 +4n -2
ADK n®+5n-2))2 2n% +10n — 8

As is well known the output of this algorithm may require one extra subtraction of the
modulus m to get a fully reduced result. However in many contexts field elements will
not need to be immediately fully reduced. The number of muls and adds compared with a
straight-forward SB-based implementation is given in Table 7. In some cases the constant
w may be equal to 1, which allows some extra saving.

References

1. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Curve41417: Karatsuba revisited. Cryptology ePrint
Archive, Report 2014/526. http://eprint.iacr.org/2014/526 (2014)

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-security signatures.
Cryptology ePrint Archive, Report 2011/368. http://eprint.iacr.org/2011/368 (2011)

3. Brent, R., Zimmermann, P.: Modern computer arithmetic. Cambridge University Press, Cambridge
(2010)

4. Granger, R., Scott, M.: Faster ECC over F,s21_;. In: Public-Key Cryptography — PKC 2015, volume
9020 of Lecture Notes in Computer Science, pp. 539-553. Springer, Berlin Heidelberg (2015)

5. Granger, R., Moss, A.: Generalised Mersenne numbers revisited. Math. Comput. 82, 2389-2420 (2013).
arXiv:1108.3054

6. Torbjorn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic
Library, 6.1.0 edn., 2015. http://gmplib.org/

7. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive, Report 2015/625.
http://eprint.iacr.org/2015/625 (2015)

8. Khachatrian, G., Kuregian, M., Ispiryan, K., Massey, J.: Faster multiplication of integers for public-key
applications. In: Selected Areas in Cryptography, volume 2259 of Lecture Notes in Computer Science,
pp. 245-254. Springer, Berlin Heidelberg (2001)

9. Montgomery, P.: Modular multiplication without trial division. Math. Comput. 44(170), 519-521 (1985)

10. Montgomery, P.: Five, six and seven term Karatsuba-like formulae. IEEE Trans. Comput. 54(3), 362-369
(2005)

11. Nogami, Y., Saito, A., Morikawa, Y.: Finite extension field with modulus of all-one polynomial and
representation of its elements for fast arithmetic operations. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E86-A(9), 2376-2387 (2003)

12. Weimerskirch, A., Paar, C.: Generalization of the Karatsuba algorithm for efficient implementations.
Cryptology ePrint Archive, Report 2006/224. http://eprint.iacr.org/2006/224 (2006)

13. Zimmermann, P.: Personal communication, January 2015

@ Springer

http://eprint.iacr.org/2014/526
http://eprint.iacr.org/2011/368
http://arxiv.org/abs/1108.3054
http://gmplib.org/
http://eprint.iacr.org/2015/625
http://eprint.iacr.org/2006/224

	Missing a trick: Karatsuba variations
	Abstract
	Introduction
	The ADK algorithm
	Comparing Karatsuba variants
	Numerical stability
	The true cost of ADK multiplication
	Some results
	Conclusion
	Acknowledgments
	Appendix 1
	More results
	Example Code
	Application to Montgomery's REDC function
	References

