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Network theory has led to the abstraction of many real-world systems and enabled their modelling as simple
networks comprising nodes and edges. In particular, in the field of biological sciences, network theory provides
a robust framework to capture the complexity inherent to biological systems. Networks in biology have been
modelled at different scales, starting from cells to population levels. These models have provided crucial
insights into the evolution, mechanism, and functions of several biological systems. However, most natural and
engineered systems are composed of multiple subsystems and layers of connectivity. A multilayer network
paradigm has proven useful in understanding such systems. Here, we have briefly introduced the network
formalism of modelling biological systems at various levels. This is followed by an introduction to multilayer
networks. Multilayer networks have been utilized to model biological systems at multiple scales ranging from
protein–protein interactions, transcription and metabolic networks, to ecological networks involving interac-
tions between species. Recent advances in studying the structure and dynamics of such multilayer networks
have enabled a better understanding of the complexity in these biological systems. Finally, we discuss the
recent advances in studying the structure and dynamics of such multilayered networks followed by the
challenges and future prospects.
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1. Introduction

The concept of networks has been used to model real
systems for about three centuries now and can be traced
to the famous Konisberg Bridge Problem by Euler in
1736, who reduced the problem to an analysis of the
degrees of vertices on a graph. Since then, several
theoretical advances in the understanding of networks
have led to a well-established field of network science
that finds application in almost every area of research.

A network, interchangeably called a graph, is a
collection of vertices joined by edges. Mathemati-
cally, a graph consists of nodes (or vertices),
edges, and a mapping function, represented as a 3-
tuple:

G ¼ N; L; fð Þ

where N is a set of nodes, L is a set of links, and f is a
mapping function that maps links onto node pairs.
Several different parameters are used to describe net-
work properties, some of which have been described in
box 1. Graphs can be classified in various ways
based on specific properties of the nodes and edges
(box 1). In an undirected graph G = (N, L, f), the
mapping function describing the link between two
vertices, f1, is equal to a mapping function f2 that
reverses the link:
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f1 ¼ ½e1 : v1 $ v2; e2 : v1 $ v3;

e3 : v2 $ v3� is equivalent to
f2 ¼ ½e1 : v2 $ v1; e2 : v3 $ v1;

e3 : v3 $ v2�

Directed graphs have edges assigned with a
direction, and the mapping function f1 of a directed
graph G = [N, L, f] would not be equivalent to a
mapping function f2 with reversed links.
Random graphs described by Solomonoff and

Rapoport (1951) and then later by Erdös and R _enyi
(1959) consist of n vertices, connected by m undirected
edges chosen randomly from the set of all possible
edges. This realization of the Erdös–Rényi (ER) model
is represented as the G(N, L) model, N being the
number of nodes and L being the edges. A second
realization of random graphs is the G(N, p) model,
where each pair out of N nodes is connected with a
probability p (Gilbert 1959). Figure 1a shows an ER
network comprising n = 10 vertices and m = 16 edges.
The degree distribution of the ER random network
follows a binomial distribution that becomes approxi-
mately Poissonian for large networks (Newman et al.
2001). The random network model has been applied
extensively in understanding the theoretical basis of

several complex systems. Real networks, however,
follow a more complex connectivity pattern with sev-
eral showing power law behaviour in their degree
distribution. Networks with a power law degree dis-
tribution are essentially scale-free, which means that
upon addition of new nodes, the overall structure of the
network remains unchanged. Many biological net-
works follow a scale-free topology (Strogatz 2001;
Albert 2005). Another type of network model generally
observed in real systems, such as a power grid, account
for the co-existence of high local clustering as well as
the presence of a small average path length (Watts and
Strogatz 1998). Watts and Strogatz found that rewiring
a ring lattice of n vertices connected to their k nearest
neighbours randomly with a probability of p, where
0\p\\1, leads to a ‘small-world’ network with high
clustering coefficient and small characteristic path
length (Watts and Strogatz 1998). This network para-
digm has been used extensively to study the structure
and dynamics of real networks such as protein inter-
action networks and metabolic networks (Watts and
Strogatz 1998; Telesford et al. 2011). To arrive at more
realistic models, Barabási and Albert (1999) proposed a
simple network model that gives rise to a scale-free
degree distribution which is essentially based on two
components: (a) growth of a network’s nodes, instead
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of an assumption of a fixed number of vertices, and (b)
preferential attachment, which takes into account the
fact that incorporation of new nodes depends on the
degree of the current node. To generate such a ‘grow-
ing network’ based on these two features, the initial
network starts with a small number of nodes m0. New
nodes are added to this network such that each newly
added node creates m (^m0) links to different nodes
already present in the network. This attachment is
further constrained by a probability P that an incoming
node will connect to an already present node i based on
its degree d(i) such that P(d(i)) = d(i)/

P
j dðjÞ (Bar-

abási and Albert 1999). The three network models
discussed here are built on different principles and have
been able to describe real-world network features, both

local and global, effectively. Figure 1 illustrates these
three network models, namely, (a) the Erdös–Rényi
(ER) random graph model, (b) the Watts–Strogatz
(WS) model, and (c) the Barabási–Albert (BA) model.
With the help of box 2, we summarize some attributes
that are often used to characterize, analyse, and com-
pare networks. These include the power law and scale
freeness, modularity, assortativity and robustness.
Applications of networks now span across almost all

domains of sciences. Particularly, the network para-
digm provides a robust framework to capture the
complexity inherent to biological systems. Networks at
various spatial scales ranging from subcellular to eco-
logical have provided crucial information about these
systems. At the cellular level, metabolic and bio-
chemical networks describing the conversion of vari-
ous substrates through enzyme-driven reactions have
been crucial in not only understanding the evolution of
pathways and their function but also in determining
drug targets (Fang et al. 2020). At the molecular level,
the protein–protein interaction networks have been
mapped for almost the whole proteome of humans,
providing crucial insights regarding cellular function
and diseases (Luck et al. 2020). At a much larger scale,
interactions between various species in the natural
environment are represented as ecological networks
and provide crucial insights regarding keystone species
and conservation (Bascompte 2010).
Although in the past years, network theory has suc-

cessfully characterized the interaction among the con-
stituents of a variety of systems, ranging from
biological to technological, as well as social, it has
been realized that most natural and engineered systems
are composed of multiple subsystems and layers of
connectivity. For instance, systems such as water and
food supply, communications, fuel, financial transac-
tions, and power stations exhibit a degree of interde-
pendence and require a model that captures the
interaction among various networks (Gao et al. 2014).
Biological systems show similar interdependence, and
hence, a ‘multilayered networks’ paradigm provides a
feasible way to model the complexity of biological
systems. In this review, we first describe various
biological networks by grouping them into three
broad categories, namely, (a) networks at the subcel-
lular level, (b) networks at the tissue level and
(c) networks at the population level, while briefly
going over types, recent advances, and applications.
We then provide a short introduction to the multilayer
paradigm of complex system modelling, followed by
recent advances in applying these concepts to bio-
logical systems.

Figure 1. Three different types of network models. (a) ER
random graph with number of nodes (n) = 20 and number of
edges (m) = 45. (b) WS model with number of nodes (n) =
20, number of nearest neighbours in ring topology each node
is connected to (k) = 4, and probability of rewiring each edge
(p) = 0.01. (c) BA model with number of nodes (n) = 20 and
number of edges added at each time step (m) = 1.
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2. Networks in biological systems

2.1 Networks at the sub-cellular level

All the structural and functional processes in the cell
are governed by interactions among genes, proteins,
and other molecules. Network approach is a popular
paradigm to investigate, model, and understand these
cellular processes. In the following subsections, we
have briefly described some of these networks. Fig-
ure 2 illustrates a schematic representation of how
some biological systems can be modelled as simple
network systems.

2.1.1 Protein contact networks: Proteins play a crucial
role in and are the building blocks of most biological
processes that takes place inside a cell. They comprise
a sequence of amino acids that pack together into a
three-dimensional structure with the help of various
covalent and non-covalent interactions that include
disulphide bonds, ionic interactions, hydrogen bonds,
hydrophobic interactions, covalent interactions, and
van der Waals interactions. The amino acids and their
interactions within the tertiary structure can be mod-
elled as networks, referred to as protein contact net-
works (PCNs) to provide additional insights into the
structural and functional roles of interacting residues
as well as to understand structure–function relation-
ships (figure 2a) (Doncheva et al. 2011). PCN can be

defined at a coarse-grained level with nodes as the Ca
or the Cb atoms of the amino acids while the edges
can be defined based on the physical distance between
these elements (Dokholyan et al. 2002; Vendruscolo
et al. 2002; Atilgan et al. 2004; Bagler and Sinha
2005; Di Paola et al. 2013). This simple representation
of protein structures as unweighted, undirected net-
works has provided some important insights into the
properties of protein structures in terms of their con-
nectivity and folding (Dokholyan et al. 2002; Vendr-
uscolo et al. 2002; Bagler and Sinha 2007). Coarse-
grained Ca atom based PCNs were recently used to
understand subtle conformational changes caused by
the emergence of drug resistance in HIV-1 reverse
transcriptase (Srivastava et al. 2020). Analysis of
contacts and network parameters such as degree,
betweenness centrality and eigenvector centrality
(box 1) has been used to understand allostery (Di
Paola and Giuliani 2015; Srivastava and Sinha 2017).
The information regarding side-chain interactions is
implicit in this simplistic representation of protein
structures by way of assuming a longer cut-off (7–8Å)
in defining the interactions between residues. How-
ever, the information pertaining to specific interactions
between side chains can be explicitly modelled in the
construction of PCNs (Brinda and Vishveshwara
2005). Such networks have been extensively used to
understand protein structure–function relationships in
various systems such as effect of ligand binding and
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allostery in tRNA synthetases (Ghosh et al.
2007, 2011; Sathyapriya and Vishveshwara 2007) and
protein–DNA interactions (Sathyapriya et al. 2008).
Using the interactions between all atoms of the resi-
dues, Greene and Higman (2003) defined two types of
networks exhibiting slightly different properties,
across a variety of protein folds. The network with all
the interactions showed a bell-shaped Poisson distri-
bution of degrees, whereas the network formed of
only long-range interactions (between residues distant
on primary sequence) showed a power law distribution
of degree, suggesting it to be a scale-free network.
Taking a different approach towards defining the
protein structure networks, Vijaybhaskar and
Vishveshwara (2010) used interaction energies
between residues, obtained from equilibrium molecu-
lar dynamics simulations, to define the edges between
nodes represented by the residues. These protein
energy networks were used to understand the stability
of the TIM barrel fold despite the divergence in
sequence (Vijayabaskar and Vishveshwara 2012).
Representing protein structures as networks has led to
the prediction of functional residues (Amitai et al.
2004), active sites (Sol et al. 2006), and hot-spot
residues for protein–protein interaction (Sol and
O’Meara 2005). Chakraborty and Parekh (2014, 2020)

used spectral analysis of protein structure networks to
identify tandem repeats in protein structures. Using
modularity (box 2) measures on Ca-based protein
contact networks, Yalamanchili and Parekh (2009)
identified domains in the protein structures.
Considering the utility of network representations of

protein structures and their varied applications, dedi-
cated software such as RINalyzer (Doncheva et al.
2011), AMINONET (Aftabuddin and Kundu 2010) and
webservers such as NAPS (Chakrabarty and Parekh
2016) have been developed to model and visualize
network models of protein structures.

2.1.2 Protein–protein interaction networks: The func-
tionally active form of a protein rarely exists in isola-
tions, but rather in close association with other
biomolecules. These interactions can be transient or
stable depending on multiple parameters including
function and environment. Several biophysical aswell as
biochemical methods have been used to determine pro-
tein–protein interactions (Zhou et al. 2016). These
include affinity chromatography, co-immunoprecipita-
tion, yeast two-hybrid system, cross-linking mass spec-
trometry, and fluorescence resonance energy transfer.
Conventionally, the protein–protein interaction network
(PPIN) can be modelled via graphs whose nodes

Figure 2. A schematic representation of some biological networks as simple network systems: (a) Protein contact network,
(b) protein–protein interaction network, (c) gene regulatory network, (d) signal transduction network, (e) neuronal network,
and (f) ecological network.
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represent proteins and whose edges connect pairs of
interacting proteins (figure 2b). Edge weights may be
used to incorporate reliability information associated
with the corresponding interactions. PPINs provide a
lucid means to understand the functional organization of
the proteome as well as complex cellular phenomena
(Stelzl et al. 2005; Gandhi et al. 2006). With the appli-
cation of experimental techniques such as yeast two-
hybrid in a high-throughput manner, it has been possible
to map protein–protein interactions on a genome wide
scale, leading to the creation of complete protein–protein
interaction maps, often referred to as the ‘interactome’,
for several organisms frombacteria to higher eukaryotes.
Recently, a reference map of the human binary interac-
tome has been defined using yeast two-hybrid experi-
ments and other assays that includes more than 90% of
the human protein-encoding genes (Luck et al. 2020).
The analyses of such PPINs have revealed their crucial
topological features. Yook et al. (2004) analysed large
PPINs from Saccharomyces cerevisiae and found that
their degree distribution followed a power law, sug-
gesting a scale-free organization of the PPINs. It directly
follows that the most highly connected proteins in the
cell are the most important for its survival and PPINs
largely remain insensitive to random removal of single
vertices, but are particularly sensitive to the targeted
removal of hubs; this is also known as the centrality–
lethality rule (Jeong et al. 2001). PPINs have a wide
range of applications in modern day biology: discov-
ering novel protein functions (Sharan et al. 2007),
identifying functionally coherent modules (Spirin and
Mirny 2003; Dittrich et al. 2008), and identifying
conserved molecular interaction patterns (Sharan et al.
2005; Jaeger et al. 2010). Since proteins play a major
role in biological functions, their interactions determine
the molecular mechanisms that control the healthy and
diseased states in organisms. Therefore, the molecular
basis of diseases can be deciphered through protein
interaction networks, which can further help in their
prevention, diagnosis, and treatment (Kann 2007;
Barabási et al. 2011). The experimentally derived as
well as predicted information on protein–protein
interactions has been organized in several databases.
Some of these include BioGRID (the Biological Gen-
eral Repository for Interaction Datasets), which cur-
rently holds *1,740,000 interactions curated from
both high-throughput datasets and individual focused
studies (Stark et al. 2006); the STRING database,
which currently contains information regarding
2,45,84,628 proteins from 5090 organisms (Szklarczyk
et al. 2021); IntAct, a comprehensive database of
individual interactions comprising over 4,00,000

interactions and interactomes of 15 different organisms
(Orchard et al. 2013), and HPRD (Human Protein Refer-
enceDatabase), which that provides information on human
protein interactions (Keshava Prasad et al. 2009).

2.1.3 Gene regulatory networks (GRNs): All cellular
functions are dependent on the well-regulated expression
of genes. This regulation of gene expression happens at
multiple levels including transcriptional, translational, as
well as post translational. The transcription factors (TFs),
including activators and repressors along with their target
binding sites, form intricate networks to control gene
expression. Regulatory RNAs such as micro-RNAs or
long non-coding RNAs also participate in the regulation
of gene expression through various mechanisms (Statello
et al. 2021). In the graph-theoretical representation of
these GRNs, the regulators such as TFs, regulatory
RNAs, and target binding sites are represented as nodes
and the interactions by directed edges. The computa-
tional investigation of these GRNs involves inference of
the networks of interactions from gene expression data
and then understanding the phenotype or diseased state
as an emergent property of these networks (Mercatelli
et al. 2020). By studying and analyzing the reconstructed
GRNs of four model organisms, Saccharomyces cere-
visiae, Caenorhabditis elegans, Drosophila melanoga-
ster and Arabidopsis thaliana, it was reported that GRNs
exhibit scale-free degree distribution (Ouma et al. 2018).
Complex disorders such as cancer often exhibit altered
gene regulation, and analysis of the perturbation in
GRNs can provide insights for diagnosis or prognosis
(Emmert-Streib et al. 2014). A database comprising gene
regulatory networks across various human conditions has
been developed recently and comprises 12,468 GRNs
from 36 human tissues and 28 cancers (Guebila et al.
2022).

2.1.4 Metabolic networks: Metabolic networks refer to
a class of networks that represent the pathways and
reactions modifying various metabolites within organ-
isms. Metabolic networks can be defined in different
ways based on the nodes and the type of interactions.
In the substrate graph model, the metabolites or com-
pounds are the nodes and the reactions converting one
substrate to a product are represented by edges. In the
reaction graph model, the reactions are the nodes and
they are connected if the same compound is a substrate
in one and a product in another reaction. In an enzyme
graph, the nodes represent enzymes and the edges
represent a common compound present in the reactions
catalysed by the two enzymes. Metabolic networks can
also be represented as bipartite graphs (with edges
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strictly between two sets of nodes), with the two sets of
nodes represented by substrates and enzymes. Large-
scale sequencing efforts over the course of past several
years have enabled the curation of gene, protein, and
reaction data for several organisms with the possibility
of construction of global metabolic networks (Ma et al.
2007; Herrgard et al. 2008; Orth et al. 2011). Substrate
graphs of large metabolic networks were found to show
small-world and scale-free characteristics (Wagner and
Fell 2001). In an analysis of microbial metabolic net-
works as directed reaction centric graphs, the degree
distribution was found to follow a power law distri-
bution, suggesting a scale-free nature (Kim et al. 2019).
Several studies have attempted to model metabolic
interactions in order to determine the effect of knockout
of certain enzymes crucial in metabolic pathways of
pathogenic organisms, microbial interactions and their
ecological properties (Roume et al. 2015; Song et al.
2017; Muller et al. 2018), and host–microbe interac-
tions and their relation to disease phenotypes (Heinken
and Thiele 2015).

2.1.5 Signal transduction networks: Cells respond to
environmental cues by activating a cascade of sig-
nalling that leads to change in the transcriptional
landscape of the cells. This involves sequential inter-
action of receptors, enzymes, and transcription factors
This network of molecules and interactions, referred to
as a signal transduction network (STN), can be repre-
sented as a graph where the vertices are genes and the
directed edges denote activating or repressing effects
on transcription (figure 2d). STNs can be constructed
from gene expression or protein–protein interaction
data. Algorithms have been developed that utilize these
data to construct STNs (Zhao et al. 2008; Supper et al.
2009; Wang et al. 2011). Modelling the signal trans-
duction as networks has provided crucial insights into
some emergent properties such as signal integration,
bistability, robustness, and ultrasensitivity, owing to the
topology and motifs in the network (Bhalla and Iyengar
1999; Azeloglu and Iyengar 2015).

2.2 Networks at the tissue level

In recent years, a vast majority of research has been
done on various cellular-level networks such as protein
interactions networks, gene regulatory networks, and
signalling networks, however, relatively little is known
about how all of these cellular-level networks come
together to link higher-level systems such as the
immune system and the brain. Such systems are

conventionally evaluated as a hierarchy comprising
different types of components, both on a microscopic
and a macroscopic scale.

2.2.1 Networks of the immune system: The immune
system involves multiple types of cells that work
together in a coordinated manner to defend the host
against infections. Although a vast amount of infor-
mation is available about individual cells, few studies
have addressed the immune system as a network or
collection of network modules. A systems-level
approach to understand the immune system has led to
the emergence of ‘systems immunology’ to better
understand the immune system and its disorders (Yu
et al. 2019a). Hao Shi et al. (2020) have recently
reviewed the network approach to study and analyse
the immune system with a focus on studies of the
signalling and transcriptional landscape, as well as
cell–cell communication in hematopoiesis, adaptive
immunity, and tumor immunology.

2.2.2 Neuronal networks: The brain is a collection of a
range of different components including molecules,
receptors, ion channels, synapses, and neurons that can
be represented as networks. Neuronal networks can be
defined as consisting of ‘nodes’, represented by neurons
that are interconnected by a set of ‘edges’ which can
represent functional, structural, or effective connections
between different regions of the brain (figure 2e) (Fris-
ton 1994; Sporns et al. 2004). The information to derive
these connections can be based on analysis of neu-
roimaging data. Neuronal networks have shown to
exhibit power law and scale-free behaviour, as con-
firmed in several studies (Young 1992; Hilgetag et al.
2000; Sporns 2003; Sporns and Zwi 2004). Neuronal
networks generally have heterogeneous or broad-scale
degree distributions, meaning that the probability of a
highly connected hub is higher than in a comparable
random network. Bassett and Bullmore (2006) argued
that a small-world topology can support both segregated/
specialized and distributed/integrated information pro-
cessing, and is economical, tending to minimize wiring
costs while also supporting high dynamical complexity,
which is why brain functional networks tend to assume
small-world properties.

2.3 Networks at the population level

Networks are a convenient means of abstraction of
complex emergent properties, and have been widely
adopted in the studies of ecological systems. Ecological
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systems are often represented as networks, typically as
food webs, which are networks of consumer–resource
interactions between groups of organisms (Montoya
et al. 2006; Bascompte 2010). In terms of network
theory, the nodes are represented by individual species
and the edges are inter-species interactions (figure 2f)
that can be antagonistic such as in the case of com-
petition and predation or mutualistic, representing
cooperation between species (Bascompte 2010). Mod-
elling of interactions between species as networks has
enabled deeper understanding of the biodiversity
(Pascual-Garcı́a and Bastolla 2017) and robustness of
ecological systems under perturbations (Lu et al.
2016), and the role of keystone species in the overall
stability of ecosystems.

3. From single networks to multilayer networks

Most real-world systems include multiple subsystems
and layers of connectivity, and it is important to take
such ‘multilayer’ features into account in order to
improve our understanding of complex systems. With
advances in research on complex systems, it has
become increasingly important to move beyond simple
graphs and investigate more complicated and realistic
frameworks (Kivelä et al. 2014). Although multilayer
networks have been studied for many years, a general
lack of convention in terminology is observed. Kivela
et al. (2014) described 26 different types of multilayer
networks based on the properties and constraints that
they had in their representation. To represent systems
that consist of networks at multiple levels or with
multiple types of edges, we consider structures that
have layers in addition to nodes and edges. In other
words, a multilayer network has a set of N nodes and
each node is assigned a type from a set of M types. An
in-depth mathematical representation of the same can
be found in Boccaletti et al. (2014). In this review,
we shall highlight a few popularly used multilayer
networks to study real-world systems, especially
biological systems, namely, multiplex networks, inter-
dependent networks, and networks of networks (fig-
ure 3). Multiplex networks are a special type of
multilayer network comprising a fixed set of nodes
connected by different types of links. They are con-
ventionally used to describe the interactions between
the same set of nodes, and in which each ‘layer’ rep-
resents a different type of interaction, as notably seen in
social networks, where the same set of people can be
related by different sets of interactions such as friend-
ships, collaborations, or co-authorships, or they can be

connected via different modes such as phone, email,
online forums, conferences, or chats. Gene co-expres-
sion networks, protein interaction networks can also be
expressed in ‘layers’ depending on the many cellular
interactions possible. Interdependent networks are a
collection of different networks whose nodes are
interdependent on each other, and often, the functional
properties of nodes of one layer depend on another. For
example, real-world interdependencies such as electric
power, natural gas and petroleum production and dis-
tribution, telecommunications (information and com-
munications) characterized by multiple connections
between infrastructures, feedback and feed-forward
paths, and intricate, branching topologies have been
modelled as interdependent networks and studied for
their resilience, cascading failures, and other dynamic
properties (Rinaldi et al. 2001; Buldyrev et al. 2010;
Duan et al. 2019). In interconnected networks, the
edges that connect different networks need not indicate
dependency relations as in interdependent networks.
For networks of networks, as generalized by Gao et al.
(2014), each node is itself a network itself and each
link represents a partially dependent pair of networks.
Or, in other words, they are multilayer networks with a
‘super-network’. Such a super-network can be very
useful to determine uniquely which set of layers can be
connected by interlinks. Modelling of complex systems
as multilayer networks also brought forward certain
challenges with respect to analysis and visualization of
such networks. A software tool named MuxViz has
been developed to overcome some of these challenges
(De Domenico et al. 2015).

3.1 Structure of multilayer networks

In order to extend the existing metrics designed for
single networks to multilayer networks, we first try to
mathematically define them. A simple network can be
represented by a graph which is a 3-tuple, as discussed
in section 1. This simple notation can be extended to
introduce layers. Thus, a multilayer network then
becomes a ‘quadruple’ and is defined as

M ¼ VM; EM; W; Lð Þ

where VM is the set of layers in which a node is present,
EM is the set containing the set of all pairs of possible
combinations of nodes and layers, and L is the set of
layers defined by d aspects. (Kivelä et al. 2014). Some
of the common terminologies and metrics for multi-
layer networks can be defined as follows:
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(i) Supra-adjacency matrices: The adjacency-matrix
for simple networks shows the pairs of nodes
connected by an edge in a square matrix represen-
tation. This can be extended to multilayer networks
by using supra-adjacency matrices (figure 4). A
supra-adjacency matrix is a block-diagonal struc-
ture, where the interior block-diagonal structures
correspond to intra-layer adjacency matrices.

(ii) Degree of a node in a layer: The degree of a
node, as in a simple network, can also be defined
for a multilayer network by aggregating data from
all the layers and then applying the original

definition of node to the resulting single network.
In a multilayer network comprising nodes and
edges in M layers, each layer has its own
adjacency matrix A, and the degree of a node
can be defined for each layer. The degree of a
specific node i on a specific layer m can be
formulated as

ki;½m� ¼
X

j

aij½m�

Therefore, the degree of any node i can be written
as a vector

Figure 3. A schematic representation of some common types of multilayer networks studied in biological systems: (a) a
network of two network systems A and B, (b) a multiplex network of two layers A and B, and (c) an interconnected network
of two layers A and B.

Figure 4. Schematic representation of a supra-adjacency matrix for a two-layer multiplex network.
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ki ¼ ki;½1�; ki;½2�; . . .; ki;½M�
� �

(iii) Transitivity: The tendency to form cycles
involving three nodes is known as transitivity
or clustering coefficient. It indicates how well the
neighbours of a node are connected to each other
(box 1). Since a multilayer network has several
layers in consideration, the definitions of
network clustering coefficients can be used to
characterize the abundance of triangles on each
layer.

(iv) Centrality measures: Unlike the single network,
the connections between the nodes are of differ-
ent types based on the layers and the relation-
ships between them. This makes the definition of
centrality, or importance of nodes, complicated.
However, centrality measures have been defined
keeping different types of interactions between
layers in consideration. PageRank, for simple
networks, defines the importance of a node based
on the frequency of visits to that node during a
random walk on the network. MultiRank can be
defined on multiplex networks where a random
walker can either take steps inside a layer or
change layers (Halu et al. 2013). In this, the rank
of a node in one layer affects the rank in an other
layer. Based on the effect on one layer on the
other Halu et al. defined four different types of
PageRanks: Additive, Multiplicative, Combined,
and Neutral. Similarly, variations of eigenvector
centrality have been deduced to determine the
importance of nodes in a multiplex network with
heterogeneous interaction paradigms between
various layers (Sol et al. 2013).

The parameters defining multilayer networks have
been comprehensively reviewed by Boccaletti et al.
(2014) and Kivela et al. (2014).

3.2 Dynamic processes on multilayer networks

Dynamical processes have been extensively studied in
single networks (Boccaletti et al. 2006). Epidemic
spreading in complex networks has been particularly
relevant in studying the spread of infectious diseases
in a population and to design strategies to control such
spreads.
Another widely studied phenomenon is synchro-

nization, which is an emergent property of networks
with interacting units (Arenas et al. 2008).
Dynamic processes have also been studied in mul-

tilayer networks, especially in interdependent

networks, a subclass of multilayer networks. The inter-
dependency of these networks is such that if an attack
or failure occurs in either, the other dependent node
stops functioning, which makes these nodes critical in a
network (Kenett et al. 2015). In interdependent net-
works, failure in nodes of one network can cause
failure of dependent nodes in other networks, lead-
ing to a cascade of failures and ultimately the collapse
of the network system (Buldyrev et al. 2010). Several
studies have described conditions under which this
catastrophic collapse of the interdependent networks
can be prevented (Reis et al. 2014; Radicchi and
Bianconi 2017; Min and Zheng 2018). Redundant
connections play a crucial role in making such net-
works robust. Synchronization in multilayer networks
has been characterized only recently. A generalized
framework for synchronization in multilayer networks
has been developed by Del Genio et al. (2016) and
Rossa et al. (2020). Further details can be obtained in
comprehensive reviews by Boccaletti et al. (2014) and
Kivelä et al. (2014). Having briefly introduced the
theoretical developments for multilayer paradigm of
complex system modelling, we will now describe
recent advances in the application of this paradigm to
biological systems.

4. Multilayer networks in biological systems

4.1 Multilayer network modelling of transcriptional
and post-transcriptional processes

Multilayer network modelling of biological systems
enables integration of information at multiple scales and
evinces the emergent properties at systems level. In a
recent study, Azevedo et al. (2021) modelled the human
transcriptome as a multilayer network at the intra- and
inter-tissue level. Five different multilayer networks
were generated and analyzed, comprising (a) all human
tissues with each layer representing a tissue type,
(b) brain and gastrointestinal tissues with 16 layers each
corresponding to the brain tissues and gastrointestinal
tissues, giving insights into the gut–brain axis, (c) brain
tissues and whole blood, comprising 14 layers that
helped to study brain-derived communities, (d) non-
brain tissues comprising 36 layers, and (e) brain tissues
comprising 13 layers each corresponding to the various
brain regions. Network analysis of such detailed multi-
layer networks helps to gain insights into how pertur-
bations affect biological pathways and mediate disease
processes (Azevedo et al. 2021).
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A multilayer framework was used to identify func-
tional communities in colon adenocarcinoma by con-
sidering a three-layered network comprising
transcriptional, post-transcriptional, and physical
interaction levels. A seed-centric community detection
approach was used to identify hub nodes and genes that
showed a different expression pattern in tumour pro-
gression and therefore could be potential biomarkers in
the detection of colon adenocarcinoma (Pournoor et al.
2020). In another application, a multilayer network
modelling comprising protein–protein interaction,
shared domain information and shared protein complex
information as three different layers was used to
accurately predict protein function (Zhao et al. 2016).
Multilayer networks have also been used to model the
interdependence of gene regulation and cellular meta-
bolism (figure 5a). In this context, the regulation and
metabolism in Escherichia coli was studied as a three-
layer network comprising the gene regulatory layer, the
protein interaction layer, and the metabolic layer. This
study investigated the spreading of internal and exter-
nal perturbations through the three layers, and found
that the interdependent network was particularly robust
against metabolic perturbations (Klosik et al. 2017).

4.2 Human physiology and diseases as multilayer
networks

In terms of networks, one can imagine the human body
as a complex network of vertices representing distinct
physiological systems and edges representing various
interactions among them. Such reduced descriptions
were previously studied by Kivelä et al. (2014). Halu
et al. (2019) modelled 779 human diseases as a mul-
tiplex network comprising a genotype-based layer and
a phenotype-based layer, and reported multiple com-
munities that bridged the gap between the genotype
and phenotype layers, thereby discovering new dis-
ease–disease interactions, which would not have been
possible in the case of single network analysis
(figure 5b). In another study, a weighted four-layer
disease–disease similarity network comprising disease
network based on protein interactions, disease symp-
toms, gene ontology, and disease ontology was built
and nine conserved disease modules were observed
using a tensor-based computational framework. Their
results showed that diseases of the same type were
mostly grouped together and that this method would be
useful in identifying potential disease–disease rela-
tionships (Yu et al. 2019b). Berenstein et al. (2016)
used a multilayer network approach for drug

repositioning by considering three separate layers of
bioactive compounds, target proteins, and their func-
tional associations. This enabled identification of novel
drug targets for orphan bioactive compounds.

4.3 Modelling brain structure and function,
a multilayer approach

In addition to understanding the structure of the nervous
system, it is important to understand the relationship
between structure and function, where a multilayer rep-
resentation becomes very useful (Crofts et al. 2016).
Brain networks vary across time, frequency, subjects,
conditions, and connectivity, thus necessitating its study
as a multilayer network. Multilayer networks allow us to
analyse brain networks comprising both structural and
functional layers (figure 5c). Battiston et al. (2017)
modelled the brain as a multilayer network comprising
two layers: (a) the structural or anatomical layer where
nodes are usually putative brain regions and the links
represent the physical connections among them; and
(b) the functional layer where nodes represent an area of
the brain usually consisting of neural assemblies, and the
links represent functional interactions such as electrical,
magnetic, hemo-dynamic, and metabolic activities
between two regions. An analysis of motifs and sub-
graphs in these layers provided crucial insights regarding
relationships between the structure and function of the
brain (Battiston et al. 2017). The structural network
of Caenorhabditis elegans has been modelled as a four-
layer multilayer neural communication network, with
each layer representing a different mode of connection
between neurons, namely, synaptic, gap junction,
monoamine, and neuropeptide coupling (Battiston et al.
2014). In a similar way, the connectomics of the C. ele-
gans nervous system at the level of individual modes of
connection can serve as a prototype to understand more
complex nervous systems such as that of the human brain
and the behaviourally relevant communication within
the brain, and to study the topological properties and
dynamics of such networks.
Several mathematical concepts of multilayer net-

works have been actively used to model changing brain
dynamics over time and have proven to be a powerful
tool in describing the complex organization and evo-
lution of the human brain and its relationship to
cognition. A multilayer network framework can be
utilized to integrate information from different
methods, where each layer of the network corre-
sponds to a network obtained from different neuro-
imaging techniques, and various graph metrics can be
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Figure 5. A schematic representation of how some biological networks can be modelled as multilayer network systems. (a)
An interdependent network of gene regulation and metabolism comprising three layers: gene regulatory layer, protein
interaction layer, and metabolic layer (Brazhnik et al. 2002). The components (nodes) are organized in three levels: mRNAs,
proteins, and metabolites. The dashed red directed edges represent the inter-layer connections such as activation, repression,
and catalysis. The solid lines represent intra-layer connections such as gene regulation in the ‘gene layer’ (shown in grey),
protein–protein interaction in the PPIN layer (shown in green), and metabolite conversion in the metabolic layer (shown in
blue). (b) Disease network represented as two-layer network comprising a phenotype layer and a genotype layer. The
phenotype layer (shown in teal) comprises diseases connected by symptoms, and the genotype layer (shown in dark blue)
comprises diseases connected by common genes. The inter-layer edges (shown in dashed lines) represent connections
between diseases. (c) A multiplex network of the human brain, comprising two layers: the functional and the structural layer,
derived from fMRI and DTI data, respectively. (d) A network of networks representation of an ecological network. Intra-layer
edges (shown as orange lines) denote trophic interactions, and inter-layer edges (shown as black arrows) represent species
dispersal between communities.
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applied (Mandke et al. 2018). Community detection
in the case of brain networks can be challenging,
given that brain networks are usually time-varying. In
one such work that discusses various mathematical
techniques to quantify brain networks, Puxeddu et al.
(2019) analysed the performances of community
detection algorithms as employed for brain networks,
thereby providing a guide to choosing the optimal
temporal resolution according to network features.
Most of our current understanding about functional
brain networks assumes the brain to be a static entity;
however, in reality, optimal brain function involves
frequent switching of brain networks. Pedersen
et al. (2018) showed that brain regions transit
between different network configurations at a high
rate, which is a predictor of the performance of
cognitive functions including working memory,
planning, and reasoning.
Multilayer analysis of data from healthy and diseased

patients have recently been employed to study a variety
of disorders. For instance, the fMRI data representing
functional networks with the nodes as brain regions and
the edges as coherence between regional activity, and
diffusion tensor imaging (DTI) data representing the
structural network, can be used to build a multilayer
network comprising two layers (Vaiana and Muldoon
2020). Furthermore, several kinds of neural data arising
from fMRI, magnetoencephalography (MEG), and
electroencephalography (EEG) can be decomposed into
frequency bands for each brain region and then studied in
layers as multilayer frequency-based brain networks
(Buldú and Porter 2018). This provides insights into
studying disease patterns such as schizophrenia, their
overall detailed brain connectomics, and how disrup-
tions in both the structural and functional network layers
lead to diseases (Heuvel and Fornito 2014).

4.4 Cancer complexome as a multilayer network

The cancer complexome comprises components that
belong to various organizational levels, such as com-
ponents involved in cytology, physiology, signalling
mechanisms, and response. The entire complexome of
cancer in seven different human cancers, namely,
breast, oral, ovarian, cervical, lung, colon, and prostate,
was studied in order to understand cancer development,
progression and treatment response by using a com-
bined framework of spectral graph theory, and network
theory along with a multilayer analysis (Rai et al.
2017). The multilayer framework highlights the pro-
teins that are common in all cancers and have structural

importance in individual networks. In the context of
cancer therapy, it can help elucidate the genetic
mechanisms that are altered, thereby causing disease.

4.5 Understanding the dynamics of infection
transmission using multilayer network approach

The transmission of pathogens in nature cannot be
accurately quantified via only a single mode of trans-
mission. Applying the techniques of complex network
theory to epidemiology gives us valuable insights into
understanding pathogen transmission dynamics in pop-
ulations with multiple transmission modes. In this con-
text, several studies have used multilayer networks to
study pathogen transmission through multiple modes
and pathways of infection (Tsai et al. 2011; Mari et al.
2012; Buono and Braunstein 2015). A multilayer net-
work approach that assumes each transmissionmode as a
layer can help us to understand how a novel pathogen
spreads through a population and in what ways it affects
the dynamics of the population. Silk et al. (2019)
defined three possible ways of modelling disease
transmission using multilayer networks by considering
habitat connectivity, social networks, transmission of
disease to multiple hosts via the environment and
finally co-infection. In another study, Silk et al. (2018a)
used a multilayer network to model the transmission of
infection between European badgers and domestic
cattle. Using the multilayer approach enabled them to
understand the role of direct and indirect transmission
of infection between different hosts. Using a multiplex
network approach with two layers, namely, ecological
and transmission layers, Stella et al. (2017) studied the
spread of Trypanosoma cruzi in its natural habitat
across different mammalian species through different
modes of transmission. Multilayer networks have also
been used to model the simultaneous propagation of
two coexisting pathogens through a network. It helps to
understand spreading dynamics, for instance, if the
infection of a node by one pathogen alters the suscep-
tibility to the second pathogen, or if co-infection of a
node influences its ability to transmit either patho-
gen (Azimi-Tafreshi 2016).

4.6 Modelling ecological interactions as multilayer
networks

Although ecological networks have been extensively
studied as discrete networks, with a multilayer
approach to model ecological networks, the layers
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can be defined by interaction type, group identity,
and levels of organization (Pilosof et al. 2017). An
example of networks layered according to levels of
organizations is a three-level network comprising
population, community, and meta-community, studied
and analysed by Scotti et al. (2013) It was shown
that changes at the population level could impact the
meta-community at the top level, thereby illustrating
the role of hierarchical structural mechanisms in
ecological networks (figure 5d). A multilayer net-
work has also been used to link animal social
behaviour with their respective physical environment.
Habitats and resources influence animal movement
patterns, which in turn influence multiple types of
social interactions such as predation, competition,
mating choice, and their time-dependent dynamics.
Integrating such spatial, temporal, and social
dynamics using multilayer networks can uncover
novel ecological impacts on animal social behaviour
(Silk et al. 2018b).

5. Future directions and challenges

The use of multilayer networks to study complex sys-
tems is a promising direction, especially in a biological
context. At the cellular level, proteins and genes are
often involved in many processes such as signalling,
and transcriptional or metabolic regulations, depending
on various aspects such as the external environment
and type of tissue that necessitates the use of a multi-
layer framework to describe them. At the population
level, a domain that could greatly benefit from a mul-
tilayer framework is that of disease spreading, espe-
cially in cases where two or more diseases propagate
together in the host population, giving rise to complex
dynamical interdependencies like cross-immunization
or cooperation between the diseases, as is the case with
tuberculosis and HIV. These can be accounted for by
considering multiple networks of contacts. Multilayer
networks, thus, have provided a promising direction
across all domains. The application of multilayer net-
work models to real-world networks has been instru-
mental in understanding the robustness (or lack
thereof) of these complex systems. Considering the
robustness inherent to the biological systems to be a
result of evolution, it would be interesting to under-
stand the molecular underpinnings of this robustness in
biological systems by considering various layers of
interactions and cross-talks. This also provides an
opportunity to understand complex diseases such can-
cer and metabolic disorders in the context of various

interacting networks and to identify novel targets.
Another area where the multilayer network formalism
can provide useful insights is in understanding brain
networks by modelling various regions and their con-
nections with respect to their functions and comparing
them in various diseased states.
Although the multilayer paradigm provides several

advantages in terms of understanding the complexities
inherent in real-world complex systems, it comeswith its
own challenges. One of themost significant challenges is
understanding or delineating the layers to be modelled
within the system. This becomes even more relevant
when redundant information could be present in different
layers (Hasenjager et al. 2021). Another challenge is
dealing with the scarcity of data and formalism to model
real systems as multilayer networks. Identifying and
assigning the intra- and inter-layer edges is another
crucial task that presents challenges in multilayer net-
works. Furthermore, calculating the appropriate network
parameters that can help in understanding the system is
another challenge in modelling complex systems as
multilayer networks. However, with advances being
made, both, in terms of the development of theory aswell
as in the availability of data at various levels (subcellular,
cellular, and organism), modelling biological systems as
multilayer networks will provide deeper insights into
their mechanisms.
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