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The role played by the topological structure of biological networks in their dynamics and function is receiving
increasing attention over the last decade as large-throughput experiments have provided large volumes of
highly resolved data on the interactions between the components of such networks. This has provided new
perspectives on systems diseases: for example, there has been a gradual shift in cancer research away from the
study of individual molecules and of single gene mutations to the emerging consensus that it is a complex
disease involving large-scale disruptions in the intracellular signaling network. One of the drawbacks of a
systems- or network-based approach is the large number of cellular agents whose interactions need to be
investigated. We tried to solve this problem by taking a mesoscopic view of the cancer diseases–genes
network, whose modular organization we studied after projecting it onto two networks, one comprising only
disease types and the other consisting of only genes related to one or more categories of cancer. Using
community partitioning, we identified several modules in these networks. Projecting cancer gene clusters onto
an abstract ‘modular space’ allows us to infer the relations between different tumor types. By classifying the
functional role of particular genes in terms of their inter- and intra-modular connectivity, we identified a
number of genes that play the key role of ‘connector hubs’ in the network. Using data from the human protein–
protein interaction network we showed that genes that are ‘connector hubs’ or ‘global hubs’ are, in fact, much
more likely to be related to cancer than other genes. More important from a therapeutic point of view, we
showed that the connector hubs in the cancer gene network are involved in a significantly larger number of
human signaling pathways associated with cancer than other types of cancer genes. Furthermore, the types of
cancer linked to connector hub genes have significantly reduced survival rates compared with other types of
cancer, thereby enhancing their importance in the search for potential therapeutic targets.
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1. Introduction

Cancer is the collective name of a group of diseases
characterized by unconstrained cell growth which has
significant mortality and high public health cost. In

developed countries where life expectancy has
increased and ‘diseases of poverty’ such as tuberculosis
have largely been controlled, cancer is one of the
leading causes of death (WHO 2021). Despite years of
sustained research efforts, cancer is still untamed (for a
highly acclaimed popular account of the medical
campaign to cure cancer, see Mukherjee 2010). This is
at least in part because cancer is a ‘systems disease’This article is part of the Topical Collection: Emergent

dynamics of biological networks.
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(Hornberg et al. 2006), i.e., it cannot be completely
understood without considering the network of inter-
actions between a number of different elements
(Kreeger and Lauffenburger 2010). It is therefore
unlikely that it can be cured by treating a single cause.
The difficulty of investigating cancer as a network

disease is in the large number of elements that are
involved and the myriad ways in which they interact. A
possible approach to this complex disease is to com-
partmentalize the entire system of interactions into sub-
networks that are easier to analyze by exploiting the
modular nature of biological networks (Hartwell et al.
1999; Cloutier and Wang 2011). By focusing on the
modules of networks related to cancer and the inter-
actions between them, it is possible to use a meso-
scopic approach for understanding the systems-level
aspect of cancer without getting mired in the com-
plexity of the large number of molecules and interac-
tions involved.
In this article we have reconstructed a cancer gene

network and a cancer category/tumor type network
using a comprehensive database relating different cat-
egories of cancers and types of tumors with mutations
of specific genes. This was done by taking projections
from the bipartite network that connect the nodes rep-
resenting genes with the nodes representing the types
of tumors in which mutations of those genes have been
implicated. Using community detection algorithms, we
identified several modules in these networks. By clas-
sifying genes in terms of their connectivity to members
of their own module and to members of different
modules, we identified their functional importance in
the cancer network (see supplementary figure 1 for a
graphic summary of the methodology employed in this
study). We show that genes playing the role of con-
nector hubs and global hubs, i.e., having high con-
nectivity with other modules in addition to genes
belonging to their own module, have a disproportion-
ately high representation in the human signaling path-
ways related to cancer. Therefore, these genes can be
identified as potential targets for therapeutic interven-
tion. The importance of connector and global hubs is
further underlined by observing that nodes having these
roles in the protein–protein interaction network have an
extremely high probability of being related to cancer
compared with the corresponding probability of a
randomly chosen protein. Finally, we showed that
genes that are connector hubs are associated with dis-
eases that have a much lower survival rate than others,
pointing to the critical positions they occupy in the
cancer network.

2. Materials and methods

2.1 Connectivity data

For constructing the networks analyzed here we have
used information (supplementary table 1) on the asso-
ciation of 927 cancer-related genes (supplementary
table 2) with 35 different cancer categories (supple-
mentary table 3) and 135 tumor types (supplementary
table 4), obtained from the F-Census or Functional
Census database of human cancer genes (Gong et al.
2010). These are derived from high-throughput muta-
tional screens of cancer genomes collected from vari-
ous sources including the Cancer Gene Census (CGC)
(Futreal et al. 2006) and Online Mendelian Inheritance
in Man (OMIM) (Hamosh et al. 2005). After pre-pro-
cessing the associations to remove ambiguous entries,
we obtained a list of 4066 links between tumor types
and genes (supplementary table 5), which were used to
construct (via projection, see Results) the network of
cancer genes.
For constructing the protein–protein interaction net-

work we used the data for interactions between dif-
ferent proteins obtained from the Human Protein
Reference Database (HPRD) (available at http://www.
hprd.org/). The data set we considered (supplementary
table 6) comprised 9645 proteins whose interconnec-
tions have been identified using yeast two-hybrid
analysis and in vitro or in vivo methods (Prasad et al.
2009).

2.2 Network randomization

Ensembles of randomized versions of the empirical
networks were constructed via the procedure of degree-
preserved randomization of links (Milo et al. 2002) by
exchanging the terminal nodes of 106 randomly chosen
pairs of links in the network. When applied to the
weighted network of cancer-related genes obtained by
projecting the bipartite network of genes and tumor
types (TT-GWN, see Results), the empirical link
weights associated with the connections were pre-
served. An alternative procedure was also carried out,
in which the links in the empirical bipartite network
itself were subjected to 106 random swaps. The link
weights in the resulting randomized network are dif-
ferent from those in the empirical network. However,
comparison of the empirical network with these two
ensembles of randomized networks yields qualitatively
similar differences.
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2.3 Community detection

Modular organization of connections is one of the most
prominent mesoscopic structural properties observed in
many biological, social, and technological networks
(Porter et al. 2009). Modules (also referred to as
communities) are subnetworks characterized by rela-
tively high connection density within their constituent
nodes with comparatively sparser connections between
nodes that are members of different modules (Newman
2004). Possibly the most widely used theoretical
framework for identifying the modules of a network
involves using different methods to maximize a quan-
titative measure of modularity, Q, defined for a given
modular partitioning of the network as

Q ¼ ð1=LÞRijBij dðci; cjÞ;

where Bij = Aij-(ki
inkj

out/L) are the constituent ele-
ments of the modularity matrix B (Clauset et al. 2004;
Newman and Girvan 2004; Newman 2006). The con-
nection topology is described by the adjacency matrix
A whose elements Aij = 1 if a (directed) link connects
node j to node i, and Aij = 0, otherwise. The in-degree
(number of incoming connections) and out-degree
(number of outgoing connections) of a node i are
represented by ki

in =
P

j Aij and kj
out =

P
j Aji, respec-

tively. The total number of connections in the network
is indicated by L (=

P
i ki

in =
P

i kj
out). The Kronecker

delta function d(ci,cj) = 1 (=0) if the communities ci,cj
to which the nodes i,j belong, respectively, are the same
(are different).

2.3.1 Spectral method for optimal partitioning
of a network into modules: One of the methods in wide
use for achieving optimal partitioning of a network into
modules by maximizing Q is the spectral method
(Newman 2006). The network is first bisected by
obtaining the eigenvector for the largest positive
eigenvalue of the symmetrized modularity matrix
B1BT and assigning each node to one of two com-
munities depending on the sign of the corresponding
eigenvector component. This partitioning is subse-
quently improved by exchanging the members of the
two communities so as to achieve the highest value of
Q. By carrying out the process recursively on each of
the resulting communities until Q can no longer be
increased, the method converges to an optimal parti-
tioning of the network.

2.3.2 Robustness of partitioning: To ensure that the
optimal partitioning of a network is not sensitively
dependent on the specific method used to maximize Q,
a stochastic simulated annealing approach (Good et al.
2010) was employed to obtain an ensemble of 350
optimal partitions. If there is lack of similarity between
these different partitions (obtained from distinct real-
izations of the annealing algorithm), this will suggest a
high level of degeneracy (and hence, ambiguity) in the
identification of the modular composition of the net-
work. Each simulated annealing realization first parti-
tions the network into arbitrary communities and then
iteratively changes it by any of the following possible
moves (chosen with equal probability) at each step:
(i) transfers a randomly chosen node to another mod-
ule, possibly one that is newly created, (ii) joins a pair
of modules that are randomly chosen, and (iii) bisects a
module (that is randomly selected) so as to minimize
the number of connections between these two parts. At
each step, the new partition that results from the move
selected is always accepted if it has a higher Q than the
immediately preceding partition. If, on the other hand,
it has a lower Q, it is accepted with a Boltzmann-like
probability factor exp(-|DQ|/T), where DQ is the
change in Q and T is equivalent to temperature. The
annealing involves decreasing T over successive itera-
tions according to a pre-specified cooling schedule.
The process halts when the number of unsuccessful
attempts at changing the partitioning exceeds a
threshold value. We observe that the Q values follow a
bimodal distribution with one peak at 0 and the other
with a peak close to the value of Q & 0.42 obtained
using the Infomap method (see below). Note that we
performed 100 different realizations of degree-pre-
served randomization on the gene–disease association
bipartite network and obtained corresponding ‘ran-
domized surrogate’ gene networks as a control that
yielded mean Q of 0.315 ± 0.059, the values for
individual realizations ranging between a maximum
Q of 0.371 and a minimum Q of 0.107. This suggests
that the value of Q obtained for TT-GWN is extremely
unlikely to have been obtained by chance in the
absence of any modular organization. We focused on
the 147 partitions whose Q belonged to the higher peak
of the distribution and verified that the module mem-
bership of the large majority of nodes remains invariant
across all these partitions, which underscores the
robustness of the modular decomposition.
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2.3.3 Consensus clustering: To quantitatively express
the consistency between different modular partitionings
obtained using simulated annealing, we computed a
consensus matrix P (Lancichinetti and Fortunato 2012).
The matrix elements Pij denote the fraction of realiza-
tions (i.e., of the different partitionings obtained that
have Q values belonging to the higher peak of the
bimodal distribution as described above) in which a
pair of nodes i,j occurs in the same module. When the
two nodes always occur in the same module, Pij =1,
and Pij =0 when they never appear in the same module.
In either case, this suggests a high degree of consis-
tency, so that if P comprises only 0s and 1s, it suggests
the maximum degree of consistency across partitioning
realizations.

2.3.4 Infomap method: While the bulk of the methods
currently used to identify modular organization of a
network involves some variant of maximizing the
modularity measure Q, one of the exceptions is the
Infomap method. Based on its performance in several
benchmark tests, the Infomap method has emerged as
one of the most efficient algorithms for partitioning a
network into communities (Lancichinetti and Fortunato
2009; Fortunato 2010). The basic principle of the
Infomap algorithm is that optimal compression of
network topology uses the regularities in network
structure, in particular, the occurrence of modules
(Rosvall and Bergstrom 2008, 2010). An implementa-
tion of the code is available at https://www.
mapequation.org/infomap/.

2.4 Modular spectra

We analyzed the relation between different tumor types
(and cancer categories) by using a decomposition in
terms of the overlap of their associated genes with the
different modules of the gene network. Let the set of all
genes be optimally partitioned into M modules. We
then define an overlap matrix O, whose rows corre-
spond to the different groups of genes associated with
specific tumor types or cancer categories, and the col-
umns correspond to the different modules of the cancer
gene network. An element of this overlap matrix Oij is
the number of genes in group i that are from the
module j. Thus, the decomposition of the i-th group in
the abstract M-dimensional basis space formed by the
modules is {Oi1/Ni, Oi2/Ni, …, OiM/Ni}, where Ni =P

k=1,…,M Oik is the total number of genes in the i-th
group.

The distance between two groups i and j in this
‘modular’ space is defined as

dmodulari;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

k

Oik

Ni
� Ojk

Nj

� �2
v
u
u
t

This measure can be used as a metric for closeness or
proximity between different tumor types or cancer
categories. For visualization of the relation between
different groups, a dendrogram was constructed, where
the ordinate represents the closeness between a pair of
groups.

2.5 Determining the intra- and inter-modular role
of a gene

The role played by each gene in terms of its connec-
tivity within its own module and in the entire network
is determined by two properties (Guimera et al. 2007):
(i) the relative within module degree, z, and (ii) the
participation coefficient, P. The within-community
degree z-score measures how well connected a node i is
to other nodes in the community to which it belongs,
i.e., it distinguishes nodes that are hubs of their com-
munities from those that are non-hubs. It is defined as

zi ¼
kici � k j

ci

D E

j2ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k j
ci

� �2D E

j2ci
� k j

ci

� �2
j2ci

r

where kic is the number of links of node i to other nodes
in its community c and h…ij[c is taken over all nodes
in module c.
The nodes are also distinguished based on their

connectivity profile over the entire network, in partic-
ular, their connections to nodes in other communities.
Two nodes with same within module degree z-score
can play different roles if one of them has significantly
higher inter-modular connections compared with the
other. This is measured by the participation coefficient
Pi of node i, defined as

Pi ¼ 1�
Xm

c¼1

kic
ki

	 
2

where M is the total number of communities, kic is the
number of links from node i to other nodes in its
community c and ki =

P
c k

i
c is the total degree of node

i. The participation coefficient of a node is close to 1 if
its links are uniformly distributed among all the

   60 Page 4 of 15 T Jesan and S Sinha

https://www.mapequation.org/infomap/
https://www.mapequation.org/infomap/


communities. On the other hand, it is 0 if all links of a
node are with members of its own community.

3. Results

3.1 Modular structure of the network of cancer-
related genes

We first constructed a bipartite network consisting of
two types of nodes, viz., cancer-related genes (G) and
tumor types (TT) [alternatively, we also use cancer
categories (CC)]. Nodes of different types were con-
nected based on the association between genes and
tumor types (or cancer categories) related to them
according to the information obtained from the
F-Census database (Gong et al. 2010). From this
bipartite network, we produced a tumor type–cancer
gene network (TT-GN) and tumor-type network (TTN)

by using the method of projections (figure 1a).
According to this technique, from a bipartite network
consisting of two categories of nodes, Type I and Type
II, respectively, one can construct two networks, one
comprising only Type I nodes (obtained by connecting
any pair of Type I nodes that share as a common
neighbor a Type II node in the bipartite network) and
the other comprising only Type II nodes (connecting
pairs of Type II nodes that share a common Type I node
as neighbor) (Goh et al. 2007). In the tumor type–
cancer gene network (TT-GN), the nodes represent
different cancer-related genes. Two genes are con-
nected to each other if they have at least one tumor–
type that they are associated with in common. In the
tumor type–cancer gene weighted network (TT-GWN),
the links are weighted in proportion to the number of
common tumor types associated with any pair of con-
nected genes. In the tumor-type network (TTN), the
nodes represent tumor types and two tumor types are

Figure 1. Networks of cancer genes and tumor types. (a) Schematic diagram showing the bipartite network comprising
genes (represented by circles) and tumor types (triangles). A gene is connected to a tumor type if mutations in the gene result
in a tumor of that specific type. The tumor type–cancer gene network (TT-GN) is obtained from a projection of the bipartite
network, where two genes are connected if there is a tumor type that can be related to mutations in either of the two genes. In
the tumor type–cancer gene weighted network (TT-GWN), a link between two cancer-related genes (e.g., 1 and 2) in the
projected network is weighted by the number of tumor types (B, C, etc.) to which both nodes (viz., 1 and 2) are connected in
the bipartite network. The other possible projection yields the tumor–type network (TTN), where two tumor types are
connected if either can result from mutations in the same gene. Each link can be weighted in proportion to the number of
common genes with which the two tumor types are associated. (b–d) The cumulative degree distribution Pc(k), i.e., the
probability that a node will have k or more links is shown for the (b) genes and (c) tumor types of the bipartite network, as
well as for the two networks obtained by projection, viz., (d) the network of cancer genes and (e) the network of tumor types.
(f–g) Pictorial representation of (f) the cancer gene network comprising 910 nodes and (g) the network of 135 tumor types.
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connected if there is at least one common element in
the set of genes that each is related to. The weight
associated with a link is proportional to the number of
genes that appear in common for both tumor types. The
cumulative degree distribution Pc (k) for cancer genes
in the bipartite network shows a rapidly decreasing
exponential nature (figure 1b), while that of the nodes
corresponding to tumor types decays more slowly,
resembling a power law (as indicated by the approxi-
mately linear nature in double logarithmic scale;
figure 1c). However, the projected networks of cancer
genes and tumor types both have rapidly decaying tails
in the cumulative degree distribution (figure 1d–e). The
representation of the two projected networks
(figure 1f–g) appears to suggest that they both have a

densely connected core surrounded by a periphery of
sparsely connected sets of nodes.
We analyzed the mesoscopic organization of TT-

GWN by first identifying its modular arrangement
using the Infomap method (see Methods). Figure 2a
shows the clustering of the network into 25 commu-
nities (with the corresponding value of 0.42&Q) using
this method, suggesting that the network has a strong
modular organization. The modules are of heteroge-
neous sizes, the largest having 246 genes and the
smallest has only 1 (we explicitly verified that non-
inclusion of this single-gene module in further analysis
did not affect our results). We also carried out a mod-
ular decomposition of the largest connected component
of the human protein–protein interaction network

Figure 2. Modular interconnectivity in the tumor type–gene network. (a) Matrix representing the average connection
density between genes occurring within modules and those in different modules of the TT-GWN, Note that the genes within a
module are not only much more densely interconnected compared to the overall connectivity of the network, but modules
1,2,5 and 6 show almost complete intra-connectivity of the genes belonging to them. (b) The overlap between the modules of
TT-GWN and those of the human PPIN with the modules arranged according to their decreasing size. Several of the smaller
PPIN modules have a high degree of overlap with the larger modules of the TT-GWN, implying that some of the latter
modules contain groups of genes encoding mutually interacting proteins. (c) The overlap between modules of TT-GWN and
genes present in different human signaling pathways related to cancer obtained from the National Cancer Institute (NCI)
database.
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(PPIN) comprising 9270 proteins using the Infomap
method, which yielded 542 modules. Figure 2b shows
that several of the smaller PPIN modules have large
overlap with the larger TT-GWN modules, implying
that the latter modules contain genes that code for
mutually interacting proteins. The overlap between
modules of TT-GWN and the genes present in the
National Cancer Institute (NCI) pathway interaction
database (figure 2c) indicates that many of the genes in
the larger modules belong to different human signaling
pathways related to cancer. In order to test the signif-
icance of the mesoscopic organization of the empirical
network revealed by the modular decomposition, we
performed the same analysis on surrogate ensembles of
degree-preserved randomized networks (see Methods).
The randomization of the TT-GWN results in a
homogeneous network that does not have any apparent
modular organization, suggesting that the observed
mesoscopic structure of the cancer-related gene net-
work is highly significant.

3.1.1 Establishing the robustness of modular decom-
position: Given that modular decomposition of net-
works can be done in a number of different ways

(Schaub et al. 2017), it is important to establish that
the modules reported here are not sensitively
dependent on the method of community partitioning
employed and are instead a fundamental attribute of
the network connection topology. To this end, we
carried out partitioning of the network using two
very different methods: (i) a spectral method based
on maximization of Q, a quantitative measure of
modularity, and (ii) the Infomap method which is
based upon optimally compressing information
about dynamic processes on the network (see
Methods for details). Supplementary figure 2 shows
an alluvial diagram comparing the two modular
decompositions, explicitly showing the extent of
overlap in modular memberships in the two cases.
While the Infomap method does appear to generate
a larger number of modules, most of these modules
are very small. Indeed, several of these smaller
modules can be seen to be finer subdivisions of the
modules obtained with the spectral method (and
which are much fewer in number). This relatively
high degree of overlap between the partitionings
that have been generated by very different module
decomposition techniques based on distinct

Figure 3. Robustness of the modular decomposition of the tumor type–gene network. (a) Modularity of the TT-GWN
shown as a function reconstructed from 350 partitionings (circles) obtained through a simulated annealing method for
determining communities (Good et al. 2010). The axes on the horizontal plane orthogonal to the vertical axis representing
modularity Q correspond to embedding dimensions. These are complex functions of the partition space making their scale
irrelevant. Positions of the circles on the horizontal plane are obtained by Curvilinear Component Analysis such that the
distance between each pair indicates the extent of dissimilarity between the corresponding partitionings of the network into
communities. The panel on the left shows the distribution of Q values in the ensemble, suggesting a strongly bimodal nature.
The 147 partitionings that compose the peak at high Q (occurring above Q = 0.35, indicated by a broken line in the
distribution) have been used to quantitatively establish the robustness of the modular identities of the different genes using the
consensus matrix shown in (b). The matrix shows the fraction Pij of partitionings in which the pair of genes i,j (= 1, …, 910)
occur in the same module. Most of the modules are seen to be almost completely consistent across all 147 partitionings as
indicated by the diagonal blocks having almost all elements equal to 1.
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theoretical principles suggests that the modular
nature of the network reported here is a fundamental
property of the network of cancer genes.
As further verification of the robustness of the

modular organization uncovered here, we created an
ensemble of 350 realizations of the partitioning of the
network using a stochastic simulated annealing
algorithm (see Methods). By comparing the extent of
overlap in the module compositions for these different
realizations, we can determine the robustness of the
communities in the network. Figure 3a shows the
modularity Q values for these different realizations,
using a representation such that the symbols (circles)
representing partitionings that are similar in nature
occur in adjacent positions in the 2D plane that is
orthogonal to the vertical axis that represents Q. The
coordinates of the symbols in the 2D plane are obtained
by Curvilinear Component Analysis (CCA) (Lee and
Verleysen 2007). As can be seen from the distribution
of Q values obtained from the partitionings, it has a
bimodal nature with a clear distinction between values
of Q close to zero (and hence, failed attempts at optimal
modular partitioning) and those that are relatively high.
In fact, the latter realizations are clustered around the
value of Q obtained from the Infomap map (&0.42).
Taken in conjunction with figure 3b showing the con-
sensus matrix, which establishes that a pair of nodes
occur either almost always or almost never in the same
module across the different realizations, this result
emphasizes the consistency (and hence, robustness) of
the modular mesoscopic organization that we have
described here.

3.2 Modules, cancer categories, and gene
ontology

In order to discern the functional significance of the
modular organization, we analyzed the composition of
the different modules in terms of gene ontology. In
figure 4, the modules are represented as circles con-
nected by lines whose thickness is related to the total
number of connections between genes belonging in one
module with genes in the other module. We observed
that most of the important cancer categories dominate a
particular module. For example, breast cancer-related
genes comprise about half of the members of module 1;
genes related to cancers of the large intestine are
responsible for more than half the genes belonging to
module 2; cancers of the pancreas and central nervous
system dominate modules 5 and 6, respectively, etc.
More importantly, a major fraction of genes in eight of

the modules are related to haematopoietic and lym-
phoid tissue cancers, making this category the most
prolific in terms of dominating the mesoscopic orga-
nization of the cancer gene network, even though fewer
genes (237) are associated with it than breast cancer
(244 genes).
Supplementary figures 3 and 4 show the modular

dominance of other classes of ontology domains, viz.,
cellular components and biological processes, in the
different communities of the TT-GWN. Apart from
these, we also considered the molecular functions.
However, unlike in the case of cancer categories, none
of the modules of the TT-GWN can be considered to
be related to a specific cellular component or bio-
logical processes or molecular function. These appear
to have almost similar distribution in the different
modules, e.g., the genes belonging to cellular loca-
tions corresponding to the cytoplasm, nucleus, and
plasma membrane dominate most of the modules,
while in the case of biological processes, genes
responsible for cell communication, signal transduc-
tion, or regulation of nucleobase metabolism con-
tribute the majority of elements in most modules. This
result can be understood in light of the fact that
cancer is a complex group of multi-factorial diseases
involving several genes in multiple cellular locations
and responsible for different biological processes and
molecular functions.

3.3 Closeness between different cancer categories
and tumor types

The relation between different cancer categories or
tumor types can potentially be understood in terms of
the degree of overlap of the genes associated with the
different modules of TT-GWN or PPIN. To this end,
we clustered the cancer categories or tumor types in
terms of the similarity in their modular spectra (see
Methods). The relations between the different cancer
categories (CC) are represented in terms of a dendro-
gram shown in figure 5a, where the CC gene classes are
projected on the space of modules of TT-GWN. Clo-
sely connected cancer categories that are related
through environmental factors, viz., oral cancers, can-
cer of upper aerodigestive tract, liver cancer, and uri-
nary tract cancer, have been highlighted. By
performing a similar decomposition of the different
tumor types in modular space we observed a closeness
between breast and ovarian tumors, which are related
by hormones, hereditary links, and clinical treatment
(figure 5b).

   60 Page 8 of 15 T Jesan and S Sinha



3.4 Functional roles of cancer genes

We investigated the importance of individual genes
linked to cancer in terms of their connectivity. This is
revealed by a comparison between the localization of
their connections within their own community and their
global connectivity profile over the entire network. In
order to do this, we focused on (i) the within-module
degree z-score of a node within its module, which
indicates the importance of a node (in terms of how
many connections it has) within its own module, and
(ii) its participation coefficient, P, which measures how
dispersed the connections of a node are among the
different modules (see Methods). A node having low
within-module degree is called a non-hub (z \ 1),
which can be further classified according to their
fraction of connections with other modules. Following
Guimera et al. (2007), these were classified as (R1)
ultra-peripheral nodes (P B 0.05), having connections
only within their module; (R2) peripheral nodes (0.05
\ P B 0.62), which have a majority of their links
within their module; (R3) non-hub connectors (0.62\
P B 0.8), with many links connecting nodes outside

their modules; and (R4) kinless nodes (P[0.8), which
form links uniformly across the network. Hubs, i.e.,
nodes having relatively large number of connections
within their module (z C1), were also divided accord-
ing to their participation coefficient into (R5) provin-
cial hubs (P B 0.62), with most connections within
their module; (R6) connector hubs (0.62\ P B 0.8),
with a significant fraction of links distributed among
many modules; and (R7) global hubs (P[ 0.8), which
connect homogeneously to all modules. The thresholds
of P for classifying the nodes into different categories
were chosen based on the criteria described in Guimera
and Amaral (2005), viz., if P\ 0.05, a node has almost
all its connected neighbors in the same module, and if
P\ 0.62, more than 60% of its neighbors are in the
module, while if P [ 0.8, then it has fewer than 35%
of its neighbors in the same module. This classification
allowed us to distinguish nodes according to their
different roles as brought out by their intra-modular and
inter-modular connectivity patterns.
We used this classification method on the nodes of

the TT-GWN in order to identify the genes that play a
vital role in cancer through coordinating the behavior

Figure 4. The composition of the modules of the TT-GWN in terms of the different cancer categories associated with the
genes comprising each module. Each circle represents a module of TT-GWN with its size being proportional to the number of
genes in that module. The fraction of genes in each module that are associated with particular cancer categories is shown in
terms of the pie chart inscribed within each circle representing a specific module. For example, the 246 genes belonging to
module 1 have in all 489 associations with different cancer categories. As 243 of these genes are linked to breast cancer, the
association of this module with the category of breast cancer is represented by the fraction 243/489, i.e., approximately 50%
of the area of the circle representing the module. The thickness of the line connecting a pair of modules is related to the total
number of connections that exist between the genes of the two modules.
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of the network either locally within their community or
globally over the entire system (figure 6a). Our analysis
revealed that while the network does not have any
global hubs (R7), there are several connector hubs, e.g.,
MAPK14, TP53, BCL10, etc. (table 1; supplementary

table 7 contains the entire list of genes classified
according to their functional role) that can be potential
targets for therapeutic intervention through pharma-
ceutical drugs. Figure 6b shows the overlap between
the modules and the functional role of the genes

Figure 5. Relation between different cancer categories, and between different tumor types, based on modular spectra.
(a) Dendrogram of cancer categories obtained by projecting CC gene classes over the space of modules of TT-GWN. Closely
connected cancer categories related via environmental factors are highlighted. (b) Dendrogram of tumor types obtained by
projecting TT gene classes over the space of PPIN modules (only a section of the entire tree is shown). The closeness of
breast and ovarian tumor types, which are related by hormones, hereditary linkages, and clinical treatments, is indicated in the
figure.

Figure 6. Classification of genes in terms of their functional role according to intra- and inter-modular connectivity in TT-
GWN. (a) The within-module degree z-score of each gene in TT-GWN is shown against the corresponding participation
coefficient P. The within-module degree measures the connectivity of a node to other nodes within its own module, while the
participation coefficient measures its connectivity with nodes in the entire network. Nodes in different regions in the P–z
space are categorized as R1: ultraperipheral nodes, i.e., nodes with all their links within the module; R2: peripheral nodes,
i.e., nodes with most of their links within their module; R3: non-hub connector nodes, i.e., nodes with many links to other
modules; R4: non-hub kinless nodes, i.e., nodes with links homogeneously distributed among all modules; R5: provincial
hubs, i.e., hub nodes with the vast majority of links within their module; R6: connector hubs, i.e., hubs with many links to
most of the other modules; and R7: global hubs, i.e., hubs with links homogeneously distributed among all modules.
(b) matrix representing the overlap between modules of TT-GWN and the functional roles of their constituent elements
(modules are arranged in terms of decreasing size). (c) The fraction of genes with a particular functional role associated with a
specified number of human signaling pathways related to cancer (NCI database). (d) The mean number of signaling pathways
in the NCI database that a gene with a specific functional role is associated with.

b
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belonging to them. The overlap is measured in terms of
the fraction of genes in a specific module that has a
particular functional role.
Next, we investigated the significance of the func-

tional role of a gene determined from its intra- and
inter-modular connectivity by looking at its associa-
tion with the probability that the gene is connected to
one or more human signaling pathways related to
cancer. For this purpose, we used the Pathway Inter-
action Database (PID, available via the NDEx data-
base, http://www.ndexbio.org/) that was established as
a collaboration between the U.S. National Cancer
Institute (NCI) and Nature Publishing Group (Schae-
fer et al. 2009). This is a highly structured collection
of 137 curated and peer-reviewed human signaling
pathways assembled from 9248 known human
biomolecular interactions and key cellular processes.
Figure 6c shows the fraction of genes with a partic-
ular functional role associated with a specified number
of human signaling pathways related to cancer. The
distribution clearly shows that there are many more
pathways associated with connector hubs (R6) than
with genes having other functional roles. Further,
genes that are hub nodes (R5 and R6) have a much
higher number of signaling pathways associated with
them, on average (figure 6d). Thus, this supports our
conclusion that connector hub genes can be potential
therapeutic targets.

Table 1. Identities of genes that are connector hubs (R6) in TT-
GWN, and connector and global hubs (R7) in the human PPIN

Connector Hubs (R6) of TT-GWN

APC INSRR RPS6KA2 MELK
FAS MARK1 MAP2K4 KIF1B
ATM NRAS TFE3 RAD54B
BRAF ROR1 TGFBR2 TRIM33
MAPK14 PCM1 TP53 TEX14
EPHB1 PDGFRA TTN WNK4
FRAP1 PRCC TRRAP ALPK2
FYN PTCH1 BCL10 NEK10
IGH@ ROS1 AATK NEK8

Connector Hubs (R6) of PPIN

CREBBP GNAI1 SKP1 CCDC85B
DLG1 JUN SRC C1orf103
DLG4 SMAD1 TGFBR1 KRTAP4-12
ESR1 MDFI TRIP13 SFRS12
FN1 PCNA SLC9A3R1
FYN SHBG SETDB1

Global Hubs (R7) of PPIN

ACTA1 EWSR1 PRKACA YWHAB
ACTB HDAC1 PRKCA YWHAG
AR HRAS RAC1 GFI1B
CDC42 SMAD2 RB1 NDRG1
MAPK14 SMAD4 ATXN1 PRPF40A
CTNNB1 SMAD9 STX1A ATF7IP
ATN1 MAGEA11 TP53 UBQLN4
EP300 PPP1CA TRAF2 SUMO4

Figure 7. The role of individual proteins according to their intra- and inter-modular connectivity in PPIN. (a) The within-
module degree z-score of each protein in the PPIN is shown against the corresponding participation coefficient P. The red
filled circles represent the cancer proteins. The probability that a global hub (R7) or connector hub (R6) protein has a link
with cancer is extremely high (0.38 and 0.27, respectively) compared with the corresponding average probability for any
node in the PPIN (=0.07). (b) The proportion of cancer proteins (and the total number of cancer and non-cancer proteins,
inset) in the population of proteins with each functional role.
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3.5 Functional roles of proteins in PPIN

The basis of all biological functions in the cell in
health and disease are the interactions between pro-
teins. Therefore, to further support our hypothesis
regarding the importance of network elements R6 and
R7 having functional roles, we also analyzed the
largest connected component of the PPIN comprising
9270 proteins. Classification of proteins into different
functional roles in terms of their intra- and inter-
modular connectivity shows a preponderance of can-
cer genes among the connector hubs and global hubs
(figure 7a). Compared with the probability of a ran-
domly chosen element of the PPIN being related to
cancer (0.07), the probability that a global hub (R7) or
connector hub (R6) is related to cancer is seen to be

extremely high (0.38 and 0.27, respectively)
(figure 7b). Our mesoscopic structural study of the
PPIN revealed several global hubs of which 12 are
known to be cancer genes. The 20 other genes which
were also identified as being global hubs in our
analysis may have previously unsuspected roles in the
genesis and treatment of cancer (table 1).

3.6 Relating functional role of cancer gene
and patient survivability

It is well known that survival probability of a cancer
patient depends on the tumor type or cancer category.
For instance, the 5-year survival rate for breast or
prostate cancer patients is significantly higher than

Table 2. Five-year survival rates (5YSR) for different tumor types obtained from SEER program database

Tumor Type 5YSR Tumor Type 5YSR Tumor Type 5YSR

Acute leukemia 5.8 Esophageal 13.6 Oligodendroglioma 68.2
Anaplastic large-cell
lymphoma

53.9 Ewing’s sarcoma 48.4 Oral 59.4

Acute lymphocytic leukemia 62.2 Extra skeletal myxoidchondro-
sarcoma

91 Osteosarcoma 59.2

Acute myelogenous
leukemia

16.5 Gastrointestinal 27.5 Ovarian 53.8

Acute promyelocytic
leukemia

60 Glioblastoma 2.9 Pancreatic 4.8

Adrenal 38.7 Glioma 45.2 Papillary thyroid 98.7
Adreno cortical 41.2 Head-neck 57.1 Paraganglioma 65.1
B-cell non-Hodgkin’s
lymphoma

50.4 Hepatic 8 Parathyroid 93.1

Basal cell carcinoma 99.4 Hyper parathyroidism-jaw tumor
syndrome

93.1 Pheochromocytoma 60.3

Bladder 81.9 Leiomyomata 51.9 Pilocytic astrocytoma 35.8
Brain 23.6 Leukemia 55 Pituitary adenoma 63.8
Breast 87.1 Lipoma 82.8 Prostate 97.6
Burkitt’s lymphoma 45.4 Lymphocytic leukemia 79.5 Renal 60.2
Chronic lymphatic leukemia 74.9 Lymphoma 70.6 Retinoblastoma 93.5
Chronic myelomonocytic
leukemia

37.7 Multiple myeloma 29.4 Rhabdomyosarcoma 64

CNS 69.5 Myelo proliferative disorder 31.7 Salivarygland 73.9
Cervical 71.5 Medullary thyroid 82.1 Schwannomatosis 99
Cholangiocarcinoma 4.5 Medulloblastoma 66.4 Sézary syndrome 88.4
Chondrosarcoma 81.6 Melanoma 90.2 Stomach 21
Clear cell sarcoma 83.4 Meningioma 60 T-cell acute lymphoblastic

leukemia
24.3

Colon 64 Merkel cell carcinoma 62.8 Testis 96
Colorectal 62.6 Mesothelioma 8.2 Thyroid 96
Diffuse large B-cell
lymphoma

50.4 Non-Hodgkin’s lymphoma 60 Wilms’ syndrome 78.1

Dermatofibrosarcoma
protuberans

99.9 Non-small cell lung cancer 12.1

Endometrial 74.6 Nasopharyngeal 56.6
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patients diagnosed with brain or lung cancer. There-
fore, we have also investigated the relation between
tumor types associated with genes that have specific
functional roles (R1–R6) and the 5-year survivability
rates for patients having these types of tumors. For this
purpose, we used 5-year survival statistics from the
Surveillance Epidemiology and End Results (SEER)
Program database (available at https://seer.cancer.gov/
), compiled by the National Cancer Institute as a ser-
vice to researchers and physicians (Mariotto et al.
2014). The survival rates for 73 tumor types available
from the SEER data (table 2) was compared with the
classification into the 135 tumor types that we used for
constructing the TT-GWN.
Figure 8a shows the ratio of the number of tumor

types to genes for each functional role category of
genes in the TT-GWN. This shows that connector hub
genes are associated on average with a much larger
number of tumor types than genes having other func-
tional roles. Figure 8b shows that the 5-year survival
rates for tumor types associated with connector hub
genes are lower than those associated with genes
having other functional roles. For comparison, the
average 5-year survival rate for all tumor types (broken
line) is shown. Thus, genes which act as connector
hubs in the TT-GWN are associated with tumors hav-
ing higher mortality and should be preferentially tar-
geted for therapeutic intervention.

4. Discussion

Despite being one of the leading causes of death in the
developed world, cancer is yet to be tamed owing to the
complex, heterogeneous nature of the disease. Despite
the understanding that cancer is a systems-level disease
and cannot be treated by targeting a single factor, the
large number of elements involved and the dense set of
interactions between them have prevented a major
breakthrough in this area. In this article we have
adopted a mesoscopic approach by identifying struc-
tural modules in the network of cancer-related genes.
This has helped us in identifying several genes that
have the important functional role of connecting
members in their own module with members of other
modules. Thus, these genes help coordinate the
behavior of the entire network in health and disease,
and play a vital role in the origin and treatment of
cancer. We validated our hypothesis by showing that
tumors associated with these genes were involved in
many human signaling pathways related to cancer.
More importantly, we showed that patients suffering
from tumors involving these genes had a much lower
survival rate than those suffering from other types of
tumors. The integrated knowledge of cancer networks
gained by assembling and evaluating the functional
roles of the different genes and proteins associated with
many tumor types and cancer categories may provide

Figure 8. Distribution of cancer survival rates associated with genes having specific functional roles in TT-GWN. (a) The
ratio of the number of tumor types to genes for each functional role category R1, R2, R3, R5 and R6 of genes in TT-GWN.
(b) Box plot showing the mean 5-year survival rates for different tumor types corresponding to genes having different roles.
The broken line represents the mean 5-year survival rate for all cancers. The data is for US population of cancer patients
obtained from the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The
median survival rates become progressively low from R1 to R6 signifying that genes that are connector hubs (R6) are
associated with tumors that have lower survival rates.
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new insights for understanding the interconnectedness
of key players in the genesis and treatment of the dis-
ease. This may have implications for enhancing the
efficacy of multiple drug action and proper drug
administration, as well as in the discovery of novel
drug targets.
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